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Abstract. In this paper we investigate some properties of

top modules and consider some conditions under which the spectrum

of a top module is a spectral space.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity

and all modules are unital. The radical of an ideal I of R is denoted by√
I and

√
I = {x ∈ R|xn ∈ I for some n ∈ N}.

Let M be an R-module. A submodule N of M is said to be prime

if N 6= M and whenever rm ∈ N (where r ∈ R and m ∈ M) then

r ∈ (N : M) or m ∈ N . If N is prime, then the ideal p = (N : M) is

a prime ideal of R, and N is said to be p-prime (see [14]). The set of

all prime submodules of M is called the spectrum of M and denoted by

Spec(M). Similarly, the collection of all p-prime submodules of M for any

p ∈ Spec(R) is designated by Specp(M). We remark that Spec(0) = ∅ and

that Spec(M) may be empty for some nonzero module M . For example,

the Z(p∞) as a Z-module has no prime submodule for any prime integer

p (see [16]). Such a module is said to be primeless. Throughout this paper

we assume that M is a non-primeless R-module. The set of all maximal

submodules of M is denoted by Max(M). The Jacobson radical Rad(M)
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of a module M is the intersection of all its maximal submodules. A module

M is called a semi-local (resp. a local) module if Max(M) is a non-empty

finite (resp. a singleton) set.

When Spec(M) 6= ∅, the map ψ : Spec(M) → Spec(R/Ann(M)),

defined by ψ(P ) = (P : M)/Ann(M) for every P ∈ Spec(M), will be

called the natural map of Spec(M). An R-module M is called primeful if

either M = (0) or M 6= (0) and has a surjective natural map (see [19]).

By N ≤M (resp. N < M) we mean that N is a submodule (resp. proper

submodule) of M . Let p be a prime ideal of R, and N ≤ M . By the

saturation of N with respect to p, we mean the contraction of Np in M

and designate it by Sp(N) (see [18]).

M is called a multiplication module if every submodule N of M is

of the form IM for some ideal I of R. For any submodule N of M we

define V (N) to be the set of all prime submodules of M containing N . If

ζ(M) denotes the collection of all subsets V (N) of X = Spec(M), then

ζ(M) contains the empty set and Spec(M) and it is closed under arbitrary

intersections. It is said that M is a module with Zariski topology or a

top module for short, if ζ(M) is closed under finite unions, i.e. for any

submodules N and L of M there exists a submodule J of M such that

V (N) ∪ V (L) = V (J) (see [20]).

Let N be a submodule of M . If V (N) has at least one minimal member

with respect to the inclusion, then such a minimal member is called a

minimal prime submodule of N or a prime submodule minimal over N .

A minimal prime submodule of (0) is called a minimal prime submodule

of M .

A non-Noetherian commutative ring R is called a quasisemilocal ring

if R has only a finite number of maximal ideals. A non-Noetherian com-

mutative ring R is called a quasilocal ring if has only one maximal ideal.

Let N be a submodule of M . N is called compactly packed by prime

submodules if whenever N is contained in the union of a family of prime

submodules of M , N is contained in one of the prime submodules of

the family. M is called compactly packed if every submodule of M is

compactly packed by prime submodules (see [11]). A submodule N of M

is said to be strongly irreducible if for submodules N1 and N2 of M , the

inclusion N1 ∩N2 ⊆ N implies that either N1 ⊆ N or N2 ⊆ N . Strongly

irreducible submodules has been characterized in [3]. For example every

prime submodule of multiplication module is strongly irreducible (see

[7, p. 1142, Lemma 4.11]). A module M is called a Bezout module if

every finitely generated submodule is cyclic (see [22, 23]). A module M

is called distributive if the lattice of its submodules is distributive, i.e.,
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A ∩ (B +C) = (A ∩B) + (A ∩C) and A+ (B ∩C) = (A+B) ∩ (A+C)

for all submodules A,B and C of M (see [6]). We recall that every Bezout

R-module is distributive (see [22, p. 307, Corollary 2]).

Now let M be a top module. The purpose of this paper is to discuss

some topological properties of Spec(M). We explore the relation between

Spec(R) and Spec(M) and investigate topological space Spec(M) from

the point of view of spectral spaces, topological spaces each of which is

homeomorphic to Spec(S) for some ring S. In Section 2, various algebraic

properties of top modules are considered. We will consider the conditions

under which M is a top module. In Section 3, we will discuss some

topological properties of Spec(M).

2. Top modules

Let M be an R-module. For any subset E of M , we recall that V (E) is the

set of all prime submodules of M containing E. Also for a submodule N of

M , the radical of N defined to be the intersection of all prime submodules

of M containing N and denoted by radM (N) or briefly rad(N) (see [15]).

In particular rad(0M ) is the intersection of all prime submodules of M .

We say N is a radical submodule if rad(N) = N . For every subset Y of

Spec(M), ℑ(Y ) is defined to be the intersection of all prime submodules

of M which belong to Y (see [18, 19]).

Let M be an R-module and X = Spec(M). If N is a submodule of

M generated by a set S, then V (S) = V (N). We have V (0) = X and

V (M) = ∅. If {Ni}i∈I is any family of subsets of M , then V (∪i∈INi) =

∩i∈IV (Ni). Also V (N1 ∩N2) ⊇ V (N1) ∪ V (N2) for any submodules N1

and N2 of M . Since
∑

i∈I Ni generated by
⋃

i∈I Ni, we have

V (
∑

i∈I

Ni) = V (
⋃

i∈I

Ni) =
⋂

i∈I

V (Ni).

We denote V (Rm) by V (m).

If ζ(M) denotes the collection of all subsets V (N) of X = Spec(M),

then ζ(M) contains the empty set and Spec(M) and it is closed under

arbitrary intersections. We recall that M is a module with a Zariski

topology or a top module for short, if ζ(M) is closed under finite unions,

that is, for any submodules N and L of M there exists a submodule J of

M such that V (N)∪V (L) = V (J). In this case ζ(M) satisfies the axioms

for closed subsets of topological space (see [20]).

Theorem 2.1. Let M be an R-module. Then M is a top module in each

of the following cases.
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1. Every prime submodule of M is strongly irreducible.

2. M is an R-module with the property that for any two submodules N

and L of M , (N :M) and (L :M) are comaximal.

3. M is a Bezout R-module.

4. R is a quasisemilocal ring and M is a distributive R-module.

5. M is an Artinian distributive R-module.

6. M is a distributive R-module with the property that every submodule

has only finitely many maximal submodules.

Proof. 1. Always we have, V (N ∩ L) ⊇ V (N) ∪ V (L) for each sub-

modules N and L of M . Now let P ∈ V (N ∩ L), thus N ∩ L ⊆ P .

Since P is strongly irreducible, either N ⊆ P or L ⊆ P . Therefore

P ∈ V (N) ∪ V (L). Thus ζ(M) is closed under finite unions. Hence

M is a top module.

2. Let P be a prime submodule of M with N ∩ L ⊆ P . Then

(N :M) ∩ (L :M) ⊆ (P :M) ∈ Spec(R).

We may assume that (N :M) ⊆ (P :M). Then clearly (L :M) 6⊆
(P : M) by assumption. Hence N ⊆ P by [15, p. 215, Lemma 2].

Therefore P is strongly irreducible. This implies that M is a top

module by part (1).

3. Let P be a prime submodule of M such that N ∩ L ⊆ P for

submodules N and L of M . Let N 6⊆ P , a ∈ N \ P , and b ∈ L.

Then there exists z ∈M such that Ra+Rb = Rz. Thus there exists

r, s ∈ R, such that a = rz, b = sz. Then we have that sa ∈ P , so

s ∈ (P :M). In particular sz ∈ P , whence b ∈ P . This implies that

M is a top module by part (1).

4. Use [6, p. 176, Proposition 7 and p. 175, Proposition 4], and part (3).

5. Use [6, p. 176, Proposition 7 ], [12, p. 764, Corollary 2.9], and part (3).

6. Use [6, p. 176, Proposition 7 ], [12, p. 763, Theorem 2.8], and part (3).

Remark 2.2. LetM be a topR-module. Then by [17, p. 429, Corollary 6.2

and Theorem 6.1], the natural map ψ : Spec(M) −→ Spec(R/Ann(M)),

is injective.
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Theorem 2.3. Let M be a top R-module. Then

1. Every prime submodule of M is of the form Sp(pM) for some p ∈
V (Ann(M)).

2. If R satisfies ACC on prime ideals, then M satisfies ACC on prime

submodules.

Proof. 1. Let P be a prime submodule of M and p := (P : M) ⊇
Ann(M). Then Specp(M) 6= ∅, so Sp(pM) is a p-prime submodule

of M by [18, p. 2664, Corollary 3.7]. Since M is a top module, we

have Sp(pM) = P by Remark 2.2.

2. Let N1 ⊆ N2 ⊆ ... be an ascending chain of prime submodules

of M . This induces the following chain of prime ideals, ψ(N1) ⊆
ψ(N2) ⊆ · · · , where ψ is the natural map ψ : Spec(M) −→
Spec(R/Ann(M)). Since R satisfies ACC on prime ideals, there ex-

ists a positive integer k such that for each i ∈ N , ψ(Nk) = ψ(Nk+i).

Now by Remark 2.2, we have Nk = Nk+i as required.

Remark 2.4. Let M be an R-module and p be a prime ideal of R. For

every submodule N of the Rp-module Mp, let N ∩M be the inverse image

of N under M → Mp. Then (N ∩M)p = N (see [10, p. 68, Proposition

10]).

Theorem 2.5. Let (R,m) be a quasilocal ring and M be a nonzero top

primeful R-module. Then M is a local module.

Proof. We must show that M has exactly one maximal submodule. For

each p ∈ V (Ann(M)), Rp is a quasilocal ring with unique maximal

ideal pRp and Mp is a nonzero top primeful R-module by [19, p. 135,

Theorem 4.1] and [20, p. 93, Lemma 3.3]. Thus there exists a prime

submodule L of Mp such that (L : Mp) = pRp. We claim that L ∩M
is a maximal submodule of M . Let N be a submodule of M such that

L ∩M ⊆ N . Then by Remark 2.4, L = (L ∩M)p ⊆ Np. But we have

pRp = (L : Mp) = (Np : Mp). Thus Np is a prime submodule of Mp.

Therefore Np = L by Remark 2.2. This implies that

N ⊆ Sp(N) = Np ∩M = L ∩M ⊆ N.

Hence L∩M = N , so L∩M is a maximal submodule ofM . This means that

((L ∩M) :M) = m . Now let Q ∈Max(M), then (Q :M) = ((L ∩M) :

M) = m . Therefore Q = L ∩M by Remark 2.2. This completes the

proof.
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For every prime ideal p of R, Rp is always a quasilocal ring. However,

for an arbitrary R-module M , Mp is not necessarily a local Rp-module.

But by Theorem 2.5, if M is a nonzero top primeful R-module, then Mp

is a local Rp-module for each p ∈ V (Ann(M)).

Proposition 2.6. Let M be a nonzero top primeful R-module.

1. If M is a semi-local (resp. local) module, then R/Ann(M) is a

quasisemilocal (resp. a quasilocal) ring.

2. Let M be a local module with maximal submodule P . If (P :M) = p,

then the canonical homomorphism M →Mp is bijective.

Proof. 1. Let M be a local module with unique maximal submodule P .

Then p := (P :M) ∈Max(R). Now let q ∈Max(R)∩ V (Ann(M)).

It is enough to prove q = p. To see this, we note that Sq(qM) is a

q-prime submodule of M by [19, p. 127, Theorem 2.1]. We show that

Sq(qM) ∈Max(M). Let Sq(qM) ⊆ K for some submodule K of M .

Then we have q = (Sq(qM) : M) = (K : M). Hence Sq(qM) = K

by Remark 2.2. This implies that Sq(qM) = P and therefore q = p .

For the semi-local case we argue similarly.

2. Use part (1) and [10, p. 87, Proposition 8].

3. Topological properties of Spec(M)

We recall that a topological space X is irreducible if the intersection of two

non-empty open sets ofX is non-empty. Every subset of a topological space

consisting of a single point is irreducible and a subset Y of a topological

space X is irreducible if and only if its closure Cl(Y ) is irreducible (see

[10, §4.1]). A maximal irreducible subset Y of X is called an irreducible

component of X and it is always closed. A topological space X is said to

be quasi-compact if every open cover of X has a finite subcover. It is clear

that every space X containing only finitely many points is quasi-compact.

We begin this section by some examples.

Example 3.1. 1. Let M =
⊕

p Z/pZ be a Z-module, where p runs

through the set of all prime numbers. Then by [8, p. 124, Theorem

3.4], Spec(M) is not an irreducible space because rad(0M ) is not a

prime submodule. Further, Spec(M) is not a quasi-compact space.

2. LetM = Z⊕Z(p∞) be a Z-module. Then by [8, p. 124, Theorem 3.4]),

Spec(M) is an irreducible space because rad(0M ) = (0)⊕ Z(p∞) is

a prime submodule of M .
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3. Let M = Q⊕Z/pZ be a Z-module. Then by [8, p. 124, Theorem 3.4],

Max(M) is an irreducible subset of Spec(M) because

Rad(M) = ℑ(Max(M)) = Q⊕ (0).

Proposition 3.2. Let Y be a subset of Spec(M) for a top R-module M .

If Y is irreducible, then T = {(P :M) | P ∈ Y } is an irreducible subset

of Spec(R), with respect to Zariski topology.

Proof. ψ(Y ) = T ′ is an irreducible subset of Spec(R/Ann(M)) because

ψ is continuous by [17, p. 421, Proposition 3.1]. We have

ℑ(T ′) = (ℑ(Y ) :M)/Ann(M) ∈ Spec(R/Ann(M)).

Therefore ℑ(T ) = (ℑ(Y ) :M) is a prime ideal of R, so T is an irreducible

subset of Spec(R) by [10, p. 102, Proposition 14].

Let Y be a closed subset of a topological space. An element y ∈ Y is

called a generic point of Y if Y = Cl({y}). Note that a generic point of a

closed subset Y of a topological space is unique if the topological space is

a T0-space.

Theorem 3.3. Let M be a top R-module and Y ⊆ Spec(M). Then Y

is an irreducible closed subset of Spec(M) if and only if Y = V (P ) for

some P ∈ Spec(M). Thus every irreducible closed subset of Spec(M) has

a generic point.

Proof. Y = V (P ) is an irreducible closed subset of Spec(M) for any

P ∈ Spec(M) by [8, p. 123, Lemma 3.3]. Conversely if Y is an irreducible

closed subset of Spec(M), then Y = V (N) for some N ≤M and ℑ(Y ) =

ℑ(V (N)) = rad(N) is a prime submodule by [8, p. 124, Theorem 3.4].

Hence Y = V (N) = V (rad(N)) as desired.

Theorem 3.4. Let M be a top R-module. The correspondence V (P ) 7→ P

is a bijection from the set of irreducible components of Spec(M) to the set

of minimal prime submodules of M .

Proof. Let Y be an irreducible component of Spec(M). Since each irre-

ducible component of Spec(M) is a maximal element of the set {V (Q) |
Q ∈ Spec(M)} by Theorem 3.3, we have Y = V (P ) for some P ∈ Spec(M).

Obviously P is a minimal prime submodule, for if T is a prime submodule

of M with T ⊆ P , then V (P ) ⊆ V (T ) so that P = T . Now let P be a min-

imal prime submodule of M with V (P ) ⊆ V (Q) for some Q ∈ Spec(M).

Then Cl({P}) = V (P ) ⊆ V (Q) = Cl({Q}), hence P = Q. This implies

that V (P ) is an irreducible subset of Spec(M) as desired.
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Example 3.5. Consider M = Z ⊕ Z(p∞) as a Z-module. By Example

3.1 and Theorem 3.4, (0)⊕ Z(p∞) is a minimal prime submodule of M .

Proposition 3.6. Consider the following statements for a nonzero top

primeful R-module M :

1. Spec(M) is an irreducible space.

2. Supp(M) is an irreducible space.

3.
√

Ann(M) is a prime ideal of R.

4. Spec(M) = V (pM) for some p ∈ Supp(M).

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). When M is a multiplication module, all the

four statements are equivalent.

Proof. (1) ⇒ (2) By [17, p. 421, Proposition 3.1], the natural map

ψ is continuous and by assumption ψ is surjective. Hence Im(ψ) =

Spec(R/Ann(M)) is also irreducible. Now by [19, p. 133, Proposition 3.4]

and [4, p. 13, Ex. 21], we have Supp(M) = V (Ann(M)) is homeomorphic

to Spec(R/Ann(M)). This implies that Supp(M) is an irreducible space.

(2) ⇒ (3) By [10, p. 102, Proposition 14], ℑ(Supp(M)) is a prime ideal

of R. But we have ℑ(Supp(M)) = ℑ(V (Ann(M))) =
√

Ann(M).

(3) ⇒ (4) Let a ∈
√

Ann(M), then anM = 0 for some integer n ∈ N.

Hence for every prime submodule P of M , a ∈ (P : M). Therefore
√

Ann(M) ⊆ (P :M), for each P ∈ Spec(M). Since M is primeful, there

exists a prime submodule Q of M such that (Q :M) =
√

Ann(M). Hence

by [17, p. 419, Result 3],

Spec(M) = {P ∈ Spec(M) | (P :M) ⊇ (Q :M)}
= V ((Q :M)M) = V (

√

Ann(M)M).

It is clear that p :=
√

Ann(M) ∈ Supp(M). Therefore Spec(M) =

V (pM).

For the last assertion, we show that (4) implies (1). Let Spec(M) =

V (pM) for some p ∈ Supp(M). Since M is primeful, there exists P ∈
Spec(M) such that (P :M) = p. Since M is multiplication, we have

Spec(M) = V (pM) = V ((P :M)M) = V (P ).

Thus rad(0M ) = ℑ(Spec(M)) = ℑ(V (P )) = P ∈ Spec(M). This implies

that Spec(M) is an irreducible space by [8, p. 124, Theorem 3.4].
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Notation and Remark 3.7. For each subset S ofM , we denote Spec(M)\
V (S) by Γ(S). Further for each element m ∈ M , Γ({m}) is denoted by

Γ(m). Hence

Γ(m) = Spec(M) \ V (m) = {P | P ∈ Spec(M) and m 6∈ P}.

Moreover, for any family {Ni}i∈I of submodules of M , we have

Γ(
∑

i∈I Ni) = Γ(
⋃

i∈I Ni).

Proposition 3.8. Let M be a top R-module. Then the set B = {Γ(m) |
m ∈M} form a basis of open sets for the Zariski topology.

Proof. Let Γ(N) be an open set for some submodule N of M . Let P ∈
Γ(N). Hence N 6⊆ P so that there exists m ∈ N \ P , therefore P ∈ Γ(m).

Now assume that Q ∈ Γ(m). It follows that N 6⊆ Q so that Γ(m) ⊆ Γ(N).

Thus P ∈ Γ(m) ⊆ Γ(N). Hence B is a basis for Zariski topology on

Spec(M) by [21, P. 80, Lemma 13.2].

For a submodule N of an R-module M , we use the following notation

T(N) := {L | L ⊆ N and L is finitely generated }.

Lemma 3.9. Let M be an R-module and N be a submodule of M . Then

we have

V (N) =
⋂

L∈T(N)

V (L), Γ(N) =
⋃

L∈T(N)

Γ(L).

Proof. Let P ∈ V (N). If L ∈ T(N), then L ⊆ N ⊆ P . Hence P ∈ V (L),

thus V (N) ⊆ ⋂

L∈T(N) V (L). Now suppose P ∈ V (L) for every L ∈ T(N)

and P 6∈ V (N). Since N 6⊆ P , then there exists x ∈ N \ P . Hence

Rx ⊆ N and Rx is finitely generated, therefore Rx ∈ T(N). Consequently

x ∈ Rx ⊆ P , a contradiction. Hence
⋂

L∈T(N) V (L) ⊆ V (N).

Theorem 3.10. Let M be a top R-module. Then every quasi-compact

open subset of Spec(M) is of the form Γ(N) for some finitely generated

submodule N of M . In particular if M is Bezout, then every quasi-compact

open subset of Spec(M) is of the form Γ(m) for some m ∈M .

Proof. Suppose Γ(B) = Spec(M) \ V (B) is a quasi-compact open subset

of Spec(M). By Lemma 3.9, we have Γ(B) =
⋃

L∈T (B) Γ(L). Since Γ(B)

is quasi-compact, every open covering of Γ(B) has a finite subcovering,

thus

Γ(B) = Γ(L1) ∪ ... ∪ Γ(Ln) = Γ(
n
∑

i=1

Li).

This completes the proof.
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Theorem 3.11. Let R be a Noetherian ring and let M be an R-module

such that for every submodule N of M there exists an ideal I of R such

that V (N) = V (IM). Then the open set Γ(m) is quasi-compact for each

m ∈M .

Proof. By [20, p. 94, Theorem 3.5], M is a top module. Since, by Proposi-

tion 3.8, the set {Γ(m) | m ∈M} forms a base for the Zariski topology on

Spec(M), for every open cover of Γ(m), there exists a family {mλ | λ ∈ Λ}
of elements of M such that

Γ(m) ⊆
⋃

λ∈Λ

Γ(mλ) = Spec(M) \
⋂

λ∈Λ

V (mλ).

For each λ ∈ Λ, set V (mλ) = V (JλM), where Jλ is an ideal of R. Then

Γ(m) ⊆ Spec(M) \
⋂

λ∈Λ

V (JλM) = Spec(M) \ V (
∑

λ∈Λ

JλM).

Therefore Γ(m) ⊆ Spec(M) \ V ((
∑

λ∈Λ Jλ)M). Since R is a Noetherian

ring, there exists a finite subset Λ′ of Λ such that

Γ(m) ⊆ Spec(M) \ V (
∑

λ∈Λ′

JλM) = Spec(M) \
⋂

λ∈Λ′

V (mλ) =
⋃

λ∈Λ′

Γ(mλ).

Consider M =
⊕

p Z/pZ as a Z-module, where p runs through the set

of all prime numbers. By [8, p. 113, Theorem 2.14], Spec(M) is a T1-space

because each prime submodule is a maximal element in Spec(M).

Proposition 3.12. Let M be a top R-module. Then we have the following.

1. If Spec(R) is a T1-space, then Spec(M) is also a T1-space. In par-

ticular, If R is a Boolean ring, then Spec(M) is a T1-space.

2. If Spec(M) = Max(M) and also M is a faithful primeful module,

then Spec(R) is a Hausdorff space.

Proof. 1. Suppose Q is a prime submodule of M . Then Cl({Q}) =

V (Q). If P ∈ V (Q), then since every prime ideal is a maximal ideal,

(Q : M) = (P : M) so that Q = P by Remark 2.2. Therefore

Cl({Q}) = {Q} and this implies that Spec(M) is a T1-space.

2. Let p be a prime ideal of R. Since M is primeful, there exists a prime

submodule P of M such that (P : M) = p. Hence p is a maximal

ideal of R. This implies that Spec(R) is a Hausdorff space.
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A topological space X is called Noetherian if it satisfies the descending

chain condition for closed sets, or equivalently X is a Noetherian space if

and only if every open subset of X is quasi-compact (see [4, p. 79, Ex. 5]).

Lemma 3.13. Let M be a top module. Then Spec(M) is a Noetherian

space if and only if radical submodules of M satisfies ACC. In Particular,

every top Noetherian module has Noetherian spectrum.

Proof. Let N be a radical submodule of M . Then we have N = ℑ(V (N)).

Also, if N1 and N2 are two radical submodules of M with V (N1) = V (N2),

then N1 = N2. The two facts prove the lemma.

Theorem 3.14. Let M be a top module. Then Spec(M) is a Noetherian

space in each of the following cases.

1. M is a compactly packed module.

2. R is an integral domain of dimension 1 and M a non-faithful R-

module such that every closed subset of Spec(M) has finitely many

irreducible components.

3. R is a PID and M a non-faithful R-module.

Proof. 1. Let N1 ⊆ N2 ⊆ ... be an ascending chain of radical submod-

ules of M and let G :=
⋃

i∈I Ni. By Lemma 3.13, it is enough to

show that G is contained in Nj for some j ∈ I. To see this, we claim

that rad(G) ⊆ rad(Rx) for some x ∈ G. If not, then for every x ∈ G

there exists a prime submodule Px ∈ V (Rx) such that G 6⊆ Px. But

G =
⋃

x∈G

Rx ⊆
⋃

x∈G

Px

which yields a contradiction by hypothesis. Thus there exists an

element b ∈ G such that rad(G) ⊆ rad(Rb). Also there exists some

j ∈ I such that b ∈ Nj . Therefore G ⊆ rad(Rb) ⊆ Nj , which finishes

the proof.

2. Let F = V (N) be a closed subset of Spec(M), with N ≤ M . By

assumption V (N) =
⋃n

i=1 Zi, where Zi is irreducible component of

V (N). Thus M/N has finitely many minimal prime submodules

P
′

1, . . . , P
′

n by Theorem 3.4. Thus there exists prime submodules

P1, . . . , Pn of M such that P
′

i = Pi/N . Let P ∈ V (N). We show

that P = Pj for some j (1 ≤ j ≤ n). By [15, p. 213, Proposition 1],

N ⊆ Pk ⊆ P for some k (1 ≤ k ≤ n). Thus we have

ψ(Pk) ⊆ ψ(P ) ⇒ (0) ⊂ Ann(M) ⊆ (Pk :M) ⊆ (P :M).
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Since M is a non-faithful top R-module and R is a one dimensional

integral domain, we have P = Pk. Now the proof follows from Lemma

3.13.

3. By Lemma 3.13, it is enough to prove that for every submodule N

of M , |V (N)| < ∞. Suppose that V (N) contains infinitely many

members. Then for each P ∈ V (N), we have (N : M) ⊆ (P : M).

Note that for distinct prime submodules P,Q ∈ V (N), we have

(P : M) 6= (Q : M) by Remark 2.2. This implies that Ann(M) ⊆
(N :M) = 0, which is a contradiction by hypothesis. This completes

the proof.

Theorem 3.15. Let M be a top R-module such that Spec(M) is a Noethe-

rian space. Then the following statements are true.

1. Every ascending chain of prime submodules of M is stationary.

2. If M is a Bezout R-module, then M is compactly packed.

3. If N is a proper submodule of M , then V (N) has only finitely many

minimal elements.

4. rad(N) =
⋂

Pi, where the intersection is taken over the finitely

many Pi of part (3).

5. The set of minimal prime submodules of M is finite. In particular

Spec(M) =
n
⋃

i=1

V (Pi),

where Pi are all minimal prime submodules of M .

Proof. 1. This is clear.

2. Let N be a proper submodule of M . We claim that rad(N) = rad(L)

for some finitely generated submodule L of M . Suppose the claim is

not true and let x1 ∈ N and N1 = rad(Rx1). Then N1 ⊂ N because

if N1 = N , then

rad(Rx1) = rad(rad(Rx1)) = rad(N1) = rad(N)

which is a contradiction. So there exists x2 ∈ N \ N1. Let N2 =

rad(Rx1+Rx2). Then N1 ⊂ N2 ⊂ N . By continuing this procedure

we have an ascending chain of radical submodules
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N1 ⊂ N2 ⊂ N3 ⊂ · · ·

of M which is a contradiction by Lemma 3.13. Therefore rad(N) =

rad(L) for some finitely generated submodule L of M . L must

be cyclic, because M is a Bezout module. Hence for each proper

submodule N of M there exists x ∈ N such that rad(N) = rad(Rx).

Now letK be a proper submodule ofM and let {Pi}i∈I be a family of

prime submodules of M such that K ⊆ ∪i∈IPi. By above arguments,

there exists x ∈ K such that K ⊆ rad(Rx) ⊆ Pj for some j ∈ I.

3. We have that V (N) is homeomorphic to Spec(M/N). Since Spec(M)

is Noetherian, Spec(M/N) has finitely many irreducible components.

Hence by Theorem 3.4, there is one-to-one correspondence between

irreducible components of Spec(M/N) and minimal prime submod-

ules of M/N . Also for P ∈ Spec(M), P/N is a minimal prime

submodule of M/N if and only if P is a minimal prime submodule

of N . This completes the proof.

4. This follows from part (3) and [15, p. 213, Proposition 1].

5. This follows from Theorem 3.4 and the fact that the number of

irreducible components of Spec(M) is finite.

Proposition 3.16. Let M be a top co-semisimple R-module. Then M is

a Noetherian R-module in each of the following cases.

1. M is compactly packed.

2. R is an integral domain of dimension 1 and M a non-faithful R-

module such that every closed subset of Spec(M) has finitely many

irreducible components.

3. R is a PID and M is a non-faithful R-module.

Proof. By Theorem 3.14, if each of the conditions (1)-(3) holds, then

Spec(M) is a Noetherian space. Hence M satisfies ACC on radical sub-

modules by Lemma 3.13. But every submodule ofM is a radical submodule

by [2, p. 122, Ex. 14]. Therefore M is a Noetherian module. This completes

the proof.

We recall that an R-module M is called a multiplication module [12]

if every submodule N of M is of the form IM for some ideal I of R and

an R-module M is called a weak multiplication if every prime submodule

P of M is of the form IM for some ideal I of R (see [1] and [5]).
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Theorem 3.17. Let M be a weak multiplication top primeful R-module.

Then the set

T = {V (pM) | p ∈Min(Supp(M))}
is the set of all irreducible components of Spec(M).

Proof. Let Y be an irreducible component of Spec(M). Then by Theorem

3.3, Y = V (P ) for some P ∈ Spec(M). Hence Y = V (P ) = V ((P :M)M),

where p := (P :M) ∈ V (Ann(M)) = Supp(M) by [19, p. 133, Proposition

3.4]. We must show that p ∈Min(Supp(M)). To see this let q ∈ Supp(M)

and q ⊆ p. Then there exists a prime submodule Q of M such that

(Q : M) = q because M is primeful. Thus Y = V (P ) ⊆ V (Q). Hence

Y = V (P ) = V (Q). Thus by [17, p. 419, Result 1], we have that p = q.

Conversely let Y ∈ T . Then there exists p ∈ Min(Supp(M)) such

that Y = V (pM). Since M is primeful, there exists a prime submodule P

of M such that (P : M) = p. Since M is a weak multiplication module,

Y = V (pM) = V ((P :M)M) = V (P ). Thus Y is irreducible by [8, p. 124,

Theorem 3.4]. Suppose Y = V (P ) ⊆ V (Q), where Q is a prime submodule

of M . Thus P ∈ Cl({Q}). Now we have Q ⊆ P , so that q := (Q :M) = p.

Therefore Y = V (P ) = V (pM) = V (qM) = V (Q). This completes the

proof.

Corollary 3.18. Let M be a finitely generated multiplication R-module.

Then the set

T = {V (pM) | p ∈Min(Supp(M))}
is the set of all irreducible components of Spec(M).

Following M. Hochster [13], we say that a topological space X is a

spectral space in case X is homeomorphic to Spec(S), with the Zariski

topology, for some ring S. Spectral spaces have been characterized by

Hochster [13, p.52, Proposition 4] as the topological spaces X which satisfy

the following conditions:

1. X is a T0-space;

2. X is quasi-compact;

3. the quasi-compact open subsets of X are closed under finite inter-

section and form an open base;

4. each irreducible closed subset of X has a generic point.

Corollary 3.19. Let M be a top R-module. Then Spec(M) is a spectral

space if each of the following conditions holds.
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1. M is compactly packed.

2. R is an integral domain of dimension 1 and M a non-faithful R-

module such that every closed subset of Spec(M) has finitely many

irreducible components.

3. R is a PID and M a non-faithful R-module.

Proof. As we have seen in proof of Theorem 3.14, in each of the above

cases M fulfils ACC on intersection of prime submodules. Hence the result

follows from [9, p. 146, Theorem 3.2].
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