On filters and upper sets in CI-algebras Bożena Piekart and Andrzej Walendziak

Communicated by V. V. Kirichenko

ABSTRACT. CI-algebras are a generalization of BE-algebras and dual BCK/BCI/BCH-algebras. In this paper filters of CI-algebras are considered. Given a subset of a CI-algebra, the least filter containing it is constructed. An equivalent condition of the filters using the notion of upper sets is provided.

1. Introduction

In 1966, Y. Imai and K. Iséki [3] introduced the notion of a BCK-algebra. There exist several generalizations of BCK-algebras, such as BCI-algebras [4], BCH-algebras [2], BCC-algebras [8], BH-algebras [5], d-algebras [12], etc. In [6], H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra as a dualization of a generalization of a BCK-algebra. They defined and studied the concept of a filter in BE-algebras. This concept was also investigated in [10] and [7]. As a generalization of BE-algebras, B. L. Meng [9] introduced the notion of CI-algebras and discussed its important properties.

In this paper, we consider filters in CI-algebras. Given a subset of a CI-algebra, we make the least filter containing it. We provide an equivalent condition of the filters using the notion of upper sets.

2. Preliminaries

Definition 2.1. ([9]) A CI-algebra is an algebra (X; *, 1) of type (2, 0) satisfying the following axioms:

²⁰⁰⁰ Mathematics Subject Classification: 06F35, 03G25. Key words and phrases: CI-algebra, filter, upper set.

 $\begin{array}{l} (\text{CI-1}) \ x*x=1,\\ (\text{CI-2}) \ 1*x=x,\\ (\text{CI-3}) \ x*(y*z)=y*(x*z)\,.\\ \text{A CI-algebra X is said to be a $BE-algebra $if for all $x\in X$} \end{array}$

(BE) x * 1 = 1.

Throughout this paper X will denote a CI-algebra. We introduce a relation \leq on X by $x \leq y$ if and only if x * y = 1.

Example 2.2. Let $X = \{1, a, b, c\}$ and * be defined by the following table:

*	1	a	b	c
1	1	a	b	С
a	1	1	1	c
b	1	1	1	c
c	c	c	c	1

Then (X, *, 1) is a CI-algebra, which is not a BE-algebra.

For any $x_1, \ldots, x_n, a \in X$, we define

$$\prod_{i=1}^{n} x_i * a = x_n * (\dots * (x_1 * a) \dots).$$

Proposition 2.3. ([9]) For any $x, y \in X$ we have

(a) y * ((y * x) * x) = 1, (b) $1 \leq x \Rightarrow x = 1$.

Definition 2.4. ([11]) A CI-algebra X is said to be *transitive* if for all $x, y, z \in X$,

$$y * z \leqslant (x * y) * (x * z).$$

It is easily seen that the CI-algebra X of Example 2.2 is transitive. Consider the following example.

Example 2.5. Let $X = \{1, a, b, c, d\}$ and * be defined by the following table:

*	1	a	b	c	d
1	1	a	b	С	d
a	1	1	b	c	d
b	1	1	1	1	d
c	1	a	c	1	d
d	d	$egin{array}{c} a \\ 1 \\ 1 \\ a \\ d \end{array}$	d	d	1

Then (X, *, 1) is a CI-algebra. Since b * a = 1 and (c * b) * (c * a) = c * a = a, X is not transitive.

Lemma 2.6. ([11]) If a CI-algebra X is transitive, then for all $x, y, z \in X$, $x \leq y$ implies $z * x \leq z * y$.

Lemma 2.7. Let X be a transitive CI-algebra and let $x, y \in X$ such that x * y = 1. Then for all $a_1, \ldots, a_n \in X$, $\prod_{i=1}^n a_i * x = 1$ implies $\prod_{i=1}^n a_i * y = 1$.

Proof. We have $x \leq y$ and from Lemma 2.6 we see that

$$1 = \prod_{i=1}^{n} a_i * x \leqslant \prod_{i=1}^{n} a_i * y.$$

Applying Proposition 2.3 (b) we conclude that $\prod_{i=1}^{n} a_i * y = 1$.

3. Filters

Following [9], a *filter* of X is a subset F of X such that for all $x, y \in X$: (F1) $1 \in F$,

(F2) if $x * y \in F$ and $x \in F$, then $y \in F$.

By $\operatorname{Fil}(X)$ we denote the set of all filters in X. It is obvious that $\{1\}, X \in \operatorname{Fil}(X)$.

Example 3.1. Consider the CI-algebra X of Example 2.2. It is easy to check that $Fil(X) = \{\{1\}, \{1, a, b\}, X\}.$

Proposition 3.2. If F_i $(i \in I)$ are filters of X, then $\bigcap_{i \in I} F_i$ is a filter of X.

Proof. Straightforward.

Proposition 3.3. Let F be a subset of X containing 1. Then $F \in Fil(X)$ if and only if for any $a, b \in F$ and $x \in X$, a * (b * x) = 1 implies $x \in F$.

Proof. (\Leftarrow) Since $1 \in F$, the condition (F1) holds. Suppose that $a * x \in F$ and $a \in F$. By Proposition 2.3 (a), a * [(a * x) * x] = 1. Then $x \in F$ and hence (F2) is true. Therefore F is a filter of X.

(⇒) Let $F \in Fil(X)$. Assume $a, b \in F$ and $x \in X$ such that a * (b * x) =1. From (F1) we obtain $a * (b * x) \in F$. Applying (F2) twice we have $x \in F$. \Box

By induction we easily obtain

Corollary 3.4. Let F be a subset of X containing 1. Then $F \in Fil(X)$ if and only if for any $a_1, \ldots, a_n \in F$ and $x \in X$, $\prod_{i=1}^n a_i * x = 1$ implies $x \in F$.

Definition 3.5. For every subset $A \subseteq X$, the smallest filter of X which contains A, that is, the intersection of all filters $F \supseteq A$, is said to be the *filter generated by* A, and will be denoted [A). Obviously, $[\emptyset] = \{1\}$.

Theorem 3.6. Let A be a nonvoid subset of a transitive CI-algebra X. Then

$$[A] = \{ x \in X : x = 1 \text{ or } \prod_{i=1}^{n} a_i * x = 1 \text{ for some } a_1, \dots, a_n \in A \}.$$

Proof. Set $F = \{x \in X : x = 1 \text{ or } \prod_{i=1}^{n} a_i * x = 1 \text{ for some } a_1, \dots, a_n \in A\}$. Since a * a = 1 for all $a \in A$, we obtain $A \subseteq F$. Obviously, $1 \in F$. Let $x * y \in F$ and $x \in F$. To prove that $y \in F$, we will consider three cases.

Case 1: x = 1.

Then $y = 1 * y \in F$.

Case 2: x * y = 1 and $x \neq 1$.

Since $x \in F$ and $x \neq 1$, we conclude that $\prod_{i=1}^{n} a_i * x = 1$ for some $a_1, \ldots, a_n \in A$. From Lemma 2.7 it follows that $\prod_{i=1}^{n} a_i * y = 1$. Therefore $y \in F$.

Case 3: $x * y \neq 1$ and $x \neq 1$.

Then there are $a_1, \ldots, a_n, b_1, \ldots, b_m \in A$ such that $\prod_{i=1}^n a_i * (x * y) = 1$ and $\prod_{j=1}^m b_j * x = 1$. Applying (CI-3) we deduce that $x \leq \prod_{i=1}^n a_i * y$. From Lemma 2.6 we see that

$$1 = \prod_{j=1}^{m} b_j * x \leqslant \prod_{j=1}^{m} b_j * \left(\prod_{i=1}^{n} a_i * y\right).$$

By Proposition 2.3 (b), $\prod_{j=1}^{m} b_j * (\prod_{i=1}^{n} a_i * y) = 1$. Hence $y \in F$, and so F is a filter of X.

Suppose now that U is any filter of X containing A. Let $x \in F$. If x = 1, then obviously $x \in U$. Assume that $x \neq 1$. Then there are $a_1, \ldots, a_n \in A$ such that $\prod_{i=1}^n a_i * x = 1$. Since $A \subseteq U$, it follows that $a_1, \ldots, a_n \in U$. Therefore $x \in U$ by Corollary 3.4. Thus $F \subseteq U$ and hence F = [A]. \Box

Let $F_1, F_2 \in \text{Fil}(X)$. We define the meet of F_1 and F_2 (denoted by $F_1 \wedge F_2$) by $F_1 \wedge F_2 = F_1 \cap F_2$ and the join of F_1 and F_2 (denoted by $F_1 \vee F_2$) by $F_1 \vee F_2 = [F_1 \cup F_2)$. We note that $(\text{Fil}(X); \wedge, \vee)$ is a lattice. Moreover, by Proposition 3.2 we have

Theorem 3.7. (Fil(X); \land , \lor) is a complete lattice.

4. Upper sets

For any $x, y \in X$, we define

$$A(x, y) = \{ z \in X : z = 1 \text{ or } x * (y * z) = 1 \}$$

and

$$A(x) = \{ z \in X : z = 1 \text{ or } x * z = 1 \}.$$

Applying (CI-2) we conclude that A(x) = A(1, x).

The set A(x) (resp. A(x, y)) is called an *upper set* of x (resp. of x and y). We say that a subset A of X is an upper set of X if A = A(x, y) for some $x, y \in X$. By US(X) we denote the set of all upper sets in X.

Remark 4.1. By (CI-3), A(x, y) = A(y, x) for all $x, y \in X$.

Example 4.2. Let $X = \{1, a, b\}$ and * be defined by the following table:

$$\begin{array}{c|cccc} * & 1 & a & b \\ \hline 1 & 1 & a & b \\ a & a & 1 & 1 \\ b & a & 1 & 1 \end{array}$$

Then (X, *, 1) is a CI-algebra. For $x, y \in X$, we have

$$A(x,y) = \begin{cases} X & \text{if } x \neq y \text{ and } (x=1 \text{ or } y=1) \\ \{1\} & \text{otherwise.} \end{cases}$$

Since $\operatorname{Fil}(X) = \{\{1\}, X\}$, we see that $\operatorname{Fil}(X) = \operatorname{US}(X)$.

In general, not every filter is an upper set and not every upper set is a filter. Indeed, we consider the following example.

Example 4.3. Let X be the CI-algebra of Example 2.2. We have (see Example 3.1) Fil(X) = $\{\{1\}, \{1, a, b\}, X\}$. It is easy to check that $US(X) = \{\{1\}, \{1, a, b\}, \{1, c\}\}$. Therefore X is not an upper set of X and $\{1, c\}$ is not a filter in X.

Lemma 4.4. For every $x, y \in X$,

- (a) $x \in A(x)$,
- (b) $1 \in A(x, y)$ and $1 \in A(x)$,
- (c) if y * 1 = 1, then $A(x) \subseteq A(x, y)$,
- (d) if $y * 1 \neq 1$, then $A(x) \{1\} \subseteq X A(x, y)$,
- (e) if A(x) is a filter of X and $y \in A(x)$, then $A(x,y) \subseteq A(x)$.

Proof. (a) Let $x \in X$. Since x * x = 1, we have $x \in A(x)$.

(b) By the definition of upper sets.

(c) Let y * 1 = 1 and let $z \in A(x)$. If z = 1, then obviously $z \in A(x, y)$. Suppose that x * z = 1. Hence y * (x * z) = y * 1 = 1 and therefore $z \in A(y, x) = A(x, y)$. Consequently, $A(x) \subseteq A(x, y)$.

(d) Let $y * 1 \neq 1$ and $z \in A(x) - \{1\}$. Then x * z = 1 and applying (CI-3) we get $x * (y * z) = y * (x * z) = y * 1 \neq 1$. Thus $z \notin A(x, y)$ and we conclude that $A(x) - \{1\} \subseteq X - A(x, y)$.

(e) Let A(x) be a filter of X and $y \in A(x)$. If $z \in A(x, y)$, then z = 1 or x * (y * z) = 1. In the first case $z = 1 \in A(x)$, in the second one $x * (y * z) \in A(x)$. Since A(x) is a filter and $x, y \in A(x)$, we obtain $z \in A(x)$.

Theorem 4.5. Let F be a nonvoid subset of a CI-algebra X. Then F is a filter of X if and only if $A(x, y) \subseteq F$ for all $x, y \in F$.

Proof. Suppose that F is a filter of X. Let $x, y \in F$ and $z \in A(x, y)$. Then z = 1 or x * (y * z) = 1. Obviously $z = 1 \in F$. If x * (y * z) = 1, then applying twice (F2) we obtain $z \in F$. Hence $A(x, y) \subseteq F$.

Now let $A(x, y) \subseteq F$ for all $x, y \in F$. Since $F \neq \emptyset$, there exists $z \in F$. By definition, $1 \in A(z, z) \subseteq F$ and therefore (F1) holds. Let $x * y \in F$ and $x \in F$. By (CI-1), (x * y) * (x * y) = 1 and hence $y \in A(x * y, x) \subseteq F$. Thus (F2) also holds and consequently, F is a filter of X. \Box

Proposition 4.6. If F is a filter of X, then $F = \bigcup_{x,y \in F} A(x,y)$.

Proof. Let F be a filter. From Theorem 4.5 it follows that $A(x, y) \subseteq F$ for all $x, y \in F$. Hence $\bigcup_{x,y \in F} A(x, y) \subseteq F$.

Now let $z \in F$. By Lemma 4.4 (a),

$$z \in A(z) = A(1, z) \subseteq \bigcup_{x, y \in F} A(x, y).$$

Then $F \subseteq \bigcup_{x,y \in F} A(x,y)$.

Proposition 4.7. If F is a filter of X, then $F = \bigcup_{x \in F} A(x)$.

Proof. Let F be a filter and let $z \in F$. By Lemma 4.4 (a), $z \in A(z) \subseteq \bigcup_{x \in F} A(x)$. Therefore $F \subseteq \bigcup_{x \in F} A(x)$. From Theorem 4.5 we conclude that $A(x) = A(1,x) \subseteq F$ for all $x \in F$. Hence $\bigcup_{x \in F} A(x) \subseteq F$ and consequently, $F = \bigcup_{x \in F} A(x)$. \Box

References

- Ahn S. S., So K. S., "On ideals and upper sets in BE-algebras", Sci. Math. Japonicae e-2010, p. 351-357.
- [2] Hu Q. P., Li X., "On BCH-algebras", Math. Seminar Notes 11 (1983), p. 313-320.
- [3] Imai Y., Iséki K., "On axiom systems of propositional calculi XIV", Proc. Japan Academy 42 (1966), p. 19-22.
- [4] Iséki K., "An algebra related with a propositional calculus", Proc. Japan Acad. 42 (1966), p. 26-29.
- [5] Jun Y. B., Roh E. H., Kim H. S., "On BH-algebras", Sci. Mathematicae 1 (1998), p. 347-354.
- [6] Kim H. S., Kim Y. H., "On BE-algebras", Sci. Math. Japonicae 66 (2007), p. 113-116.

- [7] Kim H.S., Lee K. J., "Extended upper sets in BE-algebras", Bull Malays. Math. Sci. Soc. submitted.
- [8] Komori Y., "The variety generated by BCC-algebras is finitelly based", Reports Fac. Sci. Shizuoka Univ. 17 (1983), p. 13-16.
- [9] Meng B. L., "CI-algebras", Sci. Math. Japonicae, e-2009, p. 695-701.
- [10] Meng B. L., "On filters in BE-algebras", Sci. Math. Japonicae, e-2010, p. 105-111.
- [11] Meng B. L., "Closed filters in CI-algebras", Sci. Math. Japonicae, e-2010, p. 265-270.
- [12] Negger J., Kim H. S., "On d-algebras", Math. Slovaca 40 (1999), p. 19-26.
- [13] Song S. Z., Jun Y. B., Lee K. J., "Fuzzy ideals in BE-algebras", Bull Malays. Math. Sci. Soc. 33 (2010), p. 147-153.

CONTACT INFORMATION

B. Piekart	Institute of Mathematics and Physics, University of Siedlee, 3 Maja 54, 08–110 Siedlee, Poland <i>E-Mail:</i> bpiekart@interia.pl
A. Walendziak	Warsaw School of Information Technology, Newelska 6, 01-447 Warszawa, Poland <i>E-Mail:</i> walent@interia.pl

Received by the editors: 24.07.2010 and in final form 18.03.2011.