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Abstract. Let R be an arbitrary ring with identity and M
a right R-module. In this paper, we introduce a class of modules

which is an analogous of δ-supplemented modules defined by Kosan.

The module M is called principally δ-supplemented, for all m ∈ M
there exists a submodule A of M with M = mR+A and (mR)∩A δ-
small in A. We prove that some results of δ-supplemented modules

can be extended to principally δ-supplemented modules for this

general settings. We supply some examples showing that there are

principally δ-supplemented modules but not δ-supplemented. We

also introduce principally δ-semiperfect modules as a generalization

of δ-semiperfect modules and investigate their properties.

1. Introduction

Throughout this paper all rings have an identity, all modules considered

are unital right modules. Let M be a module, N and P be submodules

of M . We call P a supplement of N in M if M = P +N and P ∩N is

small in P . A module M is called supplemented if every submodule of M

has a supplement in M . A module M is called lifting if, for all N ≤ M ,

there exists a decomposition M = A ⊕ B such that A ≤ N and N ∩ B

is small in M . Supplemented and lifting modules have been discussed by

several authors (see [4, 8]) and these modules are useful in characterizing

semiperfect and right perfect rings (see [8, 14]). A submodule L is called a

δ-supplement of N in M if M = N +L and N ∩L is δ-small in L(therefore
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in M), and M is called δ-supplemented in case every submodule of M has

a δ-supplement in M . Principally supplemented modules are introduced

and studied in [3]. A module M is said to be principally supplemented if for

any cyclic submodule has a supplement in M . Principally supplemented

modules generalizes principally lifting modules([9]), supplemented modules

and weakly supplemented modules(see [1], [8], [14]).

In this paper, we introduce principally δ-supplemented modules and in-

vestigate their properties. A module M is called principally δ-supplemented

if for each cyclic submodule has the principally δ-supplement property, i.e.,

for each m ∈ M , there exists a submodule N such that M = mR+N with

(mR) ∩N is δ-small submodule in N . A module M is called principally

δ-semiperfect if, for each m ∈ M , M/mR has a projective δ-cover[12].

New characterizations of principally δ-semiperfect rings are obtained using

principally δ-supplemented modules.

In what follows, by N, Z, Q, Zn and Z/nZ we denote, respectively,

natural numbers, integers, rational numbers, the ring of integers modulo

n and the Z-module of integers modulo n. For unexplained concepts and

notations, we refer the reader to [2] and [8].

2. Preliminaries

In this section we establish the notation and state some results on δ-small

submodules which are required later. Following Zhou [16], a submodule

N of a module M is called a δ-small if, whenever M = N +X with M/X

singular, we have M = X.

We state the next lemma which is contained in [16, Lemma 1.2 and 1.3].

Lemma 2.1. Let M be a module. Then we have the following.

1. If N is δ-small in M and M = X + N , then M = X ⊕ Y for a

projective semisimple submodule Y with Y ≤ N .

2. If K is δ-small in M and f : M → N is a homomorphism, then

f(K) is δ-small in N . In particular, if K is δ-small in M ≤ N , then

K is δ-small in N .

3. Let K1 ≤ M1 ≤ M , K2 ≤ M2 ≤ M and M = M1 ⊕ M2. Then

K1 ⊕K2 is δ-small in M1 ⊕M2 if and only if K1 is δ-small in M1

and K2 is δ-small in M2.

4. Let N , K be submodules of M with K is δ-small in M and N ≤ K.

Then N is also δ-small in M .
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Lemma 2.2. Let M be a module and m ∈ M . Then the following are

equivalent.

1. mR is not δ-small in M .

2. There is a maximal submodule N of M such that m 6∈ N and M/N

singular.

Lemma 2.3. Let M be a module and K,L,H be submodules of M . If L

is δ-small in K, then L is δ-small in K +H.

Proof. Assume that L is δ-small in K. Let U be a submodule of M with

K+H = L+U and (K+H)/U singular. Then K/(U∩K) ∼= (K+U)/U =

(K + H)/U is singular. On the other hand we have K = L + (K ∩ U).

Since L is δ-small in K, K = K ∩ U ≤ U . Hence K +H = U .

Lemma 2.4. Let L be a δ-supplement submodule of a module M . If U is

a δ-small submodule of M with U ≤ L, then U is δ-small in L.

Proof. Let M = K + L with K ∩ L δ-small in L and L = U + V and

L/V singular. We prove that L = V . Then M = K + U + V and

M/(K+V ) = (K+L)/(K+V ) = ((K+V )+L)/(K+V ) ∼= L/(L∩(K+V ))

which is a homomorphic image of singular module L/V . By hypothesis

M = K + V . Then L = (L ∩K) + V and so L = V .

Lemma 2.5. Let A ≤ B and K be submodules of M and M = A+K.

If B ∩K is δ-small in M , then B/A is δ-small submodule of M/A.

Proof. Let M/A = B/A+ L/A with M/L singular. We have M = B + L

and B = A + B ∩K. Then M = A + B ∩K + L = B ∩K + L. Hence

M = L since B ∩K is δ-small in M and M/L is singular.

Lemma 2.6. Let M be an R-module and K, L, N be submodules of M .

Then we have the followings.

(1) If K is a δ-supplement of N in M and T is δ-small in M , then K is

a δ-supplement of N + T in M .

(2) Let M
f
→ N be an epimorphism with Kerf δ-small in M . If the

submodule L of M is a δ-supplement in M , then f(L) is a δ-supplement

in N . The converse holds if Kerf is a δ-small submodule of L.

Proof. (1) Let K be a δ-supplement of N in M . Then M = N +K and

N ∩K is δ-small in K. We prove (N + T ) ∩K is δ-small in K. For if, let

L ≤ K with K = L+(N+T )∩K and K/L singular, then M = L+N+T

and M/(L+N) = (K +N)/(L+N) ∼= K/(K + (L ∩N)) is singular as
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an homomorphic image of the singular module K/L. Since T is δ-small

in M , M = L+N . Hence K = L+K ∩N . Since K ∩N is δ-small in K

and K/L is singular we have K = L.

(2) Let L be a δ-supplement of K in M . Then L is a δ-supplement of

K + Kerf by (1). By Lemma 3.4, f(L) = f(L + Kerf) is also a δ-

supplement of f(K) = f(K +Kerf) in N . Conversely, let N = f(L) +U

with f(L)∩U is δ-small in f(L) and K = f−1(U). Then M = L+K. To

complete the proof we prove that L∩K is δ-small in L. For if L = V +L∩K

with L/V singular, then f(L) = f(V ) + f(L) ∩ f(K) = f(V ) + f(L) ∩ U

since Kerf ≤ K, f(L ∩K) = f(L) ∩ f(K). f(L)/f(V ) is singular as an

homomorphic image of singular module L/V . Hence f(L) = f(V ). So

L = V +Kerf . Thus L = V .

3. Principally δ-supplemented modules

In this section we introduce principally δ-supplemented modules and

investigate some properties of these modules. We prove that some results of

supplemented and δ-supplemented modules can be extended to principally

δ-supplemented modules.

Lemma 3.1. Let m ∈ M and L a submodule of M . Then the following

are equivalent.

1. M = mR+ L and mR ∩ L is δ-small in L.

2. M = mR + L and for any proper submodule K of L with L/K

singular, M 6= mR+K.

Proof. (1) ⇒ (2) Let K ≤ L and M = mR + K where L/K singular.

Then L = (L ∩mR) +K. Since L ∩mR is δ-small in L, L = K.

(2) ⇒ (1) If L = (mR ∩ L) +K where K ≤ L and L/K singular, then

M = mR+L = mR+K. By (2), K = L. So mR∩L is δ-small in L.

Lemma 3.2. Let M be a module and K,L,H be submodules of M . If L

is a δ-supplement of K in M and K is a δ-supplement of H in M , then

K is a δ-supplement of L in M .

Proof. Let M = K + L = K + H, K ∩ L and K ∩ H are δ-small in L

and K respectively. We prove K ∩L is δ-small in K. Let X ≤ M be such

that K ∩L+X = K and K/X is singular. Then M = (K ∩L) +X +H .

Since K ∩ L is δ-small in M , by Lemma 2.1 there exists a projective

semisimple submodule Y in K ∩ L such that M = Y ⊕ (X +H). Hence

K = (Y ⊕ X) + (K ∩ H). Since K/(X + Y ) is singular and K ∩ H is
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δ-small in K, again by Lemma 2.1, K = X ⊕ Y . Thus Y = 0 as K/X is

singular and Y is projective semisimple.

Let M be a module and m ∈ M . A submodule L is called a principally

δ-supplement of mR in M , if mR and L satisfy Lemma 3.1 and the module

M is called principally δ-supplemented if every cyclic submodule of M has

a principally δ-supplement in M , equivalently, for all m ∈ M there exists

a submodule A of M with M = mR + A and mR ∩ A δ-small in A. In

[12], a module M is defined to be principally δ-lifting if, for all m ∈ M ,

there exists a decomposition M = A⊕B such that A ≤ mR and mR∩B

is δ-small in B (equivalently, in M).

Clearly, every supplemented module and every principally δ-lifting

module is principally δ-supplemented. Since every factor module of a

singular module is singular, every singular δ-supplemented module is

supplemented. There are principally δ-supplemented modules but not

supplemented and so not δ-supplemented.

Example 3.3. (1) The Z-module Q has no maximal submodules. Every

cyclic submodule of Q is small, therefore Q is principally δ-supplemented.

But Q is not supplemented, and so not δ-supplemented since it is singular

Z-module.

(2) Let R = Z and M =
∞
⊕

i=1
Mi with each Mi = Zp∞ , where p is prime

number. Then δ(M) =
∞
⊕

i=1
δ(Mi) = M is essential in M . In [10], it is

proved that M is neither supplemented nor δ-supplemented. We prove M

is principally δ-supplemented. For if m = (mi) ∈ M then m is contained

in a finite direct sum of copies of Zp∞ . Since any submodule of a small

submodule is small and finite sum of small submodules is small, mZ is

small in M . Hence M is principally δ-supplemented.

Lemma 3.4. If M
f
→ M ′ is a homomorphism and N is a δ-supplement

in M with Ker(f) ≤ N , then f(N) is a δ-supplement in f(M).

Proof. Let M = N +K with N ∩K δ-small in N . Then f(M) = f(N +

K) = f(N)+ f(K). Since Kerf ≤ N , we have f(N)∩ f(K) = f(N ∩K).

By Lemma 2.1 (2), f(N ∩K) = f(N) ∩ f(K) is δ-small in f(N). Hence

f(N) is a δ-supplement of f(K) in f(M).

Lemma 3.5. Let M be a principally δ-supplemented module and N ≤ M .

If every cyclic submodule mR has a δ-supplement A with N ≤ A, then

M/N is principally δ-supplemented.



64 A generalization of supplemented modules

Proof. Let K/N be a cyclic submodule of M/N . Then K = mR + N

for some m ∈ M . There exists L ≤ M such that N ≤ L, M = mR + L

with mR ∩ L δ-small in L. Let M
π
→ M/N natural epimorphism. By

Lemma 3.4, π(L) is δ-supplement of π(mR) = K/N , indeed M/N =

L/N + (mR+N)/N = L/N +K/N and (N + (L∩mR))/N is δ-small in

L/N as it is a homomorphic image of L ∩mR which is δ-small in L.

Lemma 3.6. Let M be a module, N a δ-supplemented submodule of M

and K a cyclic submodule of M . If N +K has a δ-supplement T in M ,

then N ∩ (T +K) has a δ-supplement U in N . In particular, T + U is a

δ-supplement of K in M .

Proof. We have M = (N + K) + T and (N + K) ∩ T is δ-small in

T , N ∩ (K + T ) + U = N and (K + T ) ∩ U is δ-small in U . Then

M = N +K + T = K + N ∩ (K + T ) + U = K + T + U . Since finite

sum of δ-small submodules is δ-small by Lemma 2.1 (3), K ∩ (T + U) ≤

T ∩ (K + U) + U ∩ (K + T ) ≤ T ∩ (K +N) + U ∩ (K + T ) is δ-small in

T + U .

Recall that a module M is called distributive, if for all submodules K,

L and N , N∩(K+L) = N∩K+N∩L or N+(K∩L) = (N+K)∩(N+L).

Lemma 3.7 is well known and obvious but we prove it for the sake of easy

reference.

Lemma 3.7. Let M = M1 ⊕ M2 = K + N and K ≤ M1. If M is

distributive and K ∩N is δ-small in N , then K ∩N is δ-small in M1 ∩N .

Proof. Let M1 ∩N = (K ∩N)+L with (M1 ∩N)/L singular. Since M is

distributive, N = M1 ∩N ⊕M2 ∩N . We have M = K +N = K +M1 ∩

N +M2 ∩N = K +L+ (M2 ∩N) and N = K ∩N +L+ (M2 ∩N). Now

N/(L⊕(M2∩N)) = ((N∩M1)⊕(N∩M2))/(L⊕(M2∩N)) ∼= (N∩M1)/L

is singular. Hence N = L⊕ (M2∩N). This and N = (N ∩M1)⊕ (N ∩M2)

and L ≤ M1∩N imply L = M1∩N . Hence K∩N is δ-small in M1∩N .

Theorem 3.8. Every direct summand of a distributive principally δ-

supplemented module is principally δ-supplemented.

Proof. Let M = M1 ⊕M2 and m ∈ M1. There exists N ≤ M such that

M = mR+N and mR ∩N is δ-small in N . Then M1 = mR+ (M1 ∩N)

and by Lemma 3.7, mR ∩ (M1 ∩N) is δ-small in (M1 ∩N).

Proposition 3.9. Let M1 and M2 be principally δ-supplemented modules

and M = M1 ⊕M2. If M is a distributive module, then M is principally

δ-supplemented.
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Proof. Let M = M1 ⊕ M2 be a distributive module and mR be a sub-

module of M . Then mR = (mR∩M1)⊕ (mR∩M2). Since mR∩M1 and

mR ∩M2 are cyclic submodules of M1 and M2 respectively, there exist A

a submodule of M1 such that M1 = (mR∩M1)+A and A∩ (mR∩M1) =

A ∩mR is δ-small in A, and B ≤ M2 such that M2 = (mR ∩M2) + B,

B ∩ (mR ∩ M2) = B ∩ mR is δ-small in B. Then M = mR + A + B.

Now we claim mR ∩ (A + B) = (mR ∩ A) + (mR ∩ B). The inclusion

(mR∩A)+ (mR∩B) ≤ mR∩ (A+B) always holds. For the inverse inclu-

sion, mR∩ (A+B) ≤ A∩ (mR+B)+B∩ (mR+A) = A∩ ((mR∩M1)+

M2)+B∩(M1+(mR∩M2)). On the other hand A∩((mR∩M1)+M2) ≤

(mR ∩M1) ∩ (A +M2) +M2 ∩ ((mR ∩M1) + A) = mR ∩ A. Similarly

B∩(M1+(mR∩M2)) ≤ mR∩B. Hence (mR∩(A+B) ≤ mR∩A+mR∩B.

So the claim (mR ∩ (A + B) = mR ∩ A + mR ∩ B is justified. Since

mR ∩ A is δ-small in A and mR ∩ B is δ-small in B, by Lemma 2.1

(3), we have mR ∩ (A+B) is δ-small in A+B. Hence M is principally

δ-supplemented.

Let M be a module with S = End(MR). A submodule N is called

fully invariant if for each f ∈ S, f(N) ≤ N . Then M is an (S,R)-module

and a principal submodule N of the right R-module M is fully invariant

if and only if N is an (S,R)-submodule of M . Clearly 0 and M are fully

invariant submodules of M . The right R-module M is called duo provided

every submodule of M is fully invariant. For the readers’ convenience we

state and prove Lemma 3.10 which is proved in [11].

Lemma 3.10. Let M =
⊕

i∈I

Mi be a direct sum of submodules Mi (i ∈ I)

and N a fully invariant submodule of M . Then N =
⊕

i∈I

(N ∩Mi).

Proof. For each j ∈ I, let pj : M → Mj denote the canonical projection

and let ij : Mj → M denote inclusion. Then ijpj is an endomorphism of M

and hence ijpj(N) ⊆ N for each j ∈ I. It follows that N ⊆
⊕

j∈I

ijpj(N) ⊆
⊕

j∈I

(N ∩Mj) ⊆ N , so that N =
⊕

j∈I

(N ∩Mj).

We can not prove that any direct sum of principally δ-supplemented

modules need not be principally δ-supplemented. Note the following fact.

Proposition 3.11. Let M1 and M2 be principally δ-supplemented modules

and M = M1 ⊕ M2. If M is a duo module, then M is principally δ-

supplemented.

Proof. Same as the proof of Proposition 3.9.
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A module M is said to be principally semisimple if every cyclic submod-

ule is a direct summand of M . Tuganbayev calls a principally semisimple

module as a regular module in [7]. Every semisimple module is prin-

cipally semisimple. Every principally semisimple module is principally

δ-lifting, and so principally δ-supplemented. For a module M , we write

Radδ(M) =
∑

{L | L is a δ-small submodule of M}.

Lemma 3.12. Let M be a distributive principally δ-supplemented module.

Then M/Radδ(M) is a principally semisimple module.

Proof. Let m ∈ M/Radδ(M). There exists a submodule A of M such

that M = mR+A and mR∩A is δ-small in A, so is δ-small in M . By the

distributivity of M we have mR ∩ (A+Radδ(M)) = (mR ∩A) +mR ∩

Radδ(M) = Radδ(M).

M/Radδ(M) = ((mR+Radδ(M))/Radδ(M))+

+((A+Radδ(M))/Radδ(M) =

= ((mR)/Radδ(M))⊕ ((A+Radδ(M))/Radδ(M).

Theorem 3.13 may be proved easily by making use of Lemma 3.12 for

distributive modules. But we prove it in another way in general.

Theorem 3.13. Let M be a principally δ-supplemented module. Then M

has a submodule M1 such that M1 has an essential socle and Radδ(M)⊕M1

is essential in M .

Proof. By Zorn’s Lemma we may find a submodule M1 of M such that

Radδ(M) ⊕M1 is essential in M . To prove Soc(M1) is essential in M1,

we show that every cyclic submodule of M1 has a simple submodule. Let

m ∈ M1. Since M is principally δ-supplemented, there exists a submodule

A of M such that M = mR + A and mR ∩ A is δ-small in A. Then

mR ∩ A = 0. Let K be a maximal submodule of mR. If K is unique

maximal submodule in mR, then it is small, therefore δ-small in mR and

so in M . This is not possible since mR ∩ Radδ(M) = 0. Hence there

exists x ∈ mR such that mR = K + xR. We claim that K ∩ xR = 0.

Otherwise let 0 6= x1 ∈ K ∩ xR. By hypothesis there exists C1 such that

M = x1R+C1 with (x1R) ∩C1 is δ-small in M . So M = x1R⊕C1 since

(x1R) ∩ C1 ≤ K ∩ Radδ(M) = 0. Hence mR = x1R ⊕ (mR ∩ C1) and

K = x1R ⊕ (K ∩ C1). If K ∩ C1 is nonzero, let 0 6= x2 ∈ K ∩ C1. By

hypothesis there exists C2 such that M = x2R+C2 with (x2R) ∩C2 is δ-

small in M . So M = x2R⊕C2 since (x2R)∩C2 ≤ K∩Radδ(M) = 0. Then

K∩C1 = (x2R)⊕(K∩C1∩C2). Hence mR = x1R⊕x2R⊕(mR∩C1∩C2)
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and K = x1R⊕ x2R⊕ (K ∩C1 ∩C2). If K ∩C1 ∩C2 is nonzero, similarly

there exists 0 6= x3 ∈ K ∩C1 ∩C2 and C3 ≤ M such that M = x3R⊕C3.

Then mR = x1R⊕x2R⊕x3R⊕(mR∩C1∩C2∩C3) and K = x1R⊕x2R⊕

x3R⊕ (K∩C1∩C2∩C3). This process must terminate at a finite step, say

t. At this step mR = x1R⊕x2R⊕x3R⊕ ...⊕xtR and so mR = K since at

tth step we must have K ∩C1 ∩C2 ∩ ...∩Ct ≤ mR∩C1 ∩C2 ∩ ...∩Ct = 0.

This is a contradiction. There exists x ∈ mR such that mR = K ⊕ xR.

Then xR is a simple module.

In the following we investigate under what conditions direct summands

of principally δ-supplemented modules are principally δ-supplemented.

Lemma 3.14. Let M = M1 ⊕M2 be a decomposition of M . Then M2 is

principally δ-supplemented if and only if for every cyclic submodule N/M1

of M/M1, there exists a submodule K of M2 such that M = K +N and

N ∩K is δ-small in K.

Proof. Suppose that M2 is principally-supplemented. Let N/M1 be a cyclic

submodule of M/M1. Let N/M1 = (xR+M1)/M1 and x = m1+m2 where

m1 ∈ M1, m2 ∈ M2. Then N/M1 = (m2R + M1)/M1. By supposition

there exists a submodule K ≤ M2 such that M2 = (m2R) + K with

(m2R)∩K is δ-small in K. Then N = m2R+M1 and M = N +K. Now

N ∩K = ((m2R)+M1)∩K ≤ (m2R)∩ (M1+K) + M1∩ (K+(m2R)) ≤

K ∩ (M1 + (m2R)) + M1 ∩ (m2R +K). M1 ∩ (m2R +K) = 0 implies

(M1 +m2R) ∩K = (m2R) ∩ ((m1R) +K). Hence N ∩K ≤ m2R. Since

(m2R) ∩K is δ-small in K, N ∩K is δ-small in K.

Conversely, let N be a cyclic submodule of M2. Consider the cyclic

submodule (N +M1)/M1 of M/M1. By hypothesis, there exists a sub-

module K of M2 such that M = (N +M1) +K and K ∩ (N +M1) is

δ-small submodule of K. Then M2 = N + K. To complete the proof

it is enough to show K ∩ (M1 + N) = N ∩ (M1 + K) = N ∩ K. Now

N ∩ (M1 + K) ≤ M1 ∩ (K + N) + K ∩ (N + M1) = K ∩ (N + M1) ≤

N∩(M1+K)+M1∩(K+N) = N∩(M1+K) since M1∩(K+N) = 0. Then

N∩(M1+K) = K∩(N+M1). But (M1+K)∩N = K∩(N+M1) = N∩K

is obvious now. Hence N ∩K is δ-small submodule of K.

Proposition 3.15. Let M1 and M2 be principally δ-supplemented modules

with M = M1 ⊕M2. Then M is principally δ-supplemented if and only if

every cyclic submodule N of M with M = N+K for any proper submodule

K of M has a supplement in M .

Proof. Necessity is clear. Conversely, suppose that for every cyclic submod-

ule N of M with M = N +K for any proper direct summand K of M has



68 A generalization of supplemented modules

a supplement in M . Let N = mR be a cyclic submodule. If M = N +Mi

or N ≤ Mi we have done. Otherwise we may assume m = m1+m2 and m1

and m2 are nonzero. By supposition there are K1 ≤ M1 and K2 ≤ M2 such

that M1 = (m1R)+K1 , M2 = (m2R)+K2 and (m1R)∩K1 is δ-small in

K1 and (m2R)∩K2 is δ-small in K2. m1R+m2R = N+m2R = N+m1R

and M = N+m1R+K1+K2 = N+M1+K2. Similarly M = N+M2+K1.

Assume M = M1 +K2. Then M2 = K2 and so m2 = 0 and N ≤ M1. It

leads us to a contradiction. Hence M1 +K2 is a proper submodule of M.

Similarly M2 +K1 is proper. Thus N has a supplement in M .

Principally δ-hollow modules and principally δ-lifting modules are

defined in [12] and properties of these modules are investigated. A nonzero

module M is called δ-hollow if every proper submodule is δ-small in M ,

and M is called principally δ-hollow if every proper cyclic submodule is

δ-small in M , and M is said to be finitely δ-hollow if every proper finitely

generated submodule is δ-small in M . Since finite direct sum of δ-small

submodules is δ-small, M is principally δ-hollow if and only if it is finitely

δ-hollow. There are principally δ-hollow modules but not δ-hollow. Let

Z and Q denote the ring of integers and rational numbers respectively.

Then the Z-module Q is principally δ-hollow since each finitely generated

submodule of Q is small, therefore δ-small in Q. Let Q1 = {a/b ∈ Q | 2

does not divide b} and Q2 = {a/b ∈ Q | 2 divides b}. Then Q = Q1 +Q2.

Since Q/Q1 and Q/Q2 are singular Z-modules, Q1 and Q2 are not δ-small

submodules in Q.

Recall that a nonzero module M is called principally δ-lifting if for each

cyclic submodule has the δ-lifting property, i.e., for each m ∈ M , M has

a decomposition M = A⊕B with A ≤ mR and mR ∩B is δ-small in B

(see [12] for detail). It is obvious that every principally δ-lifting module is

principally δ-supplemented. There are principally δ-supplemented modules

but not principally δ-lifting. As an illustration we record here Example

3.16.

Example 3.16. Consider the Z-modules M1 = Z/2Z and M2 = Z/8Z.

As Z-modules M1 and M2 are principally δ-hollow, therefore principally

δ-supplemented modules. Let M = M1 ⊕M2. It is mentioned in [12] that

M is not a principally δ-lifting Z-module. The submodules N1 = (1, 2)Z

and N2 = (1, 1)Z, N3 = (0, 4)Z and N4 = (0, 2)Z are the only proper

submodules of M and all of them are cyclic. N3 and N4 are δ-small in

M and M = N1 + N2. Now N1 ∩ N2 = N3 is δ-small in both N1 and

N2. Hence M is principally δ-supplemented. By the same reasoning, for

any prime integer p, the Z-module M = (Z/pZ)⊕ (Z/p3Z) is principally
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δ-supplemented but not principally δ-lifting.

Lemma 3.17. Let M be an indecomposable module. Consider the follow-

ing conditions.

1. M is a principally δ-lifting module.

2. M is a principally δ-hollow module.

3. M is a principally δ-supplemented module.

Then (1) ⇔ (2) ⇒ (3).

Proof. (1) ⇔ (2) is proved in [12]. (2) ⇒ (3) Let m ∈ M . By (2) each

cyclic submodule is δ-hollow. Then M = mR+M and mR∩M is δ-small

in M . So M is principally δ-supplemented.

Note that Lemma 3.17 (3) ⇒ (2) does not hold in general.

In a subsequent paper the authors continue studying some gener-

alizations of supplemented modules. In [8], the module M is called ⊕-

supplemented if for every submodule N of M there is a direct summand

K of M such that M = N +K and N ∩K is small in K, and M is called

⊕-δ-supplemented module if for each submodule N of M there exists a

direct summand A such that M = N +A and N ∩A is δ-small in A. In

the same way δ-⊕-supplemented module means for each submodule N of

M there exists a direct summand A such that M = N + A and N ∩ A

is δ-small in A. It is the same as ⊕-δ-supplemented module. Hence we

introduce M is called principally ⊕-δ-supplemented module if for each

m ∈ M there exists a direct summand A such that M = mR + A and

mR ∩A is δ-small in A.

The module M is called a weak principally δ-supplemented if for each

m ∈ M there exists a submodule A such that M = mR+A and mR ∩A

is δ-small in M . Every weakly supplemented module is weak principally

δ-supplemented. The module M is called principally ⊕-supplemented if for

each m ∈ M there exists a direct summand A of M such that M = mR+A

and mR ∩ A is small in A. ⊕-supplemented modules are studied in [6].

Every ⊕-supplemented module is principally ⊕-δ-supplemented and it

is evident that every principally ⊕-supplemented is weak principally δ-

supplemented. In a subsequent paper the authors investigates the intercon-

nections between principally δ-supplemented modules, weakly principally

δ-supplemented modules and principally ⊕-δ-supplemented modules in

detail.
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Recall that a module M is said to have the summand intersection

property if the intersection of any two direct summands of M is again a

direct summand of M . The summand intersection property was studied by

J. L. Garcia [5], who characterized modules with the summand intersection

property. A module M is called refinable if for any submodule U , V of M

with M = U + V there is a direct summand U ′ of M such that U ′ ⊆ U

and M = U ′ + V (see namely [15]).

Theorem 3.18. Let M be a refinable module. Consider the following

conditions.

(1) M is principally δ-lifting.

(2) M is principally ⊕-δ-supplemented.

(3) M is principally δ-supplemented.

(4) M is weak principally δ-supplemented.

Then (1) ⇒ (2) and (2) ⇔ (3) ⇔ (4). If M has the summand

intersection property then (4) ⇒ (1).

Proof. By definitions (1) ⇒ (2) ⇒ (3) ⇒ (4) always hold.

(4) ⇒ (2) Let M be a weakly principally δ-supplemented module and

m ∈ M . By (4) there exists a submodule A of M such that M = mR+A

and mR∩A is δ-small in M . By hypothesis, there exists a direct summand

U of M with U ≤ A and M = mR+U = U ′⊕U for some submodule U ′ of

M . We claim that mR∩U is δ-small in U . Assume that mR∩U+L = U for

some submodule L of U with U/L singular. Since M/(U ′ + L) is singular

as it is isomorphic to the singular U/L. Then M = U ′ + (mR ∩ U) + L

implies M = U ′ ⊕L as mR∩U is δ-small in M . Hence L = U . So M is a

principally ⊕-δ-supplemented module.

(4) ⇒ (1) Assume that M has the summand intersection property and

let m ∈ M . By (4) there exists a submodule A such that M = mR+A

and mR∩A is δ-small in M . By hypothesis, there exists a direct summand

U1 of M such that U1 is contained in A and M = mR + U1 = U ′
1 ⊕ U1.

Since U1 is direct summand and mR ∩ A is δ-small in M , mR ∩ U1 is

δ-small in U1 by Lemma 2.1 (3). Again by hypothesis, there exists a

direct summand U2 of M such that U2 is contained in mR and M =

U2 + U1 = U2 ⊕ U ′
2. By the summand intersection property U2 ∩ U1 is a

direct summand of M , M = (U2 ∩ U1)⊕K for some submodule K of M .

Then U1 = (U2 ∩U1)⊕ (K ∩U1) and M = U2 ⊕ (K ∩U1). By Lemma 2.1

(4), mR∩ (K ∩U1) is δ-small in U1 since mR∩ (K ∩U1) ≤ mR∩U1 ≤ U1

and mR∩U1 is δ-small in U1. By Lemma 2.1 (3), mR∩(K∩U1) is δ-small

in K ∩ U1 as K ∩ U1 is direct summand of U1.



H. Inankil, S. Halıcıoglu, A. Harmanci 71

Theorem 3.19 is proved in [12]. We state without proof for the conve-

nience of the reader.

Theorem 3.19. Let M be a principally δ-semiperfect module. Then

1. M is principally δ-supplemented.

2. Each factor module of M is principally δ-semiperfect, hence any

homomorphic image and any direct summand of M is principally

δ-semiperfect.

Theorem 3.20. Let M be a projective module. The following conditions

are equivalent.

1. M is principally δ-semiperfect.

2. M is principally δ-lifting.

3. M is principally δ-supplemented.

Proof. (1) ⇔ (2) is proved in [12].

(1) ⇒ (3) By Theorem 3.19.

(3) ⇒ (1) Let m ∈ M . By (3) there exists a submodule A such that

M = mR+A such that mR∩A is δ-small in A. Let M
f
→ M/mR defined

by f(y) = a+mR, where y = mr + a ∈ M with mr ∈ mR, a ∈ A, and

M
π
→ M/mR the natural epimorphism. There exists M

g
→ M such that

fg = π. Then M = g(M) +mR ∩ A. Since mR ∩ A is δ-small in A, it

is δ-small in M . By Lemma 2.1 (1), there exists a projective semisimple

submodule Y of mR ∩A such that M = g(M)⊕ Y and so that g(M) is

projective. Hence g(M) ∼= M/Ker(g) implies M =Ker(g) ⊕ B for some

submodule B of M and B is projective. Let (fg)|B denote the restriction

of fg on B. Then Ker(fg)|B ≤ mR ∩A. Hence Ker(fg)|B is δ-small in B

and so B
(fg)|B
→ M/mR is a projective δ-cover of M .

4. Applications

Recall that projective δ-cover of a module M is a projective R-module

P with an epimorphism f from P to M such that Kerf is δ-small in P .

The next result is a well known fact about the relation between projective

δ-cover and a δ-supplement and we prove for completeness.

Lemma 4.1. Let M be a module and m ∈ M . If M/mR has a projective

δ-cover, then N contains a δ-supplement of mR.
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Proof. Let f : P → M/mR be a projective δ-cover of M/mR and π : M

→ M/mR natural epimorphism. There exists an g : P → M such that

f = πg. Then M = mR+ g(P ) and mR∩ g(P ) = g(Ker(f)). It is δ-small

in g(P ) as an homomorphic image of δ-small submodule Kerf in P by

Lemma 2.1 (2).

In [12] principally δ-semiperfect modules are introduced and some

properties are studied. By [16], a ring is called δ-perfect (or δ-semiperfect)

if every R-module (or every simple R-module) has a projective δ-cover.

For more detailed discussion on δ-small submodules, δ-perfect and δ-

semiperfect rings, we refer to [16]. A module M is called principally

δ-semiperfect if every factor module of M by a cyclic submodule has a pro-

jective δ-cover. A ring R is called principally δ-semiperfect in case the right

R-module R is principally δ-semiperfect. Every δ-semiperfect module is

principally δ-semiperfect. In Example 4.2, we see that there is a principally

δ-semiperfect module but not semiperfect. In [16], a ring R is called δ-

semiregular if every cyclically presented R-module has a projective δ-cover.

We recall some well known examples for motivation.

Example 4.2. Let R =

{[

x y

0 z

]

| x, y, z ∈ Z4

}

denote the ring of

upper triangular matrices over the ring of integers modulo 4. It is easy

to check that principal right ideals of R are either small in R or direct

summands of R. Hence R is principally δ-supplemented right R-module.

By Theorem 4.3, R is principally δ-semiperfect. Let e12 denote the matrix

unit having 1 at (1, 2) entry and zero elsewhere. Let I = e12R. Then I is

small, therefore δ-small right ideal and Jacobson radical J(R) of R is equal

to I. Hence R/J(R) is not semisimple. Therefore R is not a semiperfect

ring.

Theorem 4.3. Let R be a ring. The following conditions are equivalent.

1. R is principally δ-semiperfect.

2. R is principally δ-lifting.

3. R is δ-semiregular.

4. R is principally δ-supplemented.

Proof. (1) ⇒ (2) Clear from Theorem 3.20.

(2) ⇒ (3) Assume that R is principally δ-lifting and x ∈ R. Then

there exists a direct summand right ideal A of R such that R = A⊕B,
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A ≤ xR and xR ∩ B is δ-small in B. Then xR = A ⊕ xR ∩ B and

xR ∩B ≤ Radδ(M). By [16, Theorem 3.5], R is δ-semiregular.

(3) ⇒ (4) Assume that R is δ-semiregular. Let x ∈ R and π : R →

R/xR natural epimorphism. By hypothesis, R/xR has a projective δ-cover

f : P → R/xR since R/xR is cyclically presented. There exists g : P → R

such that f = πg. Then R = g(P ) + xR and g(P ) ∩ xR is δ-small in

g(P ) since g(P ) ∩ xR = g(Kerf) and Kerf is δ-small in P . Hence R is

principally δ-supplemented.

(4) ⇒ (1) Clear from Theorem 3.20.

Theorem 4.4. Let M be a refinable projective module with Radδ(M)

is δ-small in M . If M/Radδ(M) is principally semisimple, then M is

principally δ-supplemented.

Proof. Let xR be any cyclic submodule of M . Then we have

M/Radδ(M) = [(xR + Radδ(M))/Radδ(M)] ⊕ [U/Radδ(M)] for some

U ≤ M . Then M = xR+ U and Radδ(M) = xR ∩ U +Radδ(M). Hence

xR∩U is δ-small in M and xR∩U ≤ Radδ(M). Since M = xR+U there

exists a direct summand A of M such that A ≤ U and M = xR+ U =

xR+A = B⊕A. Since xR∩A is δ-small in M , so it is δ-small in A since

A is direct summand. This completes the proof.
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