A generalization of supplemented modules Hatice Inankil, Sait Halıcıoglu, Abdullah Harmanci

Communicated by V. V. Kirichenko

ABSTRACT. Let R be an arbitrary ring with identity and Ma right R-module. In this paper, we introduce a class of modules which is an analogous of δ -supplemented modules defined by Kosan. The module M is called *principally* δ -supplemented, for all $m \in M$ there exists a submodule A of M with M = mR + A and $(mR) \cap A \delta$ small in A. We prove that some results of δ -supplemented modules can be extended to principally δ -supplemented modules for this general settings. We supply some examples showing that there are principally δ -supplemented modules but not δ -supplemented. We also introduce principally δ -semiperfect modules as a generalization of δ -semiperfect modules and investigate their properties.

1. Introduction

Throughout this paper all rings have an identity, all modules considered are unital right modules. Let M be a module, N and P be submodules of M. We call P a supplement of N in M if M = P + N and $P \cap N$ is small in P. A module M is called supplemented if every submodule of Mhas a supplement in M. A module M is called lifting if, for all $N \leq M$, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is small in M. Supplemented and lifting modules have been discussed by several authors (see [4, 8]) and these modules are useful in characterizing semiperfect and right perfect rings (see [8, 14]). A submodule L is called a δ -supplement of N in M if M = N + L and $N \cap L$ is δ -small in L(therefore

²⁰⁰⁰ Mathematics Subject Classification: 16U80.

Key words and phrases: supplemented modules, δ -supplemented modules, principally δ -supplemented modules, semiperfect modules, δ -semiperfect modules, principally δ -semiperfect modules.

in M), and M is called δ -supplemented in case every submodule of M has a δ -supplement in M. Principally supplemented modules are introduced and studied in [3]. A module M is said to be *principally supplemented* if for any cyclic submodule has a supplement in M. Principally supplemented modules generalizes principally lifting modules([9]), supplemented modules and weakly supplemented modules(see [1], [8], [14]).

In this paper, we introduce principally δ -supplemented modules and investigate their properties. A module M is called *principally* δ -supplemented if for each cyclic submodule has the *principally* δ -supplement property, i.e., for each $m \in M$, there exists a submodule N such that M = mR + N with $(mR) \cap N$ is δ -small submodule in N. A module M is called *principally* δ -semiperfect if, for each $m \in M$, M/mR has a projective δ -cover[12]. New characterizations of principally δ -semiperfect rings are obtained using principally δ -supplemented modules.

In what follows, by \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_n and $\mathbb{Z}/n\mathbb{Z}$ we denote, respectively, natural numbers, integers, rational numbers, the ring of integers modulo n and the \mathbb{Z} -module of integers modulo n. For unexplained concepts and notations, we refer the reader to [2] and [8].

2. Preliminaries

In this section we establish the notation and state some results on δ -small submodules which are required later. Following Zhou [16], a submodule N of a module M is called a δ -small if, whenever M = N + X with M/X singular, we have M = X.

We state the next lemma which is contained in [16, Lemma 1.2 and 1.3].

Lemma 2.1. Let M be a module. Then we have the following.

- 1. If N is δ -small in M and M = X + N, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \leq N$.
- 2. If K is δ -small in M and $f: M \to N$ is a homomorphism, then f(K) is δ -small in N. In particular, if K is δ -small in $M \leq N$, then K is δ -small in N.
- 3. Let $K_1 \leq M_1 \leq M$, $K_2 \leq M_2 \leq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2$ is δ -small in $M_1 \oplus M_2$ if and only if K_1 is δ -small in M_1 and K_2 is δ -small in M_2 .
- 4. Let N, K be submodules of M with K is δ -small in M and $N \leq K$. Then N is also δ -small in M.

Lemma 2.2. Let M be a module and $m \in M$. Then the following are equivalent.

- 1. mR is not δ -small in M.
- 2. There is a maximal submodule N of M such that $m \notin N$ and M/N singular.

Lemma 2.3. Let M be a module and K, L, H be submodules of M. If L is δ -small in K, then L is δ -small in K + H.

Proof. Assume that L is δ -small in K. Let U be a submodule of M with K+H = L+U and (K+H)/U singular. Then $K/(U \cap K) \cong (K+U)/U = (K+H)/U$ is singular. On the other hand we have $K = L + (K \cap U)$. Since L is δ -small in $K, K = K \cap U \leq U$. Hence K + H = U. \Box

Lemma 2.4. Let L be a δ -supplement submodule of a module M. If U is a δ -small submodule of M with $U \leq L$, then U is δ -small in L.

Proof. Let M = K + L with $K \cap L$ δ -small in L and L = U + V and L/V singular. We prove that L = V. Then M = K + U + V and $M/(K+V) = (K+L)/(K+V) = ((K+V)+L)/(K+V) \cong L/(L \cap (K+V))$ which is a homomorphic image of singular module L/V. By hypothesis M = K + V. Then $L = (L \cap K) + V$ and so L = V. \Box

Lemma 2.5. Let $A \leq B$ and K be submodules of M and M = A + K. If $B \cap K$ is δ -small in M, then B/A is δ -small submodule of M/A.

Proof. Let M/A = B/A + L/A with M/L singular. We have M = B + Land $B = A + B \cap K$. Then $M = A + B \cap K + L = B \cap K + L$. Hence M = L since $B \cap K$ is δ -small in M and M/L is singular.

Lemma 2.6. Let M be an R-module and K, L, N be submodules of M. Then we have the followings.

(1) If K is a δ -supplement of N in M and T is δ -small in M, then K is a δ -supplement of N + T in M.

(2) Let $M \xrightarrow{f} N$ be an epimorphism with Kerf δ -small in M. If the submodule L of M is a δ -supplement in M, then f(L) is a δ -supplement in N. The converse holds if Kerf is a δ -small submodule of L.

Proof. (1) Let K be a δ -supplement of N in M. Then M = N + K and $N \cap K$ is δ -small in K. We prove $(N + T) \cap K$ is δ -small in K. For if, let $L \leq K$ with $K = L + (N + T) \cap K$ and K/L singular, then M = L + N + T and $M/(L + N) = (K + N)/(L + N) \cong K/(K + (L \cap N))$ is singular as

an homomorphic image of the singular module K/L. Since T is δ -small in M, M = L + N. Hence $K = L + K \cap N$. Since $K \cap N$ is δ -small in Kand K/L is singular we have K = L.

(2) Let L be a δ -supplement of K in M. Then L is a δ -supplement of K + Kerf by (1). By Lemma 3.4, f(L) = f(L + Kerf) is also a δ -supplement of f(K) = f(K + Kerf) in N. Conversely, let N = f(L) + U with $f(L) \cap U$ is δ -small in f(L) and $K = f^{-1}(U)$. Then M = L + K. To complete the proof we prove that $L \cap K$ is δ -small in L. For if $L = V + L \cap K$ with L/V singular, then $f(L) = f(V) + f(L) \cap f(K) = f(V) + f(L) \cap U$ since $Kerf \leq K$, $f(L \cap K) = f(L) \cap f(K)$. f(L)/f(V) is singular as an homomorphic image of singular module L/V. Hence f(L) = f(V). So L = V + Kerf. Thus L = V.

3. Principally δ -supplemented modules

In this section we introduce principally δ -supplemented modules and investigate some properties of these modules. We prove that some results of supplemented and δ -supplemented modules can be extended to principally δ -supplemented modules.

Lemma 3.1. Let $m \in M$ and L a submodule of M. Then the following are equivalent.

- 1. M = mR + L and $mR \cap L$ is δ -small in L.
- 2. M = mR + L and for any proper submodule K of L with L/K singular, $M \neq mR + K$.

Proof. (1) \Rightarrow (2) Let $K \leq L$ and M = mR + K where L/K singular. Then $L = (L \cap mR) + K$. Since $L \cap mR$ is δ -small in L, L = K. (2) \Rightarrow (1) If $L = (mR \cap L) + K$ where $K \leq L$ and L/K singular, then M = mR + L = mR + K. By (2), K = L. So $mR \cap L$ is δ -small in L. \Box

Lemma 3.2. Let M be a module and K, L, H be submodules of M. If L is a δ -supplement of K in M and K is a δ -supplement of H in M, then K is a δ -supplement of L in M.

Proof. Let M = K + L = K + H, $K \cap L$ and $K \cap H$ are δ -small in Land K respectively. We prove $K \cap L$ is δ -small in K. Let $X \leq M$ be such that $K \cap L + X = K$ and K/X is singular. Then $M = (K \cap L) + X + H$. Since $K \cap L$ is δ -small in M, by Lemma 2.1 there exists a projective semisimple submodule Y in $K \cap L$ such that $M = Y \oplus (X + H)$. Hence $K = (Y \oplus X) + (K \cap H)$. Since K/(X + Y) is singular and $K \cap H$ is δ -small in K, again by Lemma 2.1, $K = X \oplus Y$. Thus Y = 0 as K/X is singular and Y is projective semisimple.

Let M be a module and $m \in M$. A submodule L is called a *principally* δ -supplement of mR in M, if mR and L satisfy Lemma 3.1 and the module M is called *principally* δ -supplemented if every cyclic submodule of M has a principally δ -supplement in M, equivalently, for all $m \in M$ there exists a submodule A of M with M = mR + A and $mR \cap A$ δ -small in A. In [12], a module M is defined to be *principally* δ -lifting if, for all $m \in M$, there exists a decomposition $M = A \oplus B$ such that $A \leq mR$ and $mR \cap B$ is δ -small in B (equivalently, in M).

Clearly, every supplemented module and every principally δ -lifting module is principally δ -supplemented. Since every factor module of a singular module is singular, every singular δ -supplemented module is supplemented. There are principally δ -supplemented modules but not supplemented and so not δ -supplemented.

Example 3.3. (1) The \mathbb{Z} -module \mathbb{Q} has no maximal submodules. Every cyclic submodule of \mathbb{Q} is small, therefore \mathbb{Q} is principally δ -supplemented. But \mathbb{Q} is not supplemented, and so not δ -supplemented since it is singular \mathbb{Z} -module.

(2) Let $R = \mathbb{Z}$ and $M = \bigoplus_{i=1}^{\infty} M_i$ with each $M_i = \mathbb{Z}_{p^{\infty}}$, where p is prime number. Then $\delta(M) = \bigoplus_{i=1}^{\infty} \delta(M_i) = M$ is essential in M. In [10], it is proved that M is neither supplemented nor δ -supplemented. We prove Mis principally δ -supplemented. For if $m = (m_i) \in M$ then m is contained in a finite direct sum of copies of $\mathbb{Z}_{p^{\infty}}$. Since any submodule of a small submodule is small and finite sum of small submodules is small, $m\mathbb{Z}$ is small in M. Hence M is principally δ -supplemented.

Lemma 3.4. If $M \xrightarrow{f} M'$ is a homomorphism and N is a δ -supplement in M with $Ker(f) \leq N$, then f(N) is a δ -supplement in f(M).

Proof. Let M = N + K with $N \cap K$ δ -small in N. Then f(M) = f(N + K) = f(N) + f(K). Since $Kerf \leq N$, we have $f(N) \cap f(K) = f(N \cap K)$. By Lemma 2.1 (2), $f(N \cap K) = f(N) \cap f(K)$ is δ -small in f(N). Hence f(N) is a δ -supplement of f(K) in f(M).

Lemma 3.5. Let M be a principally δ -supplemented module and $N \leq M$. If every cyclic submodule mR has a δ -supplement A with $N \leq A$, then M/N is principally δ -supplemented. Proof. Let K/N be a cyclic submodule of M/N. Then K = mR + Nfor some $m \in M$. There exists $L \leq M$ such that $N \leq L$, M = mR + Lwith $mR \cap L$ δ -small in L. Let $M \xrightarrow{\pi} M/N$ natural epimorphism. By Lemma 3.4, $\pi(L)$ is δ -supplement of $\pi(mR) = K/N$, indeed M/N = L/N + (mR + N)/N = L/N + K/N and $(N + (L \cap mR))/N$ is δ -small in L/N as it is a homomorphic image of $L \cap mR$ which is δ -small in L. \Box

Lemma 3.6. Let M be a module, N a δ -supplemented submodule of Mand K a cyclic submodule of M. If N + K has a δ -supplement T in M, then $N \cap (T + K)$ has a δ -supplement U in N. In particular, T + U is a δ -supplement of K in M.

Proof. We have M = (N + K) + T and $(N + K) \cap T$ is δ -small in $T, N \cap (K + T) + U = N$ and $(K + T) \cap U$ is δ -small in U. Then $M = N + K + T = K + N \cap (K + T) + U = K + T + U$. Since finite sum of δ -small submodules is δ -small by Lemma 2.1 (3), $K \cap (T + U) \leq T \cap (K + U) + U \cap (K + T) \leq T \cap (K + N) + U \cap (K + T)$ is δ -small in T + U.

Recall that a module M is called *distributive*, if for all submodules K, L and $N, N \cap (K+L) = N \cap K + N \cap L$ or $N + (K \cap L) = (N+K) \cap (N+L)$. Lemma 3.7 is well known and obvious but we prove it for the sake of easy reference.

Lemma 3.7. Let $M = M_1 \oplus M_2 = K + N$ and $K \leq M_1$. If M is distributive and $K \cap N$ is δ -small in N, then $K \cap N$ is δ -small in $M_1 \cap N$.

Proof. Let $M_1 \cap N = (K \cap N) + L$ with $(M_1 \cap N)/L$ singular. Since M is distributive, $N = M_1 \cap N \oplus M_2 \cap N$. We have $M = K + N = K + M_1 \cap N + M_2 \cap N = K + L + (M_2 \cap N)$ and $N = K \cap N + L + (M_2 \cap N)$. Now $N/(L \oplus (M_2 \cap N)) = ((N \cap M_1) \oplus (N \cap M_2))/(L \oplus (M_2 \cap N)) \cong (N \cap M_1)/L$ is singular. Hence $N = L \oplus (M_2 \cap N)$. This and $N = (N \cap M_1) \oplus (N \cap M_2)$ and $L \leq M_1 \cap N$ imply $L = M_1 \cap N$. Hence $K \cap N$ is δ -small in $M_1 \cap N$. \Box

Theorem 3.8. Every direct summand of a distributive principally δ -supplemented module is principally δ -supplemented.

Proof. Let $M = M_1 \oplus M_2$ and $m \in M_1$. There exists $N \leq M$ such that M = mR + N and $mR \cap N$ is δ -small in N. Then $M_1 = mR + (M_1 \cap N)$ and by Lemma 3.7, $mR \cap (M_1 \cap N)$ is δ -small in $(M_1 \cap N)$.

Proposition 3.9. Let M_1 and M_2 be principally δ -supplemented modules and $M = M_1 \oplus M_2$. If M is a distributive module, then M is principally δ -supplemented.

Proof. Let $M = M_1 \oplus M_2$ be a distributive module and mR be a submodule of M. Then $mR = (mR \cap M_1) \oplus (mR \cap M_2)$. Since $mR \cap M_1$ and $mR \cap M_2$ are cyclic submodules of M_1 and M_2 respectively, there exist A a submodule of M_1 such that $M_1 = (mR \cap M_1) + A$ and $A \cap (mR \cap M_1) =$ $A \cap mR$ is δ -small in A, and $B \leq M_2$ such that $M_2 = (mR \cap M_2) + B$, $B \cap (mR \cap M_2) = B \cap mR$ is δ -small in B. Then M = mR + A + B. Now we claim $mR \cap (A + B) = (mR \cap A) + (mR \cap B)$. The inclusion $(mR \cap A) + (mR \cap B) \leq mR \cap (A+B)$ always holds. For the inverse inclusion, $mR \cap (A+B) \leq A \cap (mR+B) + B \cap (mR+A) = A \cap ((mR \cap M_1) + A)$ M_2) + B \cap (M_1 + ($mR \cap M_2$)). On the other hand A \cap (($mR \cap M_1$) + M_2) \leq $(mR \cap M_1) \cap (A + M_2) + M_2 \cap ((mR \cap M_1) + A) = mR \cap A$. Similarly $B \cap (M_1 + (mR \cap M_2)) \leq mR \cap B$. Hence $(mR \cap (A+B) \leq mR \cap A + mR \cap B)$. So the claim $(mR \cap (A + B)) = mR \cap A + mR \cap B$ is justified. Since $mR \cap A$ is δ -small in A and $mR \cap B$ is δ -small in B, by Lemma 2.1 (3), we have $mR \cap (A+B)$ is δ -small in A+B. Hence M is principally δ -supplemented.

Let M be a module with $S = \text{End}(M_R)$. A submodule N is called fully invariant if for each $f \in S$, $f(N) \leq N$. Then M is an (S, R)-module and a principal submodule N of the right R-module M is fully invariant if and only if N is an (S, R)-submodule of M. Clearly 0 and M are fully invariant submodules of M. The right R-module M is called *duo* provided every submodule of M is fully invariant. For the readers' convenience we state and prove Lemma 3.10 which is proved in [11].

Lemma 3.10. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum of submodules M_i $(i \in I)$ and N a fully invariant submodule of M. Then $N = \bigoplus_{i \in I} (N \cap M_i)$.

Proof. For each $j \in I$, let $p_j : M \to M_j$ denote the canonical projection and let $i_j : M_j \to M$ denote inclusion. Then $i_j p_j$ is an endomorphism of Mand hence $i_j p_j(N) \subseteq N$ for each $j \in I$. It follows that $N \subseteq \bigoplus_{j \in I} i_j p_j(N) \subseteq$ $\bigoplus_{j \in I} (N \cap M_j) \subseteq N$, so that $N = \bigoplus_{j \in I} (N \cap M_j)$. \Box

We can not prove that any direct sum of principally δ -supplemented modules need not be principally δ -supplemented. Note the following fact.

Proposition 3.11. Let M_1 and M_2 be principally δ -supplemented modules and $M = M_1 \oplus M_2$. If M is a duo module, then M is principally δ supplemented.

Proof. Same as the proof of Proposition 3.9.

A module M is said to be *principally semisimple* if every cyclic submodule is a direct summand of M. Tuganbayev calls a principally semisimple module as a regular module in [7]. Every semisimple module is principally semisimple. Every principally semisimple module is principally δ -lifting, and so principally δ -supplemented. For a module M, we write $\operatorname{Rad}_{\delta}(M) = \sum \{L \mid L \text{ is a } \delta\text{-small submodule of } M\}.$

Lemma 3.12. Let M be a distributive principally δ -supplemented module. Then $M/\operatorname{Rad}_{\delta}(M)$ is a principally semisimple module.

Proof. Let $\overline{m} \in M/\operatorname{Rad}_{\delta}(M)$. There exists a submodule A of M such that M = mR + A and $mR \cap A$ is δ -small in A, so is δ -small in M. By the distributivity of M we have $mR \cap (A + \operatorname{Rad}_{\delta}(M)) = (mR \cap A) + mR \cap \operatorname{Rad}_{\delta}(M) = \operatorname{Rad}_{\delta}(M)$.

$$M/\operatorname{Rad}_{\delta}(M) = ((mR + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)) + ((A + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)) = ((\overline{m}R)/\operatorname{Rad}_{\delta}(M)) \oplus ((A + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M).$$

Theorem 3.13 may be proved easily by making use of Lemma 3.12 for distributive modules. But we prove it in another way in general.

Theorem 3.13. Let M be a principally δ -supplemented module. Then M has a submodule M_1 such that M_1 has an essential socle and $\operatorname{Rad}_{\delta}(M) \oplus M_1$ is essential in M.

Proof. By Zorn's Lemma we may find a submodule M_1 of M such that $\operatorname{Rad}_{\delta}(M) \oplus M_1$ is essential in M. To prove $\operatorname{Soc}(M_1)$ is essential in M_1 , we show that every cyclic submodule of M_1 has a simple submodule. Let $m \in M_1$. Since M is principally δ -supplemented, there exists a submodule A of M such that M = mR + A and $mR \cap A$ is δ -small in A. Then $mR \cap A = 0$. Let K be a maximal submodule of mR. If K is unique maximal submodule in mR, then it is small, therefore δ -small in mR and so in M. This is not possible since $mR \cap \operatorname{Rad}_{\delta}(M) = 0$. Hence there exists $x \in mR$ such that mR = K + xR. We claim that $K \cap xR = 0$. Otherwise let $0 \neq x_1 \in K \cap xR$. By hypothesis there exists C_1 such that $M = x_1 R + C_1$ with $(x_1 R) \cap C_1$ is δ -small in M. So $M = x_1 R \oplus C_1$ since $(x_1R) \cap C_1 \leq K \cap \operatorname{Rad}_{\delta}(M) = 0$. Hence $mR = x_1R \oplus (mR \cap C_1)$ and $K = x_1 R \oplus (K \cap C_1)$. If $K \cap C_1$ is nonzero, let $0 \neq x_2 \in K \cap C_1$. By hypothesis there exists C_2 such that $M = x_2R + C_2$ with $(x_2R) \cap C_2$ is δ small in M. So $M = x_2 R \oplus C_2$ since $(x_2 R) \cap C_2 \leq K \cap \operatorname{Rad}_{\delta}(M) = 0$. Then $K \cap C_1 = (x_2 R) \oplus (K \cap C_1 \cap C_2)$. Hence $mR = x_1 R \oplus x_2 R \oplus (mR \cap C_1 \cap C_2)$

and $K = x_1 R \oplus x_2 R \oplus (K \cap C_1 \cap C_2)$. If $K \cap C_1 \cap C_2$ is nonzero, similarly there exists $0 \neq x_3 \in K \cap C_1 \cap C_2$ and $C_3 \leq M$ such that $M = x_3 R \oplus C_3$. Then $mR = x_1 R \oplus x_2 R \oplus x_3 R \oplus (mR \cap C_1 \cap C_2 \cap C_3)$ and $K = x_1 R \oplus x_2 R \oplus x_3 R \oplus (K \cap C_1 \cap C_2 \cap C_3)$. This process must terminate at a finite step, say t. At this step $mR = x_1 R \oplus x_2 R \oplus x_3 R \oplus \ldots \oplus x_t R$ and so mR = K since at t^{th} step we must have $K \cap C_1 \cap C_2 \cap \ldots \cap C_t \leq mR \cap C_1 \cap C_2 \cap \ldots \cap C_t = 0$. This is a contradiction. There exists $x \in mR$ such that $mR = K \oplus xR$. Then xR is a simple module.

In the following we investigate under what conditions direct summands of principally δ -supplemented modules are principally δ -supplemented.

Lemma 3.14. Let $M = M_1 \oplus M_2$ be a decomposition of M. Then M_2 is principally δ -supplemented if and only if for every cyclic submodule N/M_1 of M/M_1 , there exists a submodule K of M_2 such that M = K + N and $N \cap K$ is δ -small in K.

Proof. Suppose that M_2 is principally-supplemented. Let N/M_1 be a cyclic submodule of M/M_1 . Let $N/M_1 = (xR+M_1)/M_1$ and $x = m_1+m_2$ where $m_1 \in M_1, m_2 \in M_2$. Then $N/M_1 = (m_2R + M_1)/M_1$. By supposition there exists a submodule $K \leq M_2$ such that $M_2 = (m_2R) + K$ with $(m_2R) \cap K$ is δ -small in K. Then $N = m_2R + M_1$ and M = N + K. Now $N \cap K = ((m_2R) + M_1) \cap K \leq (m_2R) \cap (M_1 + K) + M_1 \cap (K + (m_2R)) \leq K \cap (M_1 + (m_2R)) + M_1 \cap (m_2R + K))$. $M_1 \cap (m_2R + K) = 0$ implies $(M_1 + m_2R) \cap K = (m_2R) \cap ((m_1R) + K)$. Hence $N \cap K \leq m_2R$. Since $(m_2R) \cap K$ is δ -small in K, $N \cap K$ is δ -small in K.

Conversely, let N be a cyclic submodule of M_2 . Consider the cyclic submodule $(N + M_1)/M_1$ of M/M_1 . By hypothesis, there exists a submodule K of M_2 such that $M = (N + M_1) + K$ and $K \cap (N + M_1)$ is δ -small submodule of K. Then $M_2 = N + K$. To complete the proof it is enough to show $K \cap (M_1 + N) = N \cap (M_1 + K) = N \cap K$. Now $N \cap (M_1 + K) \leq M_1 \cap (K + N) + K \cap (N + M_1) = K \cap (N + M_1) \leq N \cap (M_1 + K) + M_1 \cap (K + N) = N \cap (M_1 + K)$ since $M_1 \cap (K + N) = 0$. Then $N \cap (M_1 + K) = K \cap (N + M_1)$. But $(M_1 + K) \cap N = K \cap (N + M_1) = N \cap K$ is obvious now. Hence $N \cap K$ is δ -small submodule of K. \Box

Proposition 3.15. Let M_1 and M_2 be principally δ -supplemented modules with $M = M_1 \oplus M_2$. Then M is principally δ -supplemented if and only if every cyclic submodule N of M with M = N + K for any proper submodule K of M has a supplement in M.

Proof. Necessity is clear. Conversely, suppose that for every cyclic submodule N of M with M = N + K for any proper direct summand K of M has

a supplement in M. Let N = mR be a cyclic submodule. If $M = N + M_i$ or $N \leq M_i$ we have done. Otherwise we may assume $m = m_1 + m_2$ and m_1 and m_2 are nonzero. By supposition there are $K_1 \leq M_1$ and $K_2 \leq M_2$ such that $M_1 = (m_1R) + K_1$, $M_2 = (m_2R) + K_2$ and $(m_1R) \cap K_1$ is δ -small in K_1 and $(m_2R) \cap K_2$ is δ -small in K_2 . $m_1R + m_2R = N + m_2R = N + m_1R$ and $M = N + m_1R + K_1 + K_2 = N + M_1 + K_2$. Similarly $M = N + M_2 + K_1$. Assume $M = M_1 + K_2$. Then $M_2 = K_2$ and so $m_2 = 0$ and $N \leq M_1$. It leads us to a contradiction. Hence $M_1 + K_2$ is a proper submodule of M. Similarly $M_2 + K_1$ is proper. Thus N has a supplement in M.

Principally δ -hollow modules and principally δ -lifting modules are defined in [12] and properties of these modules are investigated. A nonzero module M is called δ -hollow if every proper submodule is δ -small in M, and M is called *principally* δ -hollow if every proper cyclic submodule is δ -small in M, and M is said to be *finitely* δ -hollow if every proper finitely generated submodule is δ -small in M. Since finite direct sum of δ -small submodules is δ -small, M is principally δ -hollow if and only if it is finitely δ -hollow. There are principally δ -hollow modules but not δ -hollow. Let \mathbb{Z} and \mathbb{Q} denote the ring of integers and rational numbers respectively. Then the \mathbb{Z} -module \mathbb{Q} is principally δ -hollow since each finitely generated submodule of \mathbb{Q} is small, therefore δ -small in \mathbb{Q} . Let $\mathbb{Q}_1 = \{a/b \in \mathbb{Q} \mid 2 \text{ divides } b\}$. Then $\mathbb{Q} = \mathbb{Q}_1 + \mathbb{Q}_2$. Since \mathbb{Q}/\mathbb{Q}_1 and \mathbb{Q}/\mathbb{Q}_2 are singular \mathbb{Z} -modules, \mathbb{Q}_1 and \mathbb{Q}_2 are not δ -small submodules in \mathbb{Q} .

Recall that a nonzero module M is called *principally* δ -lifting if for each cyclic submodule has the δ -lifting property, i.e., for each $m \in M$, M has a decomposition $M = A \oplus B$ with $A \leq mR$ and $mR \cap B$ is δ -small in B (see [12] for detail). It is obvious that every principally δ -lifting module is principally δ -supplemented. There are principally δ -supplemented modules but not principally δ -lifting. As an illustration we record here Example 3.16.

Example 3.16. Consider the Z-modules $M_1 = \mathbb{Z}/2\mathbb{Z}$ and $M_2 = \mathbb{Z}/8\mathbb{Z}$. As Z-modules M_1 and M_2 are principally δ -hollow, therefore principally δ -supplemented modules. Let $M = M_1 \oplus M_2$. It is mentioned in [12] that M is not a principally δ -lifting Z-module. The submodules $N_1 = (\overline{1}, \overline{2})\mathbb{Z}$ and $N_2 = (\overline{1}, \overline{1})\mathbb{Z}$, $N_3 = (\overline{0}, \overline{4})\mathbb{Z}$ and $N_4 = (\overline{0}, \overline{2})\mathbb{Z}$ are the only proper submodules of M and all of them are cyclic. N_3 and N_4 are δ -small in M and $M = N_1 + N_2$. Now $N_1 \cap N_2 = N_3$ is δ -small in both N_1 and N_2 . Hence M is principally δ -supplemented. By the same reasoning, for any prime integer p, the Z-module $M = (\mathbb{Z}/p\mathbb{Z}) \oplus (\mathbb{Z}/p^3\mathbb{Z})$ is principally δ -supplemented but not principally δ -lifting.

Lemma 3.17. Let M be an indecomposable module. Consider the following conditions.

- 1. M is a principally δ -lifting module.
- 2. M is a principally δ -hollow module.
- 3. M is a principally δ -supplemented module.

Then $(1) \Leftrightarrow (2) \Rightarrow (3)$.

Proof. (1) \Leftrightarrow (2) is proved in [12]. (2) \Rightarrow (3) Let $m \in M$. By (2) each cyclic submodule is δ -hollow. Then M = mR + M and $mR \cap M$ is δ -small in M. So M is principally δ -supplemented.

Note that Lemma 3.17 (3) \Rightarrow (2) does not hold in general.

In a subsequent paper the authors continue studying some generalizations of supplemented modules. In [8], the module M is called \oplus supplemented if for every submodule N of M there is a direct summand K of M such that M = N + K and $N \cap K$ is small in K, and M is called \oplus - δ -supplemented module if for each submodule N of M there exists a direct summand A such that M = N + A and $N \cap A$ is δ -small in A. In the same way δ - \oplus -supplemented module means for each submodule N of M there exists a direct summand A such that M = N + A and $N \cap A$ is δ -small in A. It is the same as \oplus - δ -supplemented module. Hence we introduce M is called principally \oplus - δ -supplemented module if for each $m \in M$ there exists a direct summand A such that M = mR + A and $mR \cap A$ is δ -small in A.

The module M is called a weak principally δ -supplemented if for each $m \in M$ there exists a submodule A such that M = mR + A and $mR \cap A$ is δ -small in M. Every weakly supplemented module is weak principally δ -supplemented. The module M is called principally \oplus -supplemented if for each $m \in M$ there exists a direct summand A of M such that M = mR + A and $mR \cap A$ is small in A. \oplus -supplemented modules are studied in [6]. Every \oplus -supplemented module is principally \oplus - δ -supplemented and it is evident that every principally \oplus -supplemented is weak principally δ -supplemented. In a subsequent paper the authors investigates the interconnections between principally δ -supplemented modules, weakly principally δ -supplemented modules and principally \oplus - δ -supplemented modules in detail.

Recall that a module M is said to have the summand intersection property if the intersection of any two direct summands of M is again a direct summand of M. The summand intersection property was studied by J. L. Garcia [5], who characterized modules with the summand intersection property. A module M is called *refinable* if for any submodule U, V of Mwith M = U + V there is a direct summand U' of M such that $U' \subseteq U$ and M = U' + V (see namely [15]).

Theorem 3.18. Let M be a refinable module. Consider the following conditions.

- (1) M is principally δ -lifting.
- (2) M is principally \oplus - δ -supplemented.
- (3) M is principally δ -supplemented.
- (4) M is weak principally δ -supplemented. Then (1) \Rightarrow (2) and (2) \Leftrightarrow (3) \Leftrightarrow (4). If M has the summand intersection property then (4) \Rightarrow (1).

Proof. By definitions $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ always hold.

 $(4) \Rightarrow (2)$ Let M be a weakly principally δ -supplemented module and $m \in M$. By (4) there exists a submodule A of M such that M = mR + A and $mR \cap A$ is δ -small in M. By hypothesis, there exists a direct summand U of M with $U \leq A$ and $M = mR + U = U' \oplus U$ for some submodule U' of M. We claim that $mR \cap U$ is δ -small in U. Assume that $mR \cap U + L = U$ for some submodule L of U with U/L singular. Since M/(U' + L) is singular as it is isomorphic to the singular U/L. Then $M = U' + (mR \cap U) + L$ implies $M = U' \oplus L$ as $mR \cap U$ is δ -small in M. Hence L = U. So M is a principally \oplus - δ -supplemented module.

(4) \Rightarrow (1) Assume that M has the summand intersection property and let $m \in M$. By (4) there exists a submodule A such that M = mR + Aand $mR \cap A$ is δ -small in M. By hypothesis, there exists a direct summand U_1 of M such that U_1 is contained in A and $M = mR + U_1 = U'_1 \oplus U_1$. Since U_1 is direct summand and $mR \cap A$ is δ -small in M, $mR \cap U_1$ is δ -small in U_1 by Lemma 2.1 (3). Again by hypothesis, there exists a direct summand U_2 of M such that U_2 is contained in mR and M = $U_2 + U_1 = U_2 \oplus U'_2$. By the summand intersection property $U_2 \cap U_1$ is a direct summand of M, $M = (U_2 \cap U_1) \oplus K$ for some submodule K of M. Then $U_1 = (U_2 \cap U_1) \oplus (K \cap U_1)$ and $M = U_2 \oplus (K \cap U_1)$. By Lemma 2.1 (4), $mR \cap (K \cap U_1)$ is δ -small in U_1 since $mR \cap (K \cap U_1) \leq mR \cap U_1 \leq U_1$ and $mR \cap U_1$ is δ -small in U_1 . By Lemma 2.1 (3), $mR \cap (K \cap U_1)$ is δ -small in $K \cap U_1$ as $K \cap U_1$ is direct summand of U_1 . Theorem 3.19 is proved in [12]. We state without proof for the convenience of the reader.

Theorem 3.19. Let M be a principally δ -semiperfect module. Then

- 1. M is principally δ -supplemented.
- 2. Each factor module of M is principally δ -semiperfect, hence any homomorphic image and any direct summand of M is principally δ -semiperfect.

Theorem 3.20. Let M be a projective module. The following conditions are equivalent.

- 1. M is principally δ -semiperfect.
- 2. M is principally δ -lifting.
- 3. M is principally δ -supplemented.

Proof. (1) \Leftrightarrow (2) is proved in [12].

 $(1) \Rightarrow (3)$ By Theorem 3.19.

(3) \Rightarrow (1) Let $m \in M$. By (3) there exists a submodule A such that M = mR + A such that $mR \cap A$ is δ -small in A. Let $M \xrightarrow{f} M/mR$ defined by f(y) = a + mR, where $y = mr + a \in M$ with $mr \in mR$, $a \in A$, and $M \xrightarrow{\pi} M/mR$ the natural epimorphism. There exists $M \xrightarrow{g} M$ such that $fg = \pi$. Then $M = g(M) + mR \cap A$. Since $mR \cap A$ is δ -small in A, it is δ -small in M. By Lemma 2.1 (1), there exists a projective semisimple submodule Y of $mR \cap A$ such that $M = g(M) \oplus Y$ and so that g(M) is projective. Hence $g(M) \cong M/\text{Ker}(g)$ implies $M = \text{Ker}(g) \oplus B$ for some submodule B of M and B is projective. Let $(fg)_{|B}$ denote the restriction of fg on B. Then $\text{Ker}(fg)_{|B} \leq mR \cap A$. Hence $\text{Ker}(fg)_{|B}$ is δ -small in B and so $B \xrightarrow{(fg)_{|B}} M/mR$ is a projective δ -cover of M.

4. Applications

Recall that projective δ -cover of a module M is a projective R-module P with an epimorphism f from P to M such that Kerf is δ -small in P. The next result is a well known fact about the relation between projective δ -cover and a δ -supplement and we prove for completeness.

Lemma 4.1. Let M be a module and $m \in M$. If M/mR has a projective δ -cover, then N contains a δ -supplement of mR.

Proof. Let $f: P \to M/mR$ be a projective δ -cover of M/mR and $\pi: M \to M/mR$ natural epimorphism. There exists an $g: P \to M$ such that $f = \pi g$. Then M = mR + g(P) and $mR \cap g(P) = g(\text{Ker}(f))$. It is δ -small in g(P) as an homomorphic image of δ -small submodule Kerf in P by Lemma 2.1 (2).

In [12] principally δ -semiperfect modules are introduced and some properties are studied. By [16], a ring is called δ -perfect (or δ -semiperfect) if every *R*-module (or every simple *R*-module) has a projective δ -cover. For more detailed discussion on δ -small submodules, δ -perfect and δ semiperfect rings, we refer to [16]. A module *M* is called principally δ -semiperfect if every factor module of *M* by a cyclic submodule has a projective δ -cover. A ring *R* is called principally δ -semiperfect in case the right *R*-module *R* is principally δ -semiperfect. Every δ -semiperfect module is principally δ -semiperfect. In Example 4.2, we see that there is a principally δ -semiperfect module but not semiperfect. In [16], a ring *R* is called δ semiregular if every cyclically presented R-module has a projective δ -cover.

We recall some well known examples for motivation.

Example 4.2. Let $R = \left\{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \mid x, y, z \in \mathbb{Z}_4 \right\}$ denote the ring of upper triangular matrices over the ring of integers modulo 4. It is easy to check that principal right ideals of R are either small in R or direct summands of R. Hence R is principally δ -supplemented right R-module. By Theorem 4.3, R is principally δ -semiperfect. Let e_{12} denote the matrix unit having 1 at (1, 2) entry and zero elsewhere. Let $I = e_{12}R$. Then I is small, therefore δ -small right ideal and Jacobson radical J(R) of R is equal to I. Hence R/J(R) is not semisimple. Therefore R is not a semiperfect ring.

Theorem 4.3. Let R be a ring. The following conditions are equivalent.

- 1. R is principally δ -semiperfect.
- 2. R is principally δ -lifting.
- 3. R is δ -semiregular.
- 4. R is principally δ -supplemented.

Proof. $(1) \Rightarrow (2)$ Clear from Theorem 3.20.

 $(2) \Rightarrow (3)$ Assume that R is principally δ -lifting and $x \in R$. Then there exists a direct summand right ideal A of R such that $R = A \oplus B$, $A \leq xR$ and $xR \cap B$ is δ -small in B. Then $xR = A \oplus xR \cap B$ and $xR \cap B \leq \operatorname{Rad}_{\delta}(M)$. By [16, Theorem 3.5], R is δ -semiregular.

(3) \Rightarrow (4) Assume that R is δ -semiregular. Let $x \in R$ and $\pi : R \to R/xR$ natural epimorphism. By hypothesis, R/xR has a projective δ -cover $f: P \to R/xR$ since R/xR is cyclically presented. There exists $g: P \to R$ such that $f = \pi g$. Then R = g(P) + xR and $g(P) \cap xR$ is δ -small in g(P) since $g(P) \cap xR = g(\text{Ker}f)$ and Kerf is δ -small in P. Hence R is principally δ -supplemented.

 $(4) \Rightarrow (1)$ Clear from Theorem 3.20.

Theorem 4.4. Let M be a refinable projective module with $\operatorname{Rad}_{\delta}(M)$ is δ -small in M. If $M/\operatorname{Rad}_{\delta}(M)$ is principally semisimple, then M is principally δ -supplemented.

Proof. Let xR be any cyclic submodule of M. Then we have $M/\operatorname{Rad}_{\delta}(M) = [(xR + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)] \oplus [U/\operatorname{Rad}_{\delta}(M)]$ for some $U \leq M$. Then M = xR + U and $\operatorname{Rad}_{\delta}(M) = xR \cap U + \operatorname{Rad}_{\delta}(M)$. Hence $xR \cap U$ is δ -small in M and $xR \cap U \leq \operatorname{Rad}_{\delta}(M)$. Since M = xR + U there exists a direct summand A of M such that $A \leq U$ and $M = xR + U = xR + A = B \oplus A$. Since $xR \cap A$ is δ -small in M, so it is δ -small in A since A is direct summand. This completes the proof.

References

- R. Alizade and E. Buyukasik, *Extensions of weakly supplemented modules*, Math. Scand. 103(2)(2008), 161?168.
- [2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
- [3] U. Acar and A. Harmanci, *Principally Supplemented Modules*, Albanian J. Math. 4(3)(2010), 74-78.
- [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Brikh?auser-Basel, 2006.
- [5] J. L. Garcia, Properties of direct summand of modules, Comm. Algebra 17(1989), 73-92.
- [6] A. Harmanci, D. Keskin and P. F. Smith, On ⊕-Supplemented Modules, Acta Math. Hungar. 83(1/2)(1999), 161-169.
- [7] C. Lomp, Regular and Biregular Module Algebras, Arab. J. Sci. and Eng. 33(2008), 351-363.
- [8] S. Mohamed and B. J. Müller, Continuous and discrete modules, Cambridge University Press, 1990.
- [9] M. A. Kamal and A. Yousef, On Principally Lifting Modules, Int. Electron. J. Algebra 2(2007), 127-137.
- [10] M. T. Kosan, δ-lifting and δ-supplemented modules, Algebra Colloq. 14(1)(2007), 53 - 60.

- [11] A. C. Ozcan, A. Harmanci and P. F. Smith, *Duo Modules*, Glasgow Math. J. 48(3)(2006), 533-545.
- [12] H. Inankil, S. Halicioglu and A. Harmanci, On a Class of Lifting Modules, Vietnam J. Math. 38(2)(2010), 189-201.
- [13] W. K. Nicholson, Semiregular modules and rings, Canadian Math. J. 28(5)(1976), 1105-1120.
- [14] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.
- [15] R. Wisbauer, Modules and Algebras: Bi-module Structures and Group actions on Algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics 81, 1996.
- [16] Y. Zhou, Generalizations of Perfect, Semiperfect and Semiregular Rings, Algebra Colloq. 7(3)(2000), 305-318.

CONTACT INFORMATION

H. Inankil	Department of Mathematics, Gebze Institute of Technology, Kocaeli, Turkey <i>E-Mail:</i> hatinankil@gmail.com
S. Halıcıoglu	Department of Mathematics, Ankara University, Ankara, Turkey <i>E-Mail:</i> halici@ankara.edu.tr
A. Harmanci	Department of Maths, Hacettepe University, Ankara, Turkey <i>E-Mail:</i> harmanci@hacettepe.edu.tr

Received by the editors: 14.03.2011 and in final form 14.03.2011.