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Diagonal direct limits

of finite symmetric and alternating groups

Y. V. Lavrenyuk, V. V. Nekrashevych

and V. I. Sushchansky

Abstract. Diagonal direct limits of permutation groups

are studied using their representations by homeomorphisms of the

boundary of rooted trees.

We describe a new method of classification of such permutation

groups, and use this method to find a complete classification of

diagonal direct limits of symmetric and alternating groups up to

isomorphisms.

Introduction

Classification of simple countable locally finite groups is one of the central
problems of the theory of locally finite groups. Big progress in this direction
is made in the works of U. Meierfrankenfeld and S. Delcroix [Mei95, DM02].
It is shown there that every simple countable locally finite group belongs
to one of four classes. The first class is the class of finitary groups. The
other three are defined using the properties of Kegel covers of the groups.
One of these three classes is the class of the so-called groups of 1-type. An
important part of the study of this class is classification of locally finite
groups which are unions of an ascending chain of finite alternating groups
(see [Har95]). Classification of such unions is also closely related to the
study of group rings with “small” lattices of ideals and asymptotic theory
of characters. A. E. Zalesski has considered in [Zal91] a class of inductive
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limits of finite symmetric and alternating groups that are defined by the
so-called diagonal embeddings. He proved that the lattice of ideals of the
group rings of such groups is a chain, and has formulated several problems
for further investigation (see also [Zal98], [HZ97]). In particular, a natural
question on classification of such groups was posed.

Note that inductive limits of finite-dimensional C∗-algebras (so-called

AF -algebras) is already a classical part of the theory of C∗-algebras,
and its classification was accomplished by G. Glimm [Gli60] for a par-
tial case of the so-called UHF-algebras, and by J. Dixmier [Dix67] and
G. A. Elliott [Ell76] in more general situations.

Inductive limits of finite-dimensional Lie algebras with diagonal em-
beddings were classified in the work of A. A. Baranov and A. G. Zhilin-
skii [BZ99].

In the work of N. V. Kroshko and V. I. Sushchansky [KS98] a complete
classification of the inductive limits of finite symmetric and alternating
groups with strictly diagonal embeddings was given. The classification is
formulated in the same terms as the classification of the UHF-algebras
by Glimm. The study of such inductive limits of groups was continued
in [LS03]. In particular, it was shown that the inductive limits of finite
symmetric groups with strictly diagonal embeddings appear naturally in
the study of hierarchomorphisms of spherically homogeneous rooted trees.

In [LN07] the first and the second named authors gave a complete
classification of the inductive limits of direct products of finite alternating
groups that are simple. It was shown that two such groups are isomorphic
if and only if the corresponding (i.e., having the same Bratteli diagram)
AF -algebras are isomorphic.

Our paper develops classification techniques based on different ideas.
We use topological properties of the boundaries of rooted trees and proper-
ties of Berhoulli measures on them. Using these techniques, we classify the
inductive limits of finite symmetric and alternating groups with respect to
arbitrary diagonal embeddings without using theory of C∗-algebras and
K-theory. We think that the developed methods are of independent inter-
est. It may be useful in solving classification problems in other categories
with inductive limits.

1. Rooted trees

We will study diagonal direct limits of finite symmetric or alternating
groups using a representation of these groups by homeomorphisms of the
boundaries of rooted trees. We start with introduction of all the notions
needed for definition of such representations.
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Let T be a locally finite rooted tree with the root vertex v0. Let us
denote by V (T ) the set of vertices of T , and by E(T ) its set of edges. For
every two vertices u, v of the tree T define the distance between u and v,
denoted d(u, v), to be equal to the length of the shortest path connecting
them.

For a rooted tree T with the root v0 and an integer n ≥ 0, define the
level number n (the sphere of radius n) to be the set

Vn(T ) = {v ∈ V (T ) : d(v0, v) = n} .

We say that a vertex v of the tree T lies under a vertex w, if the path
connecting the vertex v and the root contains the vertex w. Let us denote
by Tv the subtree consisting of all vertices that lie under the vertex v with
the root v.

An end of a rooted tree is an infinite path without repetitions which
starts in the root. Let us denote by ∂T the boundary of T , i.e., the set of
all the ends of the tree T . For V ⊆ V (T ) put

∂(V ) =
⋃

v∈V

∂Tv,

where ∂Tv is the boundary of the subtree Tv, i.e., the set of ends passing
through v.

For x ∈ ∂T , denote by x(m) the vertex from the level Vm(T ) such
that x goes through x(m). Let us introduce a natural ultrametric on ∂T
putting

ρ(γ1, γ2) = 1/(n+ 1),

where n is the length of the longest common part of the paths γ1 and γ2.
The topology introduced by the metric ρ is compact, totally disconnected,
and has a base of open sets {∂Tv}v∈V (T ). Note that ∂Tv is a ball of radius
1/(n+ 1), where n is such that v ∈ Vn(T ).

If degree of a vertex v ∈ Vn(T ) depends only on n, then the tree
T is called spherically homogeneous. Spherical index of a spherically
homogeneous tree T is the sequence

Θ = (a0, a1, . . .),

where a0 is degree of the root and an + 1 are degrees of any vertex of the
nth level (i.e., an is the number of “childs” of a vertex of nth level). We
assume throughout the paper that an ≥ 2 for all n.

Let T be a spherically homogeneous rooted tree with root v0 and
the spherical index Θ. The tree T is isomorphic to the tree TΘ whose
set of vertices is the set of all finite sequences (i0, i1, . . . , in−1), n ≥ 1,
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such that ik ∈ {1, 2, . . . , ak}. We include also the empty sequence ∅

corresponding to n = 0. Two vertices are adjacent if and only if they are
of the form (i0, . . . , in−1), (i0, . . . , in−1, in). We order the vertices of every
level lexicographically.

Then every end x ∈ ∂T is identified with an infinite sequence (i0, i1, . . .),
where 1 ≤ ik ≤ ak for all k ≥ 0. Namely, such a sequence is identified
with the end

∅, (i0), (i0, i1), (i0, i1, i2), . . . .

It is easy to see that this identification is a homeomorphism between
∂T and the direct product

∏

k≥0{1, 2, . . . , ak} of discrete sets.
Let us denote by Homeo ∂T the group of all homeomorphisms of ∂T .

For n ≥ 0, denote by S(∂T, n) the group of all homeomorphisms of the
boundary ∂T which permute the balls Tv, for v ∈ Vn(T ) in a rigid manner,
i.e., which change at most the first n coordinates of an end (i0, i1, . . .). The
group S(∂T, n) is naturally isomorphic to the symmetric group Sym (Vn),
where a permutation π ∈ Sym (Vn) acts on the ends by the rule

(i0, i1, . . .)
π = ((i0, i1, . . . , in−1)

π, in, in+1, . . .) .

It is easy to see that S(∂T, n) ≤ S(∂T, k) for n ≤ k. Let us define the
subgroup S(∂T ) of Homeo ∂T as the union of the subgroups S(∂T, n),
n ∈ N.

Let A(∂T, n) ≤ S(∂T, n) be the subgroup coinciding with the alter-
nating group Alt (Vn). Clearly, A(∂T, n) ≤ A(∂T, k) for n ≤ k. Let us
define the subgroup A(∂T ) ≤ Homeo ∂T as the union of the subgroups
A(∂T, n) for n ∈ N.

For the groups A(∂TΘ) and S(∂TΘ), let us define characteristics as the
supernatural (Steinitz) number Ω(Θ) =

∏∞
i=0 ai, where Θ = (a0, a1, . . .)

is the spherically index of the spherically homogeneous tree TΘ.
We will use the following results.

Theorem 1.1 ([LS03] Proposition 10, [LS05] Theorem 2). Let TΘ be a
spherically homogeneous tree. Every automorphism of the group S(∂TΘ)
is locally inner and

AutA(∂TΘ) ≃ AutS(∂TΘ).

Theorem 1.2 ([Rub89] Corollary 3.13c). Let Xi be locally compact Haus-
dorff spaces without isolated points, let Gi be subgroups of HomeoXi and
for every open set D ⊆ Xi, x ∈ D and i = 1, 2 the set {g(x) | g ∈
Gi and restriction of g on Xi\D is identity} be nonempty and somewhere
dense. If φ : G1 → G2 is an isomorphism then there is a homeomorphism
h : X1 → X2 such that for every g ∈ G1 the equality φ(g) = hgh−1 holds.
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The space ∂T is a compact Hausdorff space, since it is a direct product
of compact Hausdorff spaces. Let D be an open subset of ∂T and let
x ∈ D. There exists v ∈ V (T ) such that x ∈ ∂Tv ⊆ D. The subgroup
A(∂Tv) ≤ A(∂T ) is the maximal subgroup acting trivially outside ∂Tv.
Every orbit of the action of A(∂Tv) on ∂Tv is dense, hence we get the
following result.

Lemma 1.3. Let T be a spherically homogeneous tree. The space ∂T is
a compact Hausdorff space without isolated points, and the groups S(∂T )
and A(∂T ) satisfy conditions of Theorem 1.2.

2. Diagonal embeddings

Definition 1 ([Zal91]). An embedding d of a transitive permutation group
(G,X) into a permutation group (H,Y ) is called diagonal if the restriction
of d(G) onto every G-orbit of length more than 1 is isomorphic to (G,X)
as a permutation group.

A diagonal embedding is called strictly diagonal if the length of every
orbit of the image d(G) on the set Y is greater than 1.

We say that the group G is a (strictly)diagonal direct limit of groups
if G is the union of an ascending chain of permutation groups Gi (i ∈ N)
where all inclusions Gi ⊂ Gi+1 are (strictly) diagonal. It is shown in [LS03]
that for a spherically homogeneous tree T the groups S(∂T ) and A(∂T )
are strictly diagonal direct limits of symmetric and alternating groups
respectively. Namely, the inclusions S(∂T, n) ≤ S(∂T, n+ 1) are strictly
diagonal with respect to the natural action of these groups on Vn and
Vn+1.

Now we construct certain word trees such that (not necessary strictly)
diagonal direct limits of finite symmetric groups act on them naturally.
Let {Xi = {1, . . . , ni}}, {Yi−1 = {1, . . . , ki−1}} be two infinite sequences
of an alphabets (i ≥ 1). We take also a symbol “$” not contained in any
of these alphabets.

Consider the tree whose set of vertices is the set

{$$ . . . $
︸ ︷︷ ︸

l

| l ≥ 0} ∪
⋃

l≥0,m≥0

$$ . . . $
︸ ︷︷ ︸

l

YlXl+1Xl+2 . . . Xl+m,

where $$ . . . $
︸ ︷︷ ︸

l

YlXl+1Xl+2 . . . Xl+m = {$$ . . . $
︸ ︷︷ ︸

l

ylxl+1xl+2 . . . xl+m | yl ∈

Yl, xk ∈ Xk}. We may have Yl empty, then the corresponding sets

$$ . . . $
︸ ︷︷ ︸

l

YlXl+1 . . . Xl+m
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Figure 1:

will be also empty for all m.
The empty word is the root of the tree. Two words are connected by

an edge if and only if one is obtained from the other by appending one
letter to the right. Let us introduce the lexicographic order on the words.
The symbols in each alphabet are ordered in the natural way and

x1 < x2 < . . . < y0 < y1 < . . . < $,

for all xi ∈ Xi, yi−1 ∈ Yi−1, i ∈ N.
Let

χ = 〈(1, k0), (n1, k1), (n2, k2), . . .〉.

Let us denote the constructed tree Tχ (see Figure 1).
For every i ≥ 1 and v ∈ Vi(Tχ) the degree of v is equal to ni + 1 if

v 6= δ(i) (i.e. v /∈ δ) and is equal to ki+1 + 2 if v = δ(i), see Figure 1.
For arbitrary v ∈ Vi(Tχ) such that v 6= δ(i) the tree Tv is spherically
homogeneous with spherical index (ni, ni+1, . . .).

An end x ∈ ∂Tχ of the tree Tχ is encoded by a sequence

$$ . . . $
︸ ︷︷ ︸

l

ylxl+1xl+2 . . . ,

where l ≥ 0, yl ∈ Yl and xi ∈ Xi, or x is the end

δ = $$$ . . . .

Let S(χ, n) be the group of homeomorphisms of the ∂Tχ, which rigidly
permute the balls ∂Tv, v ∈ Vn(Tχ)\{δ(n)}. In other words, it is the group
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of homeomorphisms, which act trivially on the ball ∂Tδ(n) and act outside
of it by homeomorphism of the form

($$ . . . $ylxl+1 . . . xnxn+1 . . .)
π = ($$ . . . $ylxl+1 . . . xn)

πxn+1 . . . ,

where π is a permutation of the set Vn(Tχ) \ {δ(n)}. The permutation π
determines the homeomorphism uniquely and thus S(χ, n) is isomorphic
to the symmetric group Sym (Vn(Tχ) \ {δ(n)}). It is also obvious that
S(χ, n) ≤ S(χ, k) for n ≤ k. Let us define a subgroup Sχ ≤ Homeo ∂Tχ
as the union of the subgroups S(χ, n) for all n ∈ N.

The group Aχ is defined in the same way as Sχ, but using the alter-
nating groups A(χ, n) acting by even permutations of the nth level of the
tree.

Let S be the set of all infinite sequences

〈(1, k0), (n1, k1), (n2, k2), . . .〉

such that k0 > 0, ki ≥ 0, ni ≥ 1 for all i ≥ 1. Let S1 be the subset of S
such that k0 ≥ 2 and ni ≥ 2 for all i ∈ N. We assume also that n0 = k0
for our convenience.

Lemma 2.1. Let χ = 〈(1, k0), (n1, k1), (n2, k2), . . .〉 ∈ S . If ki = 0 for all
i ≥ 1, then Sχ ≃ S(∂TΘ) and Aχ ≃ A(∂TΘ), where TΘ is the homogeneous
tree of spherical index Θ = (k0, n1, n2, n3, . . .). Moreover, for all n we have
S(χ, n) ≃ S(∂TΘ, n) and A(χ, n) ≃ A(∂TΘ, n).

Proof. The trees Tχ and TΘ differ only by an additional infinite path δ
in Tχ. But the path δ is a fixed point of Sχ, hence we have the necessary
isomorphisms.

Let us define for χ = 〈(1, k0), (n1, k1), (n2, k2), . . .〉 ∈ S

r(χ, i) = |Vi+1(Tχ)| − 1 =

i∑

j=0

kjnj+1 . . . ni.

Let us also define the characteristics Ω(χ) for Sχ and Aχ as the supernat-
ural number

char(Sχ) = char(Aχ) = Ω(χ) =

∞∏

i=1

ni,

and the characteristic series

M(χ) =
∞∑

i=0

ki
n1 · · ·ni

. (1)
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A partial sum Mj(χ) (j ≥ 0) of the series M(χ) is equal to

Mj(χ) =

j
∑

i=0

ki
n1 · · ·ni

=
r(χ, j)

n1 · · ·nj
. (2)

We also consider γi(χ) :=Mi(χ)
−1 and

γ := lim
i→∞

Mi(χ)
−1.

Since 0 ≤Mi(χ) ≤Mi+1(χ), the number γ is well-defined. The number γ
is called the density index, following Baranov and Zhilinskii [BZ99].

Now we give a topological interpretation of the density index. In the
next two statements the symbol H is either A or S.

Proposition 2.2. Ifm is an Hχ-invariant Borel measure on ∂Tχ such that
m(∂Tv) = 1, where v ∈ V1\{δ(1)} and m({δ}) = 0, then m(∂Tχ) =M(χ).

Proof. Let m be an Hχ-invariant Borel measure on ∂Tχ and let m(∂Tv) =
1, where v ∈ V1 \ {δ(1)}. Then

m




⋃

v∈V1\{δ(1)}

∂Tv



 = k0 =M0(χ),

m




⋃

v∈V2\{δ(2)}

∂Tv



 = k0 +
k1
n1

=M2(χ),

. . .

m




⋃

v∈Vl\{δ(l)}

∂Tv



 = k0 +
k1
n1

+ · · ·+
kl−1

n1 · · ·nl−1
=Ml(χ).

Taking into account σ-additivity and

∂Tχ = {δ} ∪
∞⋃

l=1




⋃

v∈Vl\{δ(l)}

∂Tv \
⋃

v∈Vl−1\{δ(l−1)}

∂Tv



 ,

we get m(∂Tχ) =M(χ).

Corollary 2.3. The space ∂Tχ carries a finite Hχ-invariant measure m
if and only if the density index is strictly positive, i.e.,

γ =M(χ)−1 > 0.

In this case, if m(∂Tχ) = 1 and m({δ}) = 0, then
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1. γ = m(∂Tv), where v ∈ V1 \ {δ(1)}.

2. m(∂Tδ(l)) = 1− γMl(χ) → 0 for l → ∞.

Proof. If γ > 0, then existance of an Hχ-invariant probability measure
is an immediate corollary of Proposition 2.2. Let γ = 0, and suppose
there exists an Hχ-invariant probability measure m. Then Proposition 2.2
implies that m(∂Tv) = 0. Since m is Hχ-invariant, m(∂Tχ) = 0. We get a
contradiction finishing our proof.

Definition 2. Let χ1, χ2 be sequences from S. Let u, v be some positive
integers. We call the sequences χ1, χ2 (u, v)-commensurable if

1. uΩ(χ1) = vΩ(χ2);

2. the characteristic series M(χ1), M(χ2) are convergent or divergent
simultaneously;

3. if M(χ1) and M(χ2) are convergent, then vM(χ1) = uM(χ2);

4. sequences χ1 and χ2 have finitely or infinitely many nonzero members
ki simultaneously.

We call the sequences χ1, χ2 commensurable if there exist positive integers
u, v such that χ1, χ2 are (u, v)-commensurable.

We can change the first three conditions of the definition to equivalent
two conditions without mentioning u and v, namely:

1. Ω(χ1)/Ω(χ2) is a rational number;

2. if one of the series M(χ1) and M(χ2) is convergent, then the other
is convergent too, and

Ω(χ1)M(χ1) = Ω(χ2)M(χ2).

Lemma 2.4. Let χ ∈ S1. Then ∂Tχ \ {δ} is a locally compact Hausdorff
space without isolated points, and the actions of the groups Sχ and Aχ on
it satisfy the conditions of Theorem 1.2.

Proof. Consider the set

Uδ(i) = ∂Tδ(i) \ ∂Tδ(i+1).

It is a compact Hausdorff space, since it is a union of boundaries of a finite
number of spherically homogeneous trees. But ∂Tχ \ {δ} =

⋃

i≥0 Uδ(i),
hence ∂Tχ \ {δ} is a locally compact Hausdorff space. The group Aχ
contains the subgroup A(∂Tv) for every v ∈ V (Tχ)\{δ}, hence Aχ satisfies
the conditions of Theorem 1.2.



76 Diagonal direct limits

Let V be a subset of Vi(Tχ) for i > 0, and let H be one of the symbols
S or A. Consider the subgroup of all homeomorphisms of ∂Tχ which act
trivially outside ∂(V ) =

⋃

v∈V ∂Tv. Let us denote this subgroup H(∂(V )).
We also consider the rooted tree TV obtained by taking all the subtrees Tv
of Tχ for v ∈ V , and connecting them together by a root, so that the first
level of the tree TV is V1(TV ) = V . The group H(∂TV ) acting naturally
on ∂Tχ coincides with H(∂(V )).

If δ(i) /∈ V then H(∂(V )) is a strictly diagonal direct limit of symmetric
(resp. alternating) groups. In this case, if the tree Tχ is constructed using
the sequence

χ = 〈(1, k0), (n1, k1), (n2, k2), . . .〉 ∈ S,

then the characteristics of H(∂(V )) is |V | ·
∏∞
j=i nj .

Let us define the standard diagonal embedding u(r, s) : Sym(A) →֒
Sym(B), where A = {1, 2, . . . , n}, B = {1, 2, 3, . . . , nr+ s}, for n, r, s ∈ N,
as follows.

For α ∈ Sym(A), we set

(ri− k)u(r,s)(α) = riα − k if 0 ≤ k ≤ r − 1, i ≥ 1,

and

iu(r,s)(α) = i if nr + 1 ≤ i ≤ nr + s.

It is easy to verify that the map u(r, s) : α 7→ u(r, s)(α) is a diagonal
embedding of Sym(A) into Sym(B).

Note that the natural embedding of the subgroup S(χ, i) into the
subgroup S(χ, j) of Sχ, for j > i, is an example of a standard diagonal
embedding, if we number the sets Vi(Tχ) and Vj(Tχ) lexicographically.

Lemma 2.5. Denote M1 = {1, . . . ,m1}, M2 = {1, . . . ,m2}, and M3 =
{1, . . . ,m3}, where m2 = m1n1 + r1, m3 = m2n2 + r2 for some integers
ni > 0, ri ≥ 0, i = 1, 2.

Let

u(n1, r1) : Sym(M1) → Sym(M2),

u(n2, r2) : Sym(M2) → Sym(M3),

u(n1n2, n2r1 + r2) : Sym(M1) → Sym(M3)

be the standard diagonal embeddings.

Then

u(n1, r1)u(n2, r2) = u(n1n2, n2r1 + r2).
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Proof. Let us consider the sequence

χ = 〈(1,m1), (n1, r1), (n2, r2), (2, 0), (2, 0), . . .〉 ∈ S1 .

The bijections M1 → V1(Tχ) \ {δ(1)}, M2 → V2(Tχ) \ {δ(2)}, and M3 →
V3(Tχ) \ {δ(3)} induce isomorphisms Sym(M1) → S(χ, 1), Sym(M2) →
S(χ, 2), and Sym(M3) → S(χ, 3) respectively.

The embedding of S(χ, i) into S(χ, i+ 1) coincides with the standard
diagonal embedding u(ni, ri) (i = 1, 2), and the embedding of S(χ, 1)
in S(χ, 3) coincides with u(n1n2, n2r1 + r2). Hence u(n1, r1)u(n2, r2) =
u(n1n2, n2r1 + r2).

Lemma 2.6 ([KS98]). Let T1, T2 be spherically homogeneous rooted trees
such that

char(S(∂T1)) = char(S(∂T2)).

Then the groups S(∂T1) and S(∂T2) (resp., A(∂T1) and A(∂T2)) are
isomorphic.

Proof. Let us construct an isomorphism φ : S(∂T1) → S(∂T2). Since
characteristics of S(∂T1) and S(∂T2) are equal, for every i ≥ 1 there is li
such that |Vi(T1)| is a factor of |Vli(T2)|. We can assume that sequence
{li, i | ∈ N} is increasing.

Let φi = u
(
|Vli (T2)|

|Vi(T1)|
, 0
)

be the standard strictly diagonal embedding

of S(∂T1, i) into S(∂T2, li), i ≥ 1.
The next diagram is commutative for all 1 ≤ i < j by Lemma 2.5

S(∂T1, i)
ψ1(i,j)
−−−−→ S(∂T1, j)

φi



y



yφj

S(∂T2, li)
ψ2(li,lj)
−−−−−→ S(∂T2, lj)

where ψ1(i, j) and ψ2(li, lj) are the diagonal embeddings induced by
inclusions of corresponding groups into S(∂T1) and S(∂T2), respectively.
Consequently, there is an isomorphism φ :

⋃

i S(∂T1, i) →
⋃

i φi(S(∂T1, i)),
which is equal to the inductive limit lim→ φi.

Since
⋃

i S(∂T1, i) = S(∂T1), we need to prove that
⋃

j φi(S(∂T1, i)) =
S(∂T2). The characteristics of S(∂T1) and S(∂T2) are equal, therefore for
every k ≥ 0 there is i ≥ 0 such that |Vk(T2)| is a divisor of |Vi(T1)|. Then
φ(S(∂T1, i)) ≥ S(∂T2, k) by Lemma 2.5. Hence, φ is an isomorphism of
S(∂T1) and S(∂T2).

Let us call the above constructed isomorphism φ : S(∂T1) → S(∂T2)
canonical.
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Lemma 2.7. Let T1, T2 be spherically homogeneous rooted trees such that
S(∂T1) ≃ S(∂T2). We assume that vertices of every level of T1 and T2 are
numbered in the lexicographic order. Let V1 be the subset of the first in
vertices of Vn(T1), let V2 be the subset of the first jk vertices of Vk(T2),
and suppose that S(∂(V1)) ≃ S(∂(V2)). Let φ : S(∂T1) → S(∂T2) be
the canonical isomorphism. Then restriction of φ onto S(∂(V1)) is an
isomorphism of S(∂(V1)) with S(∂(V2)).

Proof. It follows from construction of canonical isomorphism.

Since the canonical isomorphism has the properties required for Lemma 2.7,
we can prove the following lemma by restricting the isomorphism onto
the subgroups A(∂T1) < S(∂T1) and A(∂T2) < S(∂T2).

Lemma 2.8. Let T1, T2 be spherically homogeneous rooted trees such that
A(∂T1) ≃ A(∂T2). We assume that the vertices of every level of T1 and
T2 are numbered in the lexicographic order. Let V1 be the set of the first
in vertices of Vn(T1), let V2 be the set of the first jk vertices of Vk(T2),
and suppose that A(∂(V1)) ≃ A(∂(V2)). Then there is an isomorphism
ψ : A(∂T1) → A(∂T2) such that its restriction onto A(∂(V1)) is an iso-
morphism of A(∂(V1)) with A(∂(V2)).

The following is straightforward.

Lemma 2.9. 1. Let f(r, s) be a diagonal embedding of Sym(n) into
Sym(nr+ s) with s fixed points. Then the subgroups f(r, s)(Sym(n))
and u(r, s)(Sym(n)) are conjugate in Sym(nr + s).

2. Let h(r, s) be a diagonal embedding of Alt(n) into Alt(nr+ s) with s
fixed points. Then the subgroups h(r, s)(Alt(n)) and u(r, s)(Alt(n))
are conjugate in Sym(nr + s).

Every diagonal direct limit H = lim((Gi, Xi), φi) of symmetric (alter-
nating) groups has a sequence from S naturally corresponding to it. Let
us set ni to be equal to the number of the natural orbits of (Gi, Xi) on
Xi+1, and ki to be the number of the trivial orbits of the action of (Gi, Xi)
on Xi+1. We put k0 = n0 = |X1|.

Proposition 2.10. Every diagonal direct limit H of symmetric (alternat-
ing) groups is isomorphic to the standard diagonal limit Sχ (resp. Aχ),
where χ is corresponding sequence.

Proof. It follows from Lemma 2.3 of [Bur68] and Lemma 2.9 of our paper.
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3. Classification

Theorem 3.1. Let χ ∈ S. Then

1. Sχ = Aχ if and only if Ω(χ) is divisible by 2∞;

2. if Ω(χ) is not divisible by 2∞, then [Sχ : Aχ] = 2;

3. Aχ is the commutator subgroup Sχ;

4. Aχ is a simple group.

Proof. 1. If Ω(χ) is divisible by 2∞, then for every n ≥ 1 there is k > n
such that A(χ, k) > S(χ, n), thus Sχ = Aχ.

If Ω(χ) is not divisible by 2∞, then there is n ≥ 1 such that for every
k > n the group A(χ, k) does not contain any odd permutations from
S(χ, n). So, Sχ 6= Aχ.

2. For every n the group A(χ, n) is an index 2 subgroup of S(χ, n).
Since χ is odd, we have Sχ 6= Aχ, and [Sχ : Aχ] = 2.

Statement (3) is a corollary of a standard statement on verbal sub-
groups of locally finite groups. Statement (4) is a corollary of Theorem 4.1
in [KW73], p. 112.

Theorem 3.2. Let χ1, χ2 ∈ S. The direct limits of finite symmetric (al-
ternating) groups corresponding to the sequences χ1 and χ2 are isomorphic
if and only if the sequences χ1 and χ2 are commensurable.

Note that this theorem is completely analogous to the J. Dixmier’s
classifications [Dix67] of diagonal direct limits of C∗-algebras.

We need some auxiliary statements.

Proposition 3.3. Let χ = 〈(1, k0), (n1, k1), (n2, k2), . . .〉 ∈ S. The direct
limit of finite symmetric (alternating) groups with corresponding sequence
χ is

1. isomorphic to Sχ′ (resp., Aχ′) for some χ′ ∈ S1 commensurable with
χ, if and only if ni ≥ 2 for infinitely many i ∈ N;

2. finite symmetric (alternating) group if and only if ni ≤ 2 and ki = 0
for all but a finite number of indices i ∈ N;

3. finitary symmetric (alternating) group if and only if ni ≤ 2 for all
but a finite number of indices i, and ki ≥ 1 for infinitely many i ∈ N.
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Proof. If ni ≥ 2 for infinitely many i, then we can consider a subsequence
S(χ, li) (or of A(χ, li)) such that the correspondent subsequence χ′ belongs
to S1.

Obviously, then Sχ ≃ Sχ′ and Aχ ≃ Aχ′ . It is sufficient to use the
formula (2) for partial sums of M(χ1) and M(χ2) in order to prove
commensurability of χ and χ′.

It is straightforward that if we have ni ≥ 2 only for finitely many
indices i, then conditions (2) or (3) hold, accordingly to the number of
indices for which ki ≤ 0.

Lemma 3.4. If χ ∈ S1, then the groups Sχ and Aχ are isomorphic neither
to the finitary symmetric, nor to the finitary alternating groups.

Proof. One can find elements g ∈ Aχ whose centralizers CAχ(g) contain
direct products of index at most 2 of two infinite subgroups. Centralizers
of elements of the finitary alternating group does not have this property.
Thus, Aχ and the finitary alternating group are not isomorphic. The
symmetric groups are treated similarly.

The following notation is used in statements 3.5–3.10. The symbol H
denotes either A or S (the alternating and symmetric group, respectively).
The sequences χ1, χ2 ∈ S1 are such that ∂Tχ1

and ∂Tχ2
are homeomorphic,

and the homeomorphism h : ∂Tχ1
→ ∂Tχ2

induces an isomorphism
φ : Hχ1

→ Hχ2
, i.e., φ(g) = hgh−1 for every g ∈ Hχ1

. Let mi be an Hχi
-

invariant Borel measure on ∂Tχi
and mi({δi}) = 0. To avoid ambiguity,

let us denote the subtree of Tχi
with the root at v by T iv.

Lemma 3.5. For every ball ∂T 1
v (v ∈ V (Tχ1

) \ {δ1}) there exist l and
k such that the set h(∂T 1

v ) is a disjoint union of the balls ∂T 2
vi

for
{v1, . . . , vk} ⊂ Vl(Tχ2

) \ {δ1(l)}.

Proof. Since Hχi
fixes δi and does not fix any other end, the set h(∂T 1

v )
does not contain any ball ∂T 2

w such that w ∈ δ2. Since ∂T 1
v is compact

set, the number k is finite.

Lemma 3.6. If the measures mi are Hχi
-invariant and such thatmi(∂T

i
v) =

1 for v ∈ V1, and mi(δ) = 0, for i = 1, 2, then the homeomorphism h
preserves the measures mi, i.e., the push forward measure h∗(m1) is equal
to m2.

Proof. It is easy to prove that mi are uniquely defined by the conditions
of the lemma (see the proof of Proposition 2.2). But h∗(m1) is also such a
measure on ∂Tχ2

, hence h∗(m1) = m2, and h is measure-preserving.
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Corollary 3.7. If m1(∂Tχ1
) and m2(∂T

2
v ) (for any v ∈ V (Tχ2

)) are finite,
then m2(∂Tχ2

) is finite too.

Theorem 3.8 ([KS98]). Let χi ∈ S1 be such that Tχi
\{δi} are spherically

homogeneous trees (i = 1, 2). Then Hχ1
and Hχ2

are isomorphic if and
only if

char(Hχ1
) = char(Hχ2

).

Proof. Let φ : Hχ1
→ Hχ2

be an isomorphism. The spaces ∂Tχ1
and ∂Tχ2

are homeomorphic. Then by Theorem 1.2, Lemmata 1.3 and 2.1 there
exists a homeomorphism h : ∂Tχ1

→ ∂Tχ2
such that φ(g) = hgh−1 for

every g ∈ Hχ1
. Let mi be the probabilistic Hχi

-invariant measure on ∂Tχi

for i = 1, 2. Such measures exist by Lemma 2.3.
Let

h(∂T 1
v ) =

k⋃

i=1

∂T 2
vi
,

where {v1, . . . , vk} ∈ Vl(Tχ2
)\{δ2(l)}, v ∈ Vs(Tχ1

)\{δ1(s)}. By Lemma 3.6,

we have m1(∂T
1
v ) = m2

(
⋃k
i=1 ∂T

2
vi

)

. Taking into account transitivity of

the action ofHχ1
on Vs(Tχ1

)\{δ1(s)}, we get that k0,1n1,1 · · ·ns−1,1 divides
k0,2n1,2 · · ·nl−1,2. Since s is arbitrary, we have proved that char(Hχ1

)
divides char(Hχ2

). It is easy to see that char(Hχ2
) also divides char(Hχ1

).
Hence,

char(Hχ1
) = char(Hχ2

).

Implication in the other direction was proved in Lemma 2.6.

Lemma 3.9. Let

h(∂T 1
v ) =

k⋃

i=1

∂T 2
vi
,

where {v1, . . . , vk} ∈ Vl(Tχ2
) \ {δ1(l)}, v ∈ V1(Tχ1

) \ {δ1(1)}. Then

Ω(χ1) =
k

n1,2 · · ·nl−1,2
Ω(χ2).

Proof. The subgroup H1 = H(∂Tv) < Hχ1
is the largest subgroup acting

trivially outside of ∂T 1
v . Therefore, the largest subgroup acting trivially

outside of
⋃k
i=1 ∂T

2
vi

, i.e., H2 = H(∂{vi | i = 1, . . . , k}), coincides with
φ(Hχ1

). Since the groups Hχ1
and Hχ2

are isomorphic, we have, by Theo-
rem 3.8,

char(Hχ1
) = char(Hχ2

).

Taking into account
Ω(χ1) = char(Hχ1

)
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and
Ω(χ2) =

n1,2 · · ·nl−1,2

k
char(Hχ2

)

we get

Ω(χ1) =
k

n1,2 · · ·nl−1,2
Ω(χ2).

Lemma 3.10. Suppose that γi < Ml(χi)
−1 for all natural numbers l and

i = 1, 2 and for all γ1 > 0, γ2 > 0. Suppose also that h(∂T 1
v ) =

⋃k
i=1 ∂T

2
vi
,

where {v1, . . . , vk} ∈ Vl(Tχ2
), v ∈ V1(Tχ1

) \ {δ1(1)}. Then

γ1 =
n1,2 · · ·nl−1,2

k
γ2.

Proof. We may assume that m1(∂Tχ1
) = m2(∂Tχ2

) = 1. By Lemma 3.6,

γ1 = m1(∂T
1
v ) = m2

(
k⋃

i=1

∂T 2
vi

)

= k m2(∂T
2
vi
).

We also have γ2 = m2(∂T
2
vi
)n1,2 · · ·nl−1,2, hence

γ1 =
n1,2 · · ·nl−1,2

k
γ2.

Lemma 3.11. Let u be a positive integer. Let χ1, χ2 ∈ S1 be (u, 1)-
commensurable sequences. Then Sχ1

≃ Sχ2
and Aχ1

≃ Aχ2
.

Proof. Let us show that there is an increasing sequence {li} such that for
every j ≥ 0 the number

tlj = r(χ1, j)n1,2 · · ·nlj ,2(un1,1 · · ·nj,1)
−1

is an integer and less than or equal to |Vlj (Tχ2
) \ {δ2(lj)}| = r(χ2, lj).

Since uΩ(χ1) = Ω(χ2) there is a positive integer l′0 such that for
arbitrary l0 ≥ l′0 the number u is a factor of n1,2 · · ·nl0,2. We can choose
l0 ≥ l′0 such that ur(χ2, l0) ≥ n1,2 · · ·nl0,2k0,1, because for any partial sum
of M(χ1) there is a greater or equal partial sum of uM(χ2). Hence

|Vl0(Tχ2
) \ {δ2(l0)}| = r(χ2, l0) ≥ n1,2 · · ·nl0,2u

−1k0,1.

Let j ≥ 1. Since uΩ(χ1) = Ω(χ2) there is an integer l′j > lj−1 such that
for arbitrary lj ≥ l′j the product n1,1 · · ·nj,1u is a factor of n1,2 · · ·nlj ,2.
We can choose lj ≥ l′j such that

ur(χ2, lj)

n1,2 · · ·nlj ,2
≥

r(χ1, j)

n1,1 · · ·nj,1
,
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because for an arbitrary partial sum of M(χ1) there is a greater or equal
partial sum of uM(χ2). Then

|Vlj (Tχ2
)\{δ2(lj)}| = r(χ2, lj) ≥ tlj = r(χ1, j)n1,2 · · ·nlj ,2(un1,1 · · ·nj,1)

−1.

Let V j
lj
(Tχ2

) = {v
lj
1 , . . . , v

lj
tlj
} be the set of the first tlj vertices of the

level number lj of Tχ2
. Let us denote the sets ∂(Vj(Tχ1

) \ {δ1(j)}) and

∂(V j
lj
(Tχ2

)) by U1
j and U2

lj
, respectively. Since

char(H(U1
j )) =

r(χ1, j)Ω(χ1)

n1,1 · · ·nj,1
=

tljΩ(χ2)

n1,2 · · ·nlj ,2
= char(H(U2

lj
)),

by definition of tlj , the groups H(U1
j ) and H(U2

lj
) are isomorphic for all

j ≥ 0. Let φj be the canonical isomorphism of H(U1
j ) with H(U2

lj
).

We have
tlj ≥ tlj−1

nlj−1+1,2 · · ·nlj ,2,

since by the definition of tlj , this inequality is equivalent to r(χ1, j) ≥
r(χ1, j − 1)nj , which is always true. Hence, the inclusion

U2
lj−1

⊆ U2
lj

holds, and therefore
H(U2

lj−1
) ≤ H(U2

lj
).

It follows from Lemma 2.7 that the restriction of φj ontoH(U1
j−1) coincides

with φj−1.
Consequently, we have the following commutative diagram

H(U1
1 ) −−−−→ H(U1

2 ) −−−−→ H(U1
3 ) −−−−→ . . .



yφ1



yφ2



yφ3

H(U2
l1
) −−−−→ H(U2

l2
) −−−−→ H(U2

l3
) −−−−→ . . .

and we get in the limit an isomorphism

φ :
⋃

j≥0

H(U1
j ) →

⋃

j≥0

H(U2
lj
).

We have ⋃

j≥0

H(U1
j ) = Sχ1

,

therefore, it remains to prove that
⋃

j≥0

H(U2
lj
) = Sχ2

.
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It is sufficient to show that for every i ∈ N there is j ∈ N such that

tlj ≥ r(χ2, i)ni+1,2 · · ·nlj ,2, (3)

since it will imply

φ(H(∂(Vj(Tχ1
)))) ≥ H(∂(Vi(Tχ2

))).

For an arbitrary partial sum of uM(χ2) there is a greater or equal
partial sum of M(χ1). That is, for all i ∈ N there is j ∈ N such that the
inequality

r(χ1, j)

n1,1 · · ·nj,1
≥

ur(χ2, lj)

n1,2 · · ·nlj ,2

holds, which implies, by the definition of tlj , the inequality (3).

Proof of Theorem 3.2. We will prove the theorem for the case of symmetric
groups. The proof for the alternating groups is similar.

By Proposition 2.10 it is sufficient to prove the theorem for the groups
of the form Sχ1

and Sχ2
. The group Sχi

is finite if and only if Ω(χi) ∈ N,
and M(χi) is convergent.

In this case we have

Sχi
≃ Sym(Ω(χi)M(χi)), (i = 1, 2).

Putting u = Ω(χ2) and v = Ω(χ1), we obtain the necessity condition.
Sufficiency follows from the equality

Ω(χ1)M(χ1) = Ω(χ2)M(χ2),

which we get by multiplying uΩ(χ1) = vΩ(χ2) and vM(χ1) = uM(χ2).
The group S(χi) is infinite for a sequence χi ∈ S \S1 if and only if

exactly one of the following conditions holds

1. Ω(χi) ∈ N and M(χi) is divergent (i = 1, 2);

2. Ω(χi) /∈ N.

In the first case the group Sχi
is isomorphic to the finitary symmetric

group on the set N. According to Proposition 3.3, if χ1 ∈ S is such that
Ω(χ1) ∈ N,M(χ1) is divergent, and the groups Sχ1

and Sχ2
are isomorphic,

then χ2 ∈ S has the same properties.
In the second case, according to Proposition 3.3, without loss of gen-

erality, we can assume that χ1, χ2 ∈ S1.
Let us prove the “if” direction of the theorem, i.e., that Sχ1

≃ Sχ2

implies commensurability of the sequences χ1 and χ2.
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If the series M(χ1) and M(χ2) are divergent, then the members ki,1
of χ1 are positive for infinitely many i, and the same is true for χ2. The
converse statements are also true. Hence, if the series M(χ1) and M(χ2)
are not convergent, then commensurability of χ1 and χ2 follows from
Lemma 3.9.

Suppose that one of the series, for instance M(χ1), is convergent. Let
h(∂T 1

v ) =
⋃k
i=1 ∂T

2
vi
, where {v1, . . . , vk} ∈ Vl(Tχ1

), v ∈ V1(Tχ1
) \ {δ1(1)}.

By Lemma 3.9, we have

n1,2 · · ·nl−1,2Ω(χ1) = kΩ(χ2).

Then the following cases are possible

(1) γi < Ml(χi)
−1 for all natural l and i = 1, 2, and

a) γ1 > 0 and γ2 > 0, or

b) γ1 > 0 and γ2 = 0;

(2) γi =Ml(χi)
−1 for both i = 1, 2, and for some l;

(3) γ1 is such as in the first case, and γ2 is such as in the second case.

Let us consider at first case (1). If γ1 > 0 and γ2 > 0, then we may
assume that m1(X1) = m2(X2) = 1. By Lemma 3.10, we have then

kγ1 = n1,2 · · ·nl−1,2γ2.

If γ1 > 0 and γ2 = 0, then by Corollary 3.7, the groups Sχ1
and Sχ2

are not isomorphic.
In the case (2) both groups are inductive limits with strictly diagonal

embeddings, and by Theorem 3.8, we have

r(χ1, l)

n1,1 · · ·nl,1
Ω(χ1) =

r(χ2, l)

n1,2 · · ·nl,2
Ω(χ2).

Since M(χ1) =
r(χ1,l)

n1,1···nl,1
and M(χ2) =

r(χ2,l)
n1,2···nl,2

, we have that χ1 and χ2

are (u, v)-commensurable for

u = r(χ1, l)n1,2 · · ·nl,2, v = r(χ2, l)n1,1 · · ·nl,1.

In case (3) the spaces are not homeomorphic, since one is compact and
the other is not. Then, by Theorem 1.2, the groups are not isomorphic.

We have shown that in all three cases the isomorphism of the groups
Sχ1

and Sχ2
implies commensurability of χ1 and χ2.

Let us prove the “only if” implication of the theorem. Suppose that
χ1, χ2 ∈ S1 are (u, v)-commensurable.
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Let us define χ3 ∈ S1 such that χ1 and χ3 are (1, v)-commensurable.
Let m be such that v is a divisor of

∏m
i=1 ni,1. Let n1,3 = v−1

∏m
i=1 ni,1

and ni,3 = nm+i−1,1 for i > 1. Then vΩ(χ3) = Ω(χ1). Let k0,3 = vk0,1,

k1,3 =
m∏

i=1

ni,1

m∑

i=1

ki,1
n1,1 · · ·ni,1

,

ki,3 = km+i−1,1 for i > 1. Then Mi(χ3) = vMm+i−1(χ1) for i > 0.
Therefore χ1 and χ3 are (1, v)-commensurable. Then χ2 and χ3 are (1, u)-
commensurable.

By the Lemma 3.11 we have that the pairs of groups Sχ1
, Sχ3

, and
Sχ2

, Sχ3
are isomorphic. So, the groups Sχ1

and Sχ2
are isomorphic.
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