Diagonal direct limits of finite symmetric and alternating groups

Y. V. Lavrenyuk, V. V. Nekrashevych and V. I. Sushchansky

Abstract. Diagonal direct limits of permutation groups are studied using their representations by homeomorphisms of the boundary of rooted trees.

We describe a new method of classification of such permutation groups, and use this method to find a complete classification of diagonal direct limits of symmetric and alternating groups up to isomorphisms.

Introduction

Classification of simple countable locally finite groups is one of the central problems of the theory of locally finite groups. Big progress in this direction is made in the works of U. Meierfrankenfeld and S. Delcroix [Mei95, DM02]. It is shown there that every simple countable locally finite group belongs to one of four classes. The first class is the class of finitary groups. The other three are defined using the properties of Kegel covers of the groups. One of these three classes is the class of the so-called groups of 1-type. An important part of the study of this class is classification of locally finite groups which are unions of an ascending chain of finite alternating groups (see [Har95]). Classification of such unions is also closely related to the study of group rings with "small" lattices of ideals and asymptotic theory of characters. A. E. Zalesski has considered in [Zal91] a class of inductive

[^0]limits of finite symmetric and alternating groups that are defined by the so-called diagonal embeddings. He proved that the lattice of ideals of the group rings of such groups is a chain, and has formulated several problems for further investigation (see also [Zal98], [HZ97]). In particular, a natural question on classification of such groups was posed.

Note that inductive limits of finite-dimensional C^{*}-algebras (so-called $A F$-algebras) is already a classical part of the theory of C^{*}-algebras, and its classification was accomplished by G. Glimm [Gli60] for a partial case of the so-called UHF-algebras, and by J. Dixmier [Dix67] and G. A. Elliott [Ell76] in more general situations.

Inductive limits of finite-dimensional Lie algebras with diagonal embeddings were classified in the work of A. A. Baranov and A. G. Zhilinskii [BZ99].

In the work of N. V. Kroshko and V. I. Sushchansky [KS98] a complete classification of the inductive limits of finite symmetric and alternating groups with strictly diagonal embeddings was given. The classification is formulated in the same terms as the classification of the UHF-algebras by Glimm. The study of such inductive limits of groups was continued in [LS03]. In particular, it was shown that the inductive limits of finite symmetric groups with strictly diagonal embeddings appear naturally in the study of hierarchomorphisms of spherically homogeneous rooted trees.

In [LN07] the first and the second named authors gave a complete classification of the inductive limits of direct products of finite alternating groups that are simple. It was shown that two such groups are isomorphic if and only if the corresponding (i.e., having the same Bratteli diagram) $A F$-algebras are isomorphic.

Our paper develops classification techniques based on different ideas. We use topological properties of the boundaries of rooted trees and properties of Berhoulli measures on them. Using these techniques, we classify the inductive limits of finite symmetric and alternating groups with respect to arbitrary diagonal embeddings without using theory of C^{*}-algebras and K-theory. We think that the developed methods are of independent interest. It may be useful in solving classification problems in other categories with inductive limits.

1. Rooted trees

We will study diagonal direct limits of finite symmetric or alternating groups using a representation of these groups by homeomorphisms of the boundaries of rooted trees. We start with introduction of all the notions needed for definition of such representations.

Let T be a locally finite rooted tree with the root vertex v_{0}. Let us denote by $V(T)$ the set of vertices of T, and by $E(T)$ its set of edges. For every two vertices u, v of the tree T define the distance between u and v, denoted $d(u, v)$, to be equal to the length of the shortest path connecting them.

For a rooted tree T with the root v_{0} and an integer $n \geq 0$, define the level number n (the sphere of radius n) to be the set

$$
V_{n}(T)=\left\{v \in V(T): d\left(v_{0}, v\right)=n\right\} .
$$

We say that a vertex v of the tree T lies under a vertex w, if the path connecting the vertex v and the root contains the vertex w. Let us denote by T_{v} the subtree consisting of all vertices that lie under the vertex v with the root v.

An end of a rooted tree is an infinite path without repetitions which starts in the root. Let us denote by ∂T the boundary of T, i.e., the set of all the ends of the tree T. For $V \subseteq V(T)$ put

$$
\partial(V)=\bigcup_{v \in V} \partial T_{v}
$$

where ∂T_{v} is the boundary of the subtree T_{v}, i.e., the set of ends passing through v.

For $x \in \partial T$, denote by $x(m)$ the vertex from the level $V_{m}(T)$ such that x goes through $x(m)$. Let us introduce a natural ultrametric on ∂T putting

$$
\rho\left(\gamma_{1}, \gamma_{2}\right)=1 /(n+1)
$$

where n is the length of the longest common part of the paths γ_{1} and γ_{2}. The topology introduced by the metric ρ is compact, totally disconnected, and has a base of open sets $\left\{\partial T_{v}\right\}_{v \in V(T)}$. Note that ∂T_{v} is a ball of radius $1 /(n+1)$, where n is such that $v \in V_{n}(T)$.

If degree of a vertex $v \in V_{n}(T)$ depends only on n, then the tree T is called spherically homogeneous. Spherical index of a spherically homogeneous tree T is the sequence

$$
\Theta=\left(a_{0}, a_{1}, \ldots\right)
$$

where a_{0} is degree of the root and $a_{n}+1$ are degrees of any vertex of the nth level (i.e., a_{n} is the number of "childs" of a vertex of nth level). We assume throughout the paper that $a_{n} \geq 2$ for all n.

Let T be a spherically homogeneous rooted tree with root v_{0} and the spherical index Θ. The tree T is isomorphic to the tree T_{Θ} whose set of vertices is the set of all finite sequences $\left(i_{0}, i_{1}, \ldots, i_{n-1}\right), n \geq 1$,
such that $i_{k} \in\left\{1,2, \ldots, a_{k}\right\}$. We include also the empty sequence \varnothing corresponding to $n=0$. Two vertices are adjacent if and only if they are of the form $\left(i_{0}, \ldots, i_{n-1}\right),\left(i_{0}, \ldots, i_{n-1}, i_{n}\right)$. We order the vertices of every level lexicographically.

Then every end $x \in \partial T$ is identified with an infinite sequence $\left(i_{0}, i_{1}, \ldots\right)$, where $1 \leq i_{k} \leq a_{k}$ for all $k \geq 0$. Namely, such a sequence is identified with the end

$$
\varnothing,\left(i_{0}\right),\left(i_{0}, i_{1}\right),\left(i_{0}, i_{1}, i_{2}\right), \ldots
$$

It is easy to see that this identification is a homeomorphism between ∂T and the direct product $\prod_{k \geq 0}\left\{1,2, \ldots, a_{k}\right\}$ of discrete sets.

Let us denote by Homeo $\partial \bar{T}$ the group of all homeomorphisms of ∂T. For $n \geq 0$, denote by $S(\partial T, n)$ the group of all homeomorphisms of the boundary ∂T which permute the balls T_{v}, for $v \in V_{n}(T)$ in a rigid manner, i.e., which change at most the first n coordinates of an end $\left(i_{0}, i_{1}, \ldots\right)$. The group $S(\partial T, n)$ is naturally isomorphic to the symmetric group $\operatorname{Sym}\left(V_{n}\right)$, where a permutation $\pi \in \operatorname{Sym}\left(V_{n}\right)$ acts on the ends by the rule

$$
\left(i_{0}, i_{1}, \ldots\right)^{\pi}=\left(\left(i_{0}, i_{1}, \ldots, i_{n-1}\right)^{\pi}, i_{n}, i_{n+1}, \ldots\right)
$$

It is easy to see that $S(\partial T, n) \leq S(\partial T, k)$ for $n \leq k$. Let us define the subgroup $S(\partial T)$ of Homeo ∂T as the union of the subgroups $S(\partial T, n)$, $n \in \mathbb{N}$.

Let $A(\partial T, n) \leq S(\partial T, n)$ be the subgroup coinciding with the alternating group Alt $\left(V_{n}\right)$. Clearly, $A(\partial T, n) \leq A(\partial T, k)$ for $n \leq k$. Let us define the subgroup $A(\partial T) \leq$ Homeo ∂T as the union of the subgroups $A(\partial T, n)$ for $n \in \mathbb{N}$.

For the groups $A\left(\partial T_{\Theta}\right)$ and $S\left(\partial T_{\Theta}\right)$, let us define characteristics as the supernatural (Steinitz) number $\Omega(\Theta)=\prod_{i=0}^{\infty} a_{i}$, where $\Theta=\left(a_{0}, a_{1}, \ldots\right)$ is the spherically index of the spherically homogeneous tree T_{Θ}.

We will use the following results.
Theorem 1.1 ([LS03] Proposition 10, [LS05] Theorem 2). Let T_{Θ} be a spherically homogeneous tree. Every automorphism of the group $S\left(\partial T_{\Theta}\right)$ is locally inner and

$$
\text { Aut } A\left(\partial T_{\Theta}\right) \simeq \operatorname{Aut} S\left(\partial T_{\Theta}\right)
$$

Theorem 1.2 ([Rub89] Corollary 3.13c). Let X_{i} be locally compact Hausdorff spaces without isolated points, let G_{i} be subgroups of Homeo X_{i} and for every open set $D \subseteq X_{i}, x \in D$ and $i=1,2$ the set $\{g(x) \mid g \in$ G_{i} and restriction of g on $X_{i} \backslash D$ is identity\} be nonempty and somewhere dense. If $\phi: G_{1} \rightarrow G_{2}$ is an isomorphism then there is a homeomorphism $h: X_{1} \rightarrow X_{2}$ such that for every $g \in G_{1}$ the equality $\phi(g)=h g h^{-1}$ holds.

The space ∂T is a compact Hausdorff space, since it is a direct product of compact Hausdorff spaces. Let D be an open subset of ∂T and let $x \in D$. There exists $v \in V(T)$ such that $x \in \partial T_{v} \subseteq D$. The subgroup $A\left(\partial T_{v}\right) \leq A(\partial T)$ is the maximal subgroup acting trivially outside ∂T_{v}. Every orbit of the action of $A\left(\partial T_{v}\right)$ on ∂T_{v} is dense, hence we get the following result.

Lemma 1.3. Let T be a spherically homogeneous tree. The space ∂T is a compact Hausdorff space without isolated points, and the groups $S(\partial T)$ and $A(\partial T)$ satisfy conditions of Theorem 1.2.

2. Diagonal embeddings

Definition 1 ([Zal91]). An embedding d of a transitive permutation group (G, X) into a permutation group (H, Y) is called diagonal if the restriction of $d(G)$ onto every G-orbit of length more than 1 is isomorphic to (G, X) as a permutation group.

A diagonal embedding is called strictly diagonal if the length of every orbit of the image $d(G)$ on the set Y is greater than 1 .

We say that the group G is a (strictly) diagonal direct limit of groups if G is the union of an ascending chain of permutation groups $G_{i}(i \in \mathbb{N})$ where all inclusions $G_{i} \subset G_{i+1}$ are (strictly) diagonal. It is shown in [LS03] that for a spherically homogeneous tree T the groups $S(\partial T)$ and $A(\partial T)$ are strictly diagonal direct limits of symmetric and alternating groups respectively. Namely, the inclusions $S(\partial T, n) \leq S(\partial T, n+1)$ are strictly diagonal with respect to the natural action of these groups on V_{n} and V_{n+1}.

Now we construct certain word trees such that (not necessary strictly) diagonal direct limits of finite symmetric groups act on them naturally. Let $\left\{X_{i}=\left\{1, \ldots, n_{i}\right\}\right\},\left\{Y_{i-1}=\left\{1, \ldots, k_{i-1}\right\}\right\}$ be two infinite sequences of an alphabets $(i \geq 1)$. We take also a symbol " $\$$ " not contained in any of these alphabets.

Consider the tree whose set of vertices is the set

$$
\{\underbrace{\$ \$ \ldots \$}_{l} \mid l \geq 0\} \cup \bigcup_{l \geq 0, m \geq 0} \underbrace{\$ \$ \ldots \$}_{l} Y_{l} X_{l+1} X_{l+2} \ldots X_{l+m},
$$

where $\underbrace{\$ \$ \ldots \$}_{l} Y_{l} X_{l+1} X_{l+2} \ldots X_{l+m}=\{\underbrace{\$ \$ \ldots \$}_{l} y_{l} x_{l+1} x_{l+2} \ldots x_{l+m} \mid y_{l} \in$ $\left.Y_{l}, x_{k} \in X_{k}\right\}$. We may have Y_{l} empty, then the corresponding sets

$$
\underbrace{\$ \$ \ldots \$}_{l} Y_{l} X_{l+1} \ldots X_{l+m}
$$

Figure 1:
will be also empty for all m.
The empty word is the root of the tree. Two words are connected by an edge if and only if one is obtained from the other by appending one letter to the right. Let us introduce the lexicographic order on the words. The symbols in each alphabet are ordered in the natural way and

$$
x_{1}<x_{2}<\ldots<y_{0}<y_{1}<\ldots<\$
$$

for all $x_{i} \in X_{i}, y_{i-1} \in Y_{i-1}, i \in \mathbb{N}$.
Let

$$
\chi=\left\langle\left(1, k_{0}\right),\left(n_{1}, k_{1}\right),\left(n_{2}, k_{2}\right), \ldots\right\rangle .
$$

Let us denote the constructed tree T_{χ} (see Figure 1).
For every $i \geq 1$ and $v \in V_{i}\left(T_{\chi}\right)$ the degree of v is equal to $n_{i}+1$ if $v \neq \delta(i)($ i.e. $v \notin \delta)$ and is equal to $k_{i+1}+2$ if $v=\delta(i)$, see Figure 1. For arbitrary $v \in V_{i}\left(T_{\chi}\right)$ such that $v \neq \delta(i)$ the tree T_{v} is spherically homogeneous with spherical index $\left(n_{i}, n_{i+1}, \ldots\right)$.

An end $x \in \partial T_{\chi}$ of the tree T_{χ} is encoded by a sequence

$$
\underbrace{\$ \$ \ldots \$}_{l} y_{l} x_{l+1} x_{l+2} \ldots
$$

where $l \geq 0, y_{l} \in Y_{l}$ and $x_{i} \in X_{i}$, or x is the end

$$
\delta=\$ \$ \$ \ldots
$$

Let $S(\chi, n)$ be the group of homeomorphisms of the ∂T_{χ}, which rigidly permute the balls $\partial T_{v}, v \in V_{n}\left(T_{\chi}\right) \backslash\{\delta(n)\}$. In other words, it is the group
of homeomorphisms, which act trivially on the ball $\partial T_{\delta(n)}$ and act outside of it by homeomorphism of the form

$$
\left(\$ \$ \ldots \$ y_{l} x_{l+1} \ldots x_{n} x_{n+1} \ldots\right)^{\pi}=\left(\$ \$ \ldots \$ y_{l} x_{l+1} \ldots x_{n}\right)^{\pi} x_{n+1} \ldots
$$

where π is a permutation of the set $V_{n}\left(T_{\chi}\right) \backslash\{\delta(n)\}$. The permutation π determines the homeomorphism uniquely and thus $S(\chi, n)$ is isomorphic to the symmetric group $\operatorname{Sym}\left(V_{n}\left(T_{\chi}\right) \backslash\{\delta(n)\}\right)$. It is also obvious that $S(\chi, n) \leq S(\chi, k)$ for $n \leq k$. Let us define a subgroup $S_{\chi} \leq$ Homeo ∂T_{χ} as the union of the subgroups $S(\chi, n)$ for all $n \in \mathbb{N}$.

The group A_{χ} is defined in the same way as S_{χ}, but using the alternating groups $A(\chi, n)$ acting by even permutations of the nth level of the tree.

Let \mathbf{S} be the set of all infinite sequences

$$
\left\langle\left(1, k_{0}\right),\left(n_{1}, k_{1}\right),\left(n_{2}, k_{2}\right), \ldots\right\rangle
$$

such that $k_{0}>0, k_{i} \geq 0, n_{i} \geq 1$ for all $i \geq 1$. Let \mathbf{S}_{1} be the subset of \mathbf{S} such that $k_{0} \geq 2$ and $n_{i} \geq 2$ for all $i \in \mathbb{N}$. We assume also that $n_{0}=k_{0}$ for our convenience.

Lemma 2.1. Let $\chi=\left\langle\left(1, k_{0}\right),\left(n_{1}, k_{1}\right),\left(n_{2}, k_{2}\right), \ldots\right\rangle \in \mathbf{S}$. If $k_{i}=0$ for all $i \geq 1$, then $S_{\chi} \simeq S\left(\partial T_{\Theta}\right)$ and $A_{\chi} \simeq A\left(\partial T_{\Theta}\right)$, where T_{Θ} is the homogeneous tree of spherical index $\Theta=\left(k_{0}, n_{1}, n_{2}, n_{3}, \ldots\right)$. Moreover, for all n we have $S(\chi, n) \simeq S\left(\partial T_{\Theta}, n\right)$ and $A(\chi, n) \simeq A\left(\partial T_{\Theta}, n\right)$.

Proof. The trees T_{χ} and T_{Θ} differ only by an additional infinite path δ in T_{χ}. But the path δ is a fixed point of S_{χ}, hence we have the necessary isomorphisms.

Let us define for $\chi=\left\langle\left(1, k_{0}\right),\left(n_{1}, k_{1}\right),\left(n_{2}, k_{2}\right), \ldots\right\rangle \in \mathbf{S}$

$$
r(\chi, i)=\left|V_{i+1}\left(T_{\chi}\right)\right|-1=\sum_{j=0}^{i} k_{j} n_{j+1} \ldots n_{i}
$$

Let us also define the characteristics $\Omega(\chi)$ for S_{χ} and A_{χ} as the supernatural number

$$
\operatorname{char}\left(S_{\chi}\right)=\operatorname{char}\left(A_{\chi}\right)=\Omega(\chi)=\prod_{i=1}^{\infty} n_{i}
$$

and the characteristic series

$$
\begin{equation*}
M(\chi)=\sum_{i=0}^{\infty} \frac{k_{i}}{n_{1} \cdots n_{i}} \tag{1}
\end{equation*}
$$

A partial sum $M_{j}(\chi)(j \geq 0)$ of the series $M(\chi)$ is equal to

$$
\begin{equation*}
M_{j}(\chi)=\sum_{i=0}^{j} \frac{k_{i}}{n_{1} \cdots n_{i}}=\frac{r(\chi, j)}{n_{1} \cdots n_{j}} \tag{2}
\end{equation*}
$$

We also consider $\gamma_{i}(\chi):=M_{i}(\chi)^{-1}$ and

$$
\gamma:=\lim _{i \rightarrow \infty} M_{i}(\chi)^{-1}
$$

Since $0 \leq M_{i}(\chi) \leq M_{i+1}(\chi)$, the number γ is well-defined. The number γ is called the density index, following Baranov and Zhilinskii [BZ99].

Now we give a topological interpretation of the density index. In the next two statements the symbol H is either A or S.

Proposition 2.2. If m is an H_{χ}-invariant Borel measure on ∂T_{χ} such that $m\left(\partial T_{v}\right)=1$, where $v \in V_{1} \backslash\{\delta(1)\}$ and $m(\{\delta\})=0$, then $m\left(\partial T_{\chi}\right)=M(\chi)$.

Proof. Let m be an H_{χ}-invariant Borel measure on ∂T_{χ} and let $m\left(\partial T_{v}\right)=$ 1 , where $v \in V_{1} \backslash\{\delta(1)\}$. Then

$$
\begin{gathered}
m\left(\bigcup_{v \in V_{1} \backslash\{\delta(1)\}} \partial T_{v}\right)=k_{0}=M_{0}(\chi), \\
m\left(\bigcup_{v \in V_{2} \backslash\{\delta(2)\}} \partial T_{v}\right)=k_{0}+\frac{k_{1}}{n_{1}}=M_{2}(\chi), \\
m\left(\bigcup_{v \in V_{l} \backslash\{\delta(l)\}} \partial T_{v}\right)=k_{0}+\frac{k_{1}}{n_{1}}+\cdots+\frac{k_{l-1}}{n_{1} \cdots n_{l-1}}=M_{l}(\chi)
\end{gathered}
$$

Taking into account σ-additivity and

$$
\partial T_{\chi}=\{\delta\} \cup \bigcup_{l=1}^{\infty}\left(\bigcup_{v \in V_{\backslash} \backslash\{\delta(l)\}} \partial T_{v} \backslash \bigcup_{v \in V_{l-1} \backslash\{\delta(l-1)\}} \partial T_{v}\right)
$$

we get $m\left(\partial T_{\chi}\right)=M(\chi)$.
Corollary 2.3. The space ∂T_{χ} carries a finite $H_{\chi \text {-invariant }}$ measure m if and only if the density index is strictly positive, i.e.,

$$
\gamma=M(\chi)^{-1}>0
$$

In this case, if $m\left(\partial T_{\chi}\right)=1$ and $m(\{\delta\})=0$, then

1. $\gamma=m\left(\partial T_{v}\right)$, where $v \in V_{1} \backslash\{\delta(1)\}$.
2. $m\left(\partial T_{\delta(l)}\right)=1-\gamma M_{l}(\chi) \rightarrow 0$ for $l \rightarrow \infty$.

Proof. If $\gamma>0$, then existance of an H_{χ}-invariant probability measure is an immediate corollary of Proposition 2.2. Let $\gamma=0$, and suppose there exists an H_{χ}-invariant probability measure m. Then Proposition 2.2 implies that $m\left(\partial T_{v}\right)=0$. Since m is H_{χ}-invariant, $m\left(\partial T_{\chi}\right)=0$. We get a contradiction finishing our proof.

Definition 2. Let χ_{1}, χ_{2} be sequences from \mathbf{S}. Let u, v be some positive integers. We call the sequences $\chi_{1}, \chi_{2}(u, v)$-commensurable if

1. $u \Omega\left(\chi_{1}\right)=v \Omega\left(\chi_{2}\right)$;
2. the characteristic series $M\left(\chi_{1}\right), M\left(\chi_{2}\right)$ are convergent or divergent simultaneously;
3. if $M\left(\chi_{1}\right)$ and $M\left(\chi_{2}\right)$ are convergent, then $v M\left(\chi_{1}\right)=u M\left(\chi_{2}\right)$;
4. sequences χ_{1} and χ_{2} have finitely or infinitely many nonzero members k_{i} simultaneously.

We call the sequences χ_{1}, χ_{2} commensurable if there exist positive integers u, v such that χ_{1}, χ_{2} are (u, v)-commensurable.

We can change the first three conditions of the definition to equivalent two conditions without mentioning u and v, namely:

1. $\Omega\left(\chi_{1}\right) / \Omega\left(\chi_{2}\right)$ is a rational number;
2. if one of the series $M\left(\chi_{1}\right)$ and $M\left(\chi_{2}\right)$ is convergent, then the other is convergent too, and

$$
\Omega\left(\chi_{1}\right) M\left(\chi_{1}\right)=\Omega\left(\chi_{2}\right) M\left(\chi_{2}\right) .
$$

Lemma 2.4. Let $\chi \in \mathbf{S}_{1}$. Then $\partial T_{\chi} \backslash\{\delta\}$ is a locally compact Hausdorff space without isolated points, and the actions of the groups S_{χ} and A_{χ} on it satisfy the conditions of Theorem 1.2.

Proof. Consider the set

$$
U_{\delta(i)}=\partial T_{\delta(i)} \backslash \partial T_{\delta(i+1)}
$$

It is a compact Hausdorff space, since it is a union of boundaries of a finite number of spherically homogeneous trees. But $\partial T_{\chi} \backslash\{\delta\}=\bigcup_{i \geq 0} U_{\delta(i)}$, hence $\partial T_{\chi} \backslash\{\delta\}$ is a locally compact Hausdorff space. The group A_{χ} contains the subgroup $A\left(\partial T_{v}\right)$ for every $v \in V\left(T_{\chi}\right) \backslash\{\delta\}$, hence A_{χ} satisfies the conditions of Theorem 1.2.

Let V be a subset of $V_{i}\left(T_{\chi}\right)$ for $i>0$, and let H be one of the symbols S or A. Consider the subgroup of all homeomorphisms of ∂T_{χ} which act trivially outside $\partial(V)=\bigcup_{v \in V} \partial T_{v}$. Let us denote this subgroup $H(\partial(V))$. We also consider the rooted tree T_{V} obtained by taking all the subtrees T_{v} of T_{χ} for $v \in V$, and connecting them together by a root, so that the first level of the tree T_{V} is $V_{1}\left(T_{V}\right)=V$. The group $H\left(\partial T_{V}\right)$ acting naturally on ∂T_{χ} coincides with $H(\partial(V))$.

If $\delta(i) \notin V$ then $H(\partial(V))$ is a strictly diagonal direct limit of symmetric (resp. alternating) groups. In this case, if the tree T_{χ} is constructed using the sequence

$$
\chi=\left\langle\left(1, k_{0}\right),\left(n_{1}, k_{1}\right),\left(n_{2}, k_{2}\right), \ldots\right\rangle \in \mathbf{S}
$$

then the characteristics of $H(\partial(V))$ is $|V| \cdot \prod_{j=i}^{\infty} n_{j}$.
Let us define the standard diagonal embedding $u(r, s): \operatorname{Sym}(A) \hookrightarrow$ $\operatorname{Sym}(B)$, where $A=\{1,2, \ldots, n\}, B=\{1,2,3, \ldots, n r+s\}$, for $n, r, s \in \mathbb{N}$, as follows.

For $\alpha \in \operatorname{Sym}(A)$, we set

$$
(r i-k)^{u(r, s)(\alpha)}=r i^{\alpha}-k \text { if } 0 \leq k \leq r-1, i \geq 1
$$

and

$$
i^{u(r, s)(\alpha)}=i \text { if } n r+1 \leq i \leq n r+s
$$

It is easy to verify that the map $u(r, s): \alpha \mapsto u(r, s)(\alpha)$ is a diagonal embedding of $\operatorname{Sym}(A)$ into $\operatorname{Sym}(B)$.

Note that the natural embedding of the subgroup $S(\chi, i)$ into the subgroup $S(\chi, j)$ of S_{χ}, for $j>i$, is an example of a standard diagonal embedding, if we number the sets $V_{i}\left(T_{\chi}\right)$ and $V_{j}\left(T_{\chi}\right)$ lexicographically.

Lemma 2.5. Denote $M_{1}=\left\{1, \ldots, m_{1}\right\}, M_{2}=\left\{1, \ldots, m_{2}\right\}$, and $M_{3}=$ $\left\{1, \ldots, m_{3}\right\}$, where $m_{2}=m_{1} n_{1}+r_{1}, m_{3}=m_{2} n_{2}+r_{2}$ for some integers $n_{i}>0, r_{i} \geq 0, i=1,2$.

Let

$$
\begin{aligned}
& u\left(n_{1}, r_{1}\right): \operatorname{Sym}\left(M_{1}\right) \rightarrow \operatorname{Sym}\left(M_{2}\right), \\
& u\left(n_{2}, r_{2}\right): \operatorname{Sym}\left(M_{2}\right) \rightarrow \operatorname{Sym}\left(M_{3}\right), \\
& u\left(n_{1} n_{2}, n_{2} r_{1}+r_{2}\right): \operatorname{Sym}\left(M_{1}\right) \rightarrow \operatorname{Sym}\left(M_{3}\right)
\end{aligned}
$$

be the standard diagonal embeddings.
Then

$$
u\left(n_{1}, r_{1}\right) u\left(n_{2}, r_{2}\right)=u\left(n_{1} n_{2}, n_{2} r_{1}+r_{2}\right)
$$

Proof. Let us consider the sequence

$$
\chi=\left\langle\left(1, m_{1}\right),\left(n_{1}, r_{1}\right),\left(n_{2}, r_{2}\right),(2,0),(2,0), \ldots\right\rangle \in \mathbf{S}_{1}
$$

The bijections $M_{1} \rightarrow V_{1}\left(T_{\chi}\right) \backslash\{\delta(1)\}, M_{2} \rightarrow V_{2}\left(T_{\chi}\right) \backslash\{\delta(2)\}$, and $M_{3} \rightarrow$ $V_{3}\left(T_{\chi}\right) \backslash\{\delta(3)\}$ induce isomorphisms $\operatorname{Sym}\left(M_{1}\right) \rightarrow S(\chi, 1), \operatorname{Sym}\left(M_{2}\right) \rightarrow$ $S(\chi, 2)$, and $\operatorname{Sym}\left(M_{3}\right) \rightarrow S(\chi, 3)$ respectively.

The embedding of $S(\chi, i)$ into $S(\chi, i+1)$ coincides with the standard diagonal embedding $u\left(n_{i}, r_{i}\right)(i=1,2)$, and the embedding of $S(\chi, 1)$ in $S(\chi, 3)$ coincides with $u\left(n_{1} n_{2}, n_{2} r_{1}+r_{2}\right)$. Hence $u\left(n_{1}, r_{1}\right) u\left(n_{2}, r_{2}\right)=$ $u\left(n_{1} n_{2}, n_{2} r_{1}+r_{2}\right)$.

Lemma 2.6 ([KS98]). Let T_{1}, T_{2} be spherically homogeneous rooted trees such that

$$
\operatorname{char}\left(S\left(\partial T_{1}\right)\right)=\operatorname{char}\left(S\left(\partial T_{2}\right)\right)
$$

Then the groups $S\left(\partial T_{1}\right)$ and $S\left(\partial T_{2}\right)$ (resp., $A\left(\partial T_{1}\right)$ and $A\left(\partial T_{2}\right)$) are isomorphic.

Proof. Let us construct an isomorphism $\phi: S\left(\partial T_{1}\right) \rightarrow S\left(\partial T_{2}\right)$. Since characteristics of $S\left(\partial T_{1}\right)$ and $S\left(\partial T_{2}\right)$ are equal, for every $i \geq 1$ there is l_{i} such that $\left|V_{i}\left(T_{1}\right)\right|$ is a factor of $\left|V_{l_{i}}\left(T_{2}\right)\right|$. We can assume that sequence $\left\{l_{i}, i \mid \in \mathbb{N}\right\}$ is increasing.

Let $\phi_{i}=u\left(\frac{\left|V_{i}\left(T_{2}\right)\right|}{\left|V_{i}\left(T_{1}\right)\right|}, 0\right)$ be the standard strictly diagonal embedding of $S\left(\partial T_{1}, i\right)$ into $S\left(\partial T_{2}, l_{i}\right), i \geq 1$.

The next diagram is commutative for all $1 \leq i<j$ by Lemma 2.5

where $\psi_{1}(i, j)$ and $\psi_{2}\left(l_{i}, l_{j}\right)$ are the diagonal embeddings induced by inclusions of corresponding groups into $S\left(\partial T_{1}\right)$ and $S\left(\partial T_{2}\right)$, respectively. Consequently, there is an isomorphism $\phi: \bigcup_{i} S\left(\partial T_{1}, i\right) \rightarrow \bigcup_{i} \phi_{i}\left(S\left(\partial T_{1}, i\right)\right)$, which is equal to the inductive limit $\lim _{\rightarrow} \phi_{i}$.

Since $\bigcup_{i} S\left(\partial T_{1}, i\right)=S\left(\partial T_{1}\right)$, we need to prove that $\bigcup_{j} \phi_{i}\left(S\left(\partial T_{1}, i\right)\right)=$ $S\left(\partial T_{2}\right)$. The characteristics of $S\left(\partial T_{1}\right)$ and $S\left(\partial T_{2}\right)$ are equal, therefore for every $k \geq 0$ there is $i \geq 0$ such that $\left|V_{k}\left(T_{2}\right)\right|$ is a divisor of $\left|V_{i}\left(T_{1}\right)\right|$. Then $\phi\left(S\left(\partial T_{1}, i\right)\right) \geq S\left(\partial T_{2}, k\right)$ by Lemma 2.5. Hence, ϕ is an isomorphism of $S\left(\partial T_{1}\right)$ and $S\left(\partial T_{2}\right)$.

Let us call the above constructed isomorphism $\phi: S\left(\partial T_{1}\right) \rightarrow S\left(\partial T_{2}\right)$ canonical.

Lemma 2.7. Let T_{1}, T_{2} be spherically homogeneous rooted trees such that $S\left(\partial T_{1}\right) \simeq S\left(\partial T_{2}\right)$. We assume that vertices of every level of T_{1} and T_{2} are numbered in the lexicographic order. Let V_{1} be the subset of the first i_{n} vertices of $V_{n}\left(T_{1}\right)$, let V_{2} be the subset of the first j_{k} vertices of $V_{k}\left(T_{2}\right)$, and suppose that $S\left(\partial\left(V_{1}\right)\right) \simeq S\left(\partial\left(V_{2}\right)\right)$. Let $\phi: S\left(\partial T_{1}\right) \rightarrow S\left(\partial T_{2}\right)$ be the canonical isomorphism. Then restriction of ϕ onto $S\left(\partial\left(V_{1}\right)\right)$ is an isomorphism of $S\left(\partial\left(V_{1}\right)\right)$ with $S\left(\partial\left(V_{2}\right)\right)$.

Proof. It follows from construction of canonical isomorphism.
Since the canonical isomorphism has the properties required for Lemma 2.7, we can prove the following lemma by restricting the isomorphism onto the subgroups $A\left(\partial T_{1}\right)<S\left(\partial T_{1}\right)$ and $A\left(\partial T_{2}\right)<S\left(\partial T_{2}\right)$.

Lemma 2.8. Let T_{1}, T_{2} be spherically homogeneous rooted trees such that $A\left(\partial T_{1}\right) \simeq A\left(\partial T_{2}\right)$. We assume that the vertices of every level of T_{1} and T_{2} are numbered in the lexicographic order. Let V_{1} be the set of the first i_{n} vertices of $V_{n}\left(T_{1}\right)$, let V_{2} be the set of the first j_{k} vertices of $V_{k}\left(T_{2}\right)$, and suppose that $A\left(\partial\left(V_{1}\right)\right) \simeq A\left(\partial\left(V_{2}\right)\right)$. Then there is an isomorphism $\psi: A\left(\partial T_{1}\right) \rightarrow A\left(\partial T_{2}\right)$ such that its restriction onto $A\left(\partial\left(V_{1}\right)\right)$ is an isomorphism of $A\left(\partial\left(V_{1}\right)\right)$ with $A\left(\partial\left(V_{2}\right)\right)$.

The following is straightforward.
Lemma 2.9. 1. Let $f(r, s)$ be a diagonal embedding of $\operatorname{Sym}(n)$ into $\operatorname{Sym}(n r+s)$ with s fixed points. Then the subgroups $f(r, s)(\operatorname{Sym}(n))$ and $u(r, s)(\operatorname{Sym}(n))$ are conjugate in $\operatorname{Sym}(n r+s)$.
2. Let $h(r, s)$ be a diagonal embedding of $\operatorname{Alt}(n)$ into $\operatorname{Alt}(n r+s)$ with s fixed points. Then the subgroups $h(r, s)(\operatorname{Alt}(n))$ and $u(r, s)(\operatorname{Alt}(n))$ are conjugate in $\operatorname{Sym}(n r+s)$.

Every diagonal direct limit $H=\lim \left(\left(G_{i}, X_{i}\right), \phi_{i}\right)$ of symmetric (alternating) groups has a sequence from \mathbf{S} naturally corresponding to it. Let us set n_{i} to be equal to the number of the natural orbits of $\left(G_{i}, X_{i}\right)$ on X_{i+1}, and k_{i} to be the number of the trivial orbits of the action of $\left(G_{i}, X_{i}\right)$ on X_{i+1}. We put $k_{0}=n_{0}=\left|X_{1}\right|$.

Proposition 2.10. Every diagonal direct limit H of symmetric (alternating) groups is isomorphic to the standard diagonal limit S_{χ} (resp. A_{χ}), where χ is corresponding sequence.

Proof. It follows from Lemma 2.3 of [Bur68] and Lemma 2.9 of our paper.

3. Classification

Theorem 3.1. Let $\chi \in \mathbf{S}$. Then

1. $S_{\chi}=A_{\chi}$ if and only if $\Omega(\chi)$ is divisible by 2^{∞};
2. if $\Omega(\chi)$ is not divisible by 2^{∞}, then $\left[S_{\chi}: A_{\chi}\right]=2$;
3. A_{χ} is the commutator subgroup S_{χ};
4. A_{χ} is a simple group.

Proof. 1. If $\Omega(\chi)$ is divisible by 2^{∞}, then for every $n \geq 1$ there is $k>n$ such that $A(\chi, k)>S(\chi, n)$, thus $S_{\chi}=A_{\chi}$.

If $\Omega(\chi)$ is not divisible by 2^{∞}, then there is $n \geq 1$ such that for every $k>n$ the group $A(\chi, k)$ does not contain any odd permutations from $S(\chi, n)$. So, $S_{\chi} \neq A_{\chi}$.
2. For every n the group $A(\chi, n)$ is an index 2 subgroup of $S(\chi, n)$. Since χ is odd, we have $S_{\chi} \neq A_{\chi}$, and $\left[S_{\chi}: A_{\chi}\right]=2$.

Statement (3) is a corollary of a standard statement on verbal subgroups of locally finite groups. Statement (4) is a corollary of Theorem 4.1 in [KW73], p. 112.

Theorem 3.2. Let $\chi_{1}, \chi_{2} \in \mathbf{S}$. The direct limits of finite symmetric (alternating) groups corresponding to the sequences χ_{1} and χ_{2} are isomorphic if and only if the sequences χ_{1} and χ_{2} are commensurable.

Note that this theorem is completely analogous to the J. Dixmier's classifications [Dix67] of diagonal direct limits of C^{*}-algebras.

We need some auxiliary statements.
Proposition 3.3. Let $\chi=\left\langle\left(1, k_{0}\right),\left(n_{1}, k_{1}\right),\left(n_{2}, k_{2}\right), \ldots\right\rangle \in \mathbf{S}$. The direct limit of finite symmetric (alternating) groups with corresponding sequence χ is

1. isomorphic to $S_{\chi^{\prime}}$ (resp., $A_{\chi^{\prime}}$) for some $\chi^{\prime} \in \mathbf{S}_{1}$ commensurable with χ, if and only if $n_{i} \geq 2$ for infinitely many $i \in \mathbb{N}$;
2. finite symmetric (alternating) group if and only if $n_{i} \leq 2$ and $k_{i}=0$ for all but a finite number of indices $i \in \mathbb{N}$;
3. finitary symmetric (alternating) group if and only if $n_{i} \leq 2$ for all but a finite number of indices i, and $k_{i} \geq 1$ for infinitely many $i \in \mathbb{N}$.

Proof. If $n_{i} \geq 2$ for infinitely many i, then we can consider a subsequence $S\left(\chi, l_{i}\right)$ (or of $\left.A\left(\chi, l_{i}\right)\right)$ such that the correspondent subsequence χ^{\prime} belongs to \mathbf{S}_{1}.

Obviously, then $S_{\chi} \simeq S_{\chi^{\prime}}$ and $A_{\chi} \simeq A_{\chi^{\prime}}$. It is sufficient to use the formula (2) for partial sums of $M\left(\chi_{1}\right)$ and $M\left(\chi_{2}\right)$ in order to prove commensurability of χ and χ^{\prime}.

It is straightforward that if we have $n_{i} \geq 2$ only for finitely many indices i, then conditions (2) or (3) hold, accordingly to the number of indices for which $k_{i} \leq 0$.

Lemma 3.4. If $\chi \in \mathbf{S}_{1}$, then the groups S_{χ} and A_{χ} are isomorphic neither to the finitary symmetric, nor to the finitary alternating groups.

Proof. One can find elements $g \in A_{\chi}$ whose centralizers $C_{A_{\chi}}(g)$ contain direct products of index at most 2 of two infinite subgroups. Centralizers of elements of the finitary alternating group does not have this property. Thus, A_{χ} and the finitary alternating group are not isomorphic. The symmetric groups are treated similarly.

The following notation is used in statements $3.5-3.10$. The symbol H denotes either A or S (the alternating and symmetric group, respectively). The sequences $\chi_{1}, \chi_{2} \in \mathbf{S}_{1}$ are such that $\partial T_{\chi_{1}}$ and $\partial T_{\chi_{2}}$ are homeomorphic, and the homeomorphism $h: \partial T_{\chi_{1}} \rightarrow \partial T_{\chi_{2}}$ induces an isomorphism $\phi: H_{\chi_{1}} \rightarrow H_{\chi_{2}}$, i.e., $\phi(g)=h g h^{-1}$ for every $g \in H_{\chi_{1}}$. Let m_{i} be an $H_{\chi_{i}}{ }^{-}$ invariant Borel measure on $\partial T_{\chi_{i}}$ and $m_{i}\left(\left\{\delta_{i}\right\}\right)=0$. To avoid ambiguity, let us denote the subtree of $T_{\chi_{i}}$ with the root at v by T_{v}^{i}.

Lemma 3.5. For every ball $\partial T_{v}^{1}\left(v \in V\left(T_{\chi_{1}}\right) \backslash\left\{\delta_{1}\right\}\right)$ there exist l and k such that the set $h\left(\partial T_{v}^{1}\right)$ is a disjoint union of the balls $\partial T_{v_{i}}^{2}$ for $\left\{v_{1}, \ldots, v_{k}\right\} \subset V_{l}\left(T_{\chi_{2}}\right) \backslash\left\{\delta_{1}(l)\right\}$.

Proof. Since $H_{\chi_{i}}$ fixes δ_{i} and does not fix any other end, the set $h\left(\partial T_{v}^{1}\right)$ does not contain any ball ∂T_{w}^{2} such that $w \in \delta_{2}$. Since ∂T_{v}^{1} is compact set, the number k is finite.

Lemma 3.6. If the measures m_{i} are $H_{\chi_{i}}$-invariant and such that $m_{i}\left(\partial T_{v}^{i}\right)=$ 1 for $v \in V_{1}$, and $m_{i}(\delta)=0$, for $i=1,2$, then the homeomorphism h preserves the measures m_{i}, i.e., the push forward measure $h_{*}\left(m_{1}\right)$ is equal to m_{2}.

Proof. It is easy to prove that m_{i} are uniquely defined by the conditions of the lemma (see the proof of Proposition 2.2). But $h_{*}\left(m_{1}\right)$ is also such a measure on $\partial T_{\chi_{2}}$, hence $h_{*}\left(m_{1}\right)=m_{2}$, and h is measure-preserving.

Corollary 3.7. If $m_{1}\left(\partial T_{\chi_{1}}\right)$ and $m_{2}\left(\partial T_{v}^{2}\right)$ (for any $v \in V\left(T_{\chi_{2}}\right)$) are finite, then $m_{2}\left(\partial T_{\chi_{2}}\right)$ is finite too.

Theorem 3.8 ([KS98]). Let $\chi_{i} \in \mathbf{S}_{1}$ be such that $T_{\chi_{i}} \backslash\left\{\delta_{i}\right\}$ are spherically homogeneous trees $(i=1,2)$. Then $H_{\chi_{1}}$ and $H_{\chi_{2}}$ are isomorphic if and only if

$$
\operatorname{char}\left(H_{\chi_{1}}\right)=\operatorname{char}\left(H_{\chi_{2}}\right) .
$$

Proof. Let $\phi: H_{\chi_{1}} \rightarrow H_{\chi_{2}}$ be an isomorphism. The spaces $\partial T_{\chi_{1}}$ and $\partial T_{\chi_{2}}$ are homeomorphic. Then by Theorem 1.2, Lemmata 1.3 and 2.1 there exists a homeomorphism $h: \partial T_{\chi_{1}} \rightarrow \partial T_{\chi_{2}}$ such that $\phi(g)=h g h^{-1}$ for every $g \in H_{\chi_{1}}$. Let m_{i} be the probabilistic $H_{\chi_{i}}$-invariant measure on $\partial T_{\chi_{i}}$ for $i=1,2$. Such measures exist by Lemma 2.3.

Let

$$
h\left(\partial T_{v}^{1}\right)=\bigcup_{i=1}^{k} \partial T_{v_{i}}^{2}
$$

where $\left\{v_{1}, \ldots, v_{k}\right\} \in V_{l}\left(T_{\chi_{2}}\right) \backslash\left\{\delta_{2}(l)\right\}, v \in V_{s}\left(T_{\chi_{1}}\right) \backslash\left\{\delta_{1}(s)\right\}$. By Lemma 3.6, we have $m_{1}\left(\partial T_{v}^{1}\right)=m_{2}\left(\bigcup_{i=1}^{k} \partial T_{v_{i}}^{2}\right)$. Taking into account transitivity of the action of $H_{\chi_{1}}$ on $V_{s}\left(T_{\chi_{1}}\right) \backslash\left\{\delta_{1}(s)\right\}$, we get that $k_{0,1} n_{1,1} \cdots n_{s-1,1}$ divides $k_{0,2} n_{1,2} \cdots n_{l-1,2}$. Since s is arbitrary, we have proved that $\operatorname{char}\left(H_{\chi_{1}}\right)$ divides $\operatorname{char}\left(H_{\chi_{2}}\right)$. It is easy to see that $\operatorname{char}\left(H_{\chi_{2}}\right)$ also divides $\operatorname{char}\left(H_{\chi_{1}}\right)$. Hence,

$$
\operatorname{char}\left(H_{\chi_{1}}\right)=\operatorname{char}\left(H_{\chi_{2}}\right)
$$

Implication in the other direction was proved in Lemma 2.6.
Lemma 3.9. Let

$$
h\left(\partial T_{v}^{1}\right)=\bigcup_{i=1}^{k} \partial T_{v_{i}}^{2}
$$

where $\left\{v_{1}, \ldots, v_{k}\right\} \in V_{l}\left(T_{\chi_{2}}\right) \backslash\left\{\delta_{1}(l)\right\}, v \in V_{1}\left(T_{\chi_{1}}\right) \backslash\left\{\delta_{1}(1)\right\}$. Then

$$
\Omega\left(\chi_{1}\right)=\frac{k}{n_{1,2} \cdots n_{l-1,2}} \Omega\left(\chi_{2}\right) .
$$

Proof. The subgroup $H_{1}=H\left(\partial T_{v}\right)<H_{\chi_{1}}$ is the largest subgroup acting trivially outside of ∂T_{v}^{1}. Therefore, the largest subgroup acting trivially outside of $\bigcup_{i=1}^{k} \partial T_{v_{i}}^{2}$, i.e., $H_{2}=H\left(\partial\left\{v_{i} \mid i=1, \ldots, k\right\}\right)$, coincides with $\phi\left(H_{\chi_{1}}\right)$. Since the groups $H_{\chi_{1}}$ and $H_{\chi_{2}}$ are isomorphic, we have, by Theorem 3.8,

$$
\operatorname{char}\left(H_{\chi_{1}}\right)=\operatorname{char}\left(H_{\chi_{2}}\right) .
$$

Taking into account

$$
\Omega\left(\chi_{1}\right)=\operatorname{char}\left(H_{\chi_{1}}\right)
$$

and

$$
\Omega\left(\chi_{2}\right)=\frac{n_{1,2} \cdots n_{l-1,2}}{k} \operatorname{char}\left(H_{\chi_{2}}\right)
$$

we get

$$
\Omega\left(\chi_{1}\right)=\frac{k}{n_{1,2} \cdots n_{l-1,2}} \Omega\left(\chi_{2}\right) .
$$

Lemma 3.10. Suppose that $\gamma_{i}<M_{l}\left(\chi_{i}\right)^{-1}$ for all natural numbers l and $i=1,2$ and for all $\gamma_{1}>0, \gamma_{2}>0$. Suppose also that $h\left(\partial T_{v}^{1}\right)=\bigcup_{i=1}^{k} \partial T_{v_{i}}^{2}$, where $\left\{v_{1}, \ldots, v_{k}\right\} \in V_{l}\left(T_{\chi_{2}}\right), v \in V_{1}\left(T_{\chi_{1}}\right) \backslash\left\{\delta_{1}(1)\right\}$. Then

$$
\gamma_{1}=\frac{n_{1,2} \cdots n_{l-1,2}}{k} \gamma_{2}
$$

Proof. We may assume that $m_{1}\left(\partial T_{\chi_{1}}\right)=m_{2}\left(\partial T_{\chi_{2}}\right)=1$. By Lemma 3.6,

$$
\gamma_{1}=m_{1}\left(\partial T_{v}^{1}\right)=m_{2}\left(\bigcup_{i=1}^{k} \partial T_{v_{i}}^{2}\right)=k m_{2}\left(\partial T_{v_{i}}^{2}\right)
$$

We also have $\gamma_{2}=m_{2}\left(\partial T_{v_{i}}^{2}\right) n_{1,2} \cdots n_{l-1,2}$, hence

$$
\gamma_{1}=\frac{n_{1,2} \cdots n_{l-1,2}}{k} \gamma_{2}
$$

Lemma 3.11. Let u be a positive integer. Let $\chi_{1}, \chi_{2} \in \mathbf{S}_{1}$ be $(u, 1)$ commensurable sequences. Then $S_{\chi_{1}} \simeq S_{\chi_{2}}$ and $A_{\chi_{1}} \simeq A_{\chi_{2}}$.

Proof. Let us show that there is an increasing sequence $\left\{l_{i}\right\}$ such that for every $j \geq 0$ the number

$$
t_{l_{j}}=r\left(\chi_{1}, j\right) n_{1,2} \cdots n_{l_{j}, 2}\left(u n_{1,1} \cdots n_{j, 1}\right)^{-1}
$$

is an integer and less than or equal to $\left|V_{l_{j}}\left(T_{\chi_{2}}\right) \backslash\left\{\delta_{2}\left(l_{j}\right)\right\}\right|=r\left(\chi_{2}, l_{j}\right)$.
Since $u \Omega\left(\chi_{1}\right)=\Omega\left(\chi_{2}\right)$ there is a positive integer l_{0}^{\prime} such that for arbitrary $l_{0} \geq l_{0}^{\prime}$ the number u is a factor of $n_{1,2} \cdots n_{l_{0}, 2}$. We can choose $l_{0} \geq l_{0}^{\prime}$ such that $\operatorname{ur}\left(\chi_{2}, l_{0}\right) \geq n_{1,2} \cdots n_{l_{0}, 2} k_{0,1}$, because for any partial sum of $M\left(\chi_{1}\right)$ there is a greater or equal partial sum of $u M\left(\chi_{2}\right)$. Hence

$$
\left|V_{l_{0}}\left(T_{\chi_{2}}\right) \backslash\left\{\delta_{2}\left(l_{0}\right)\right\}\right|=r\left(\chi_{2}, l_{0}\right) \geq n_{1,2} \cdots n_{l_{0}, 2} u^{-1} k_{0,1}
$$

Let $j \geq 1$. Since $u \Omega\left(\chi_{1}\right)=\Omega\left(\chi_{2}\right)$ there is an integer $l_{j}^{\prime}>l_{j-1}$ such that for arbitrary $l_{j} \geq l_{j}^{\prime}$ the product $n_{1,1} \cdots n_{j, 1} u$ is a factor of $n_{1,2} \cdots n_{l_{j}, 2}$. We can choose $l_{j} \geq l_{j}^{\prime}$ such that

$$
\frac{u r\left(\chi_{2}, l_{j}\right)}{n_{1,2} \cdots n_{l_{j}, 2}} \geq \frac{r\left(\chi_{1}, j\right)}{n_{1,1} \cdots n_{j, 1}}
$$

because for an arbitrary partial sum of $M\left(\chi_{1}\right)$ there is a greater or equal partial sum of $u M\left(\chi_{2}\right)$. Then
$\left|V_{l_{j}}\left(T_{\chi_{2}}\right) \backslash\left\{\delta_{2}\left(l_{j}\right)\right\}\right|=r\left(\chi_{2}, l_{j}\right) \geq t_{l_{j}}=r\left(\chi_{1}, j\right) n_{1,2} \cdots n_{l_{j}, 2}\left(u n_{1,1} \cdots n_{j, 1}\right)^{-1}$.
Let $V_{l_{j}}^{j}\left(T_{\chi_{2}}\right)=\left\{v_{1}^{l_{j}}, \ldots, v_{t_{l_{j}}}^{l_{j}}\right\}$ be the set of the first $t_{l_{j}}$ vertices of the level number l_{j} of $T_{\chi_{2}}$. Let us denote the sets $\partial\left(V_{j}\left(T_{\chi_{1}}\right) \backslash\left\{\delta_{1}(j)\right\}\right)$ and $\partial\left(V_{l_{j}}^{j}\left(T_{\chi_{2}}\right)\right)$ by U_{j}^{1} and $U_{l_{j}}^{2}$, respectively. Since

$$
\operatorname{char}\left(H\left(U_{j}^{1}\right)\right)=\frac{r\left(\chi_{1}, j\right) \Omega\left(\chi_{1}\right)}{n_{1,1} \cdots n_{j, 1}}=\frac{t_{l_{j}} \Omega\left(\chi_{2}\right)}{n_{1,2} \cdots n_{l_{j}, 2}}=\operatorname{char}\left(H\left(U_{l_{j}}^{2}\right)\right)
$$

by definition of $t_{l_{j}}$, the groups $H\left(U_{j}^{1}\right)$ and $H\left(U_{l_{j}}^{2}\right)$ are isomorphic for all $j \geq 0$. Let ϕ_{j} be the canonical isomorphism of $H\left(U_{j}^{1}\right)$ with $H\left(U_{l_{j}}^{2}\right)$.

We have

$$
t_{l_{j}} \geq t_{l_{j-1}} n_{l_{j-1}+1,2} \cdots n_{l_{j}, 2},
$$

since by the definition of $t_{l_{j}}$, this inequality is equivalent to $r\left(\chi_{1}, j\right) \geq$ $r\left(\chi_{1}, j-1\right) n_{j}$, which is always true. Hence, the inclusion

$$
U_{l_{j-1}}^{2} \subseteq U_{l_{j}}^{2}
$$

holds, and therefore

$$
H\left(U_{l_{j-1}}^{2}\right) \leq H\left(U_{l_{j}}^{2}\right)
$$

It follows from Lemma 2.7 that the restriction of ϕ_{j} onto $H\left(U_{j-1}^{1}\right)$ coincides with ϕ_{j-1}.

Consequently, we have the following commutative diagram

and we get in the limit an isomorphism

$$
\phi: \bigcup_{j \geq 0} H\left(U_{j}^{1}\right) \rightarrow \bigcup_{j \geq 0} H\left(U_{l_{j}}^{2}\right) .
$$

We have

$$
\bigcup_{j \geq 0} H\left(U_{j}^{1}\right)=S_{\chi_{1}}
$$

therefore, it remains to prove that

$$
\bigcup_{j \geq 0} H\left(U_{l_{j}}^{2}\right)=S_{\chi_{2}}
$$

It is sufficient to show that for every $i \in \mathbb{N}$ there is $j \in \mathbb{N}$ such that

$$
\begin{equation*}
t_{l_{j}} \geq r\left(\chi_{2}, i\right) n_{i+1,2} \cdots n_{l_{j}, 2} \tag{3}
\end{equation*}
$$

since it will imply

$$
\phi\left(H\left(\partial\left(V_{j}\left(T_{\chi_{1}}\right)\right)\right)\right) \geq H\left(\partial\left(V_{i}\left(T_{\chi_{2}}\right)\right)\right)
$$

For an arbitrary partial sum of $u M\left(\chi_{2}\right)$ there is a greater or equal partial sum of $M\left(\chi_{1}\right)$. That is, for all $i \in \mathbb{N}$ there is $j \in \mathbb{N}$ such that the inequality

$$
\frac{r\left(\chi_{1}, j\right)}{n_{1,1} \cdots n_{j, 1}} \geq \frac{u r\left(\chi_{2}, l_{j}\right)}{n_{1,2} \cdots n_{l_{j}, 2}}
$$

holds, which implies, by the definition of $t_{l_{j}}$, the inequality (3).
Proof of Theorem 3.2. We will prove the theorem for the case of symmetric groups. The proof for the alternating groups is similar.

By Proposition 2.10 it is sufficient to prove the theorem for the groups of the form $S_{\chi_{1}}$ and $S_{\chi_{2}}$. The group $S_{\chi_{i}}$ is finite if and only if $\Omega\left(\chi_{i}\right) \in \mathbb{N}$, and $M\left(\chi_{i}\right)$ is convergent.

In this case we have

$$
S_{\chi_{i}} \simeq \operatorname{Sym}\left(\Omega\left(\chi_{i}\right) M\left(\chi_{i}\right)\right), \quad(i=1,2)
$$

Putting $u=\Omega\left(\chi_{2}\right)$ and $v=\Omega\left(\chi_{1}\right)$, we obtain the necessity condition.
Sufficiency follows from the equality

$$
\Omega\left(\chi_{1}\right) M\left(\chi_{1}\right)=\Omega\left(\chi_{2}\right) M\left(\chi_{2}\right)
$$

which we get by multiplying $u \Omega\left(\chi_{1}\right)=v \Omega\left(\chi_{2}\right)$ and $v M\left(\chi_{1}\right)=u M\left(\chi_{2}\right)$.
The group $S\left(\chi_{i}\right)$ is infinite for a sequence $\chi_{i} \in \mathbf{S} \backslash \mathbf{S}_{1}$ if and only if exactly one of the following conditions holds

1. $\Omega\left(\chi_{i}\right) \in \mathbb{N}$ and $M\left(\chi_{i}\right)$ is divergent $(i=1,2)$;
2. $\Omega\left(\chi_{i}\right) \notin \mathbb{N}$.

In the first case the group $S_{\chi_{i}}$ is isomorphic to the finitary symmetric group on the set \mathbb{N}. According to Proposition 3.3, if $\chi_{1} \in \mathbf{S}$ is such that $\Omega\left(\chi_{1}\right) \in \mathbb{N}, M\left(\chi_{1}\right)$ is divergent, and the groups $S_{\chi_{1}}$ and $S_{\chi_{2}}$ are isomorphic, then $\chi_{2} \in \mathbf{S}$ has the same properties.

In the second case, according to Proposition 3.3, without loss of generality, we can assume that $\chi_{1}, \chi_{2} \in \mathbf{S}_{1}$.

Let us prove the "if" direction of the theorem, i.e., that $S_{\chi_{1}} \simeq S_{\chi_{2}}$ implies commensurability of the sequences χ_{1} and χ_{2}.

If the series $M\left(\chi_{1}\right)$ and $M\left(\chi_{2}\right)$ are divergent, then the members $k_{i, 1}$ of χ_{1} are positive for infinitely many i, and the same is true for χ_{2}. The converse statements are also true. Hence, if the series $M\left(\chi_{1}\right)$ and $M\left(\chi_{2}\right)$ are not convergent, then commensurability of χ_{1} and χ_{2} follows from Lemma 3.9.

Suppose that one of the series, for instance $M\left(\chi_{1}\right)$, is convergent. Let $h\left(\partial T_{v}^{1}\right)=\bigcup_{i=1}^{k} \partial T_{v_{i}}^{2}$, where $\left\{v_{1}, \ldots, v_{k}\right\} \in V_{l}\left(T_{\chi_{1}}\right), v \in V_{1}\left(T_{\chi_{1}}\right) \backslash\left\{\delta_{1}(1)\right\}$.

By Lemma 3.9, we have

$$
n_{1,2} \cdots n_{l-1,2} \Omega\left(\chi_{1}\right)=k \Omega\left(\chi_{2}\right)
$$

Then the following cases are possible
(1) $\gamma_{i}<M_{l}\left(\chi_{i}\right)^{-1}$ for all natural l and $i=1,2$, and
a) $\gamma_{1}>0$ and $\gamma_{2}>0$, or
b) $\gamma_{1}>0$ and $\gamma_{2}=0$;
(2) $\gamma_{i}=M_{l}\left(\chi_{i}\right)^{-1}$ for both $i=1,2$, and for some l;
(3) γ_{1} is such as in the first case, and γ_{2} is such as in the second case.

Let us consider at first case (1). If $\gamma_{1}>0$ and $\gamma_{2}>0$, then we may assume that $m_{1}\left(X_{1}\right)=m_{2}\left(X_{2}\right)=1$. By Lemma 3.10, we have then

$$
k \gamma_{1}=n_{1,2} \cdots n_{l-1,2} \gamma_{2}
$$

If $\gamma_{1}>0$ and $\gamma_{2}=0$, then by Corollary 3.7, the groups $S_{\chi_{1}}$ and $S_{\chi_{2}}$ are not isomorphic.

In the case (2) both groups are inductive limits with strictly diagonal embeddings, and by Theorem 3.8, we have

$$
\frac{r\left(\chi_{1}, l\right)}{n_{1,1} \cdots n_{l, 1}} \Omega\left(\chi_{1}\right)=\frac{r\left(\chi_{2}, l\right)}{n_{1,2} \cdots n_{l, 2}} \Omega\left(\chi_{2}\right) .
$$

Since $M\left(\chi_{1}\right)=\frac{r\left(\chi_{1}, l\right)}{n_{1,1} \cdots n_{l, 1}}$ and $M\left(\chi_{2}\right)=\frac{r\left(\chi_{2}, l\right)}{n_{1,2} \cdots n_{l, 2}}$, we have that χ_{1} and χ_{2} are (u, v)-commensurable for

$$
u=r\left(\chi_{1}, l\right) n_{1,2} \cdots n_{l, 2}, \quad v=r\left(\chi_{2}, l\right) n_{1,1} \cdots n_{l, 1}
$$

In case (3) the spaces are not homeomorphic, since one is compact and the other is not. Then, by Theorem 1.2, the groups are not isomorphic.

We have shown that in all three cases the isomorphism of the groups $S_{\chi_{1}}$ and $S_{\chi_{2}}$ implies commensurability of χ_{1} and χ_{2}.

Let us prove the "only if" implication of the theorem. Suppose that $\chi_{1}, \chi_{2} \in \mathbf{S}_{1}$ are (u, v)-commensurable.

Let us define $\chi_{3} \in \mathbf{S}_{1}$ such that χ_{1} and χ_{3} are $(1, v)$-commensurable. Let m be such that v is a divisor of $\prod_{i=1}^{m} n_{i, 1}$. Let $n_{1,3}=v^{-1} \prod_{i=1}^{m} n_{i, 1}$ and $n_{i, 3}=n_{m+i-1,1}$ for $i>1$. Then $v \Omega\left(\chi_{3}\right)=\Omega\left(\chi_{1}\right)$. Let $k_{0,3}=v k_{0,1}$,

$$
k_{1,3}=\prod_{i=1}^{m} n_{i, 1} \sum_{i=1}^{m} \frac{k_{i, 1}}{n_{1,1} \cdots n_{i, 1}},
$$

$k_{i, 3}=k_{m+i-1,1}$ for $i>1$. Then $M_{i}\left(\chi_{3}\right)=v M_{m+i-1}\left(\chi_{1}\right)$ for $i>0$. Therefore χ_{1} and χ_{3} are $(1, v)$-commensurable. Then χ_{2} and χ_{3} are $(1, u)$ commensurable.

By the Lemma 3.11 we have that the pairs of groups $S_{\chi_{1}}, S_{\chi_{3}}$, and $S_{\chi_{2}}, S_{\chi_{3}}$ are isomorphic. So, the groups $S_{\chi_{1}}$ and $S_{\chi_{2}}$ are isomorphic.

References

[Bur68] R.G. Burns, A wreath tower construction of countably infinite, locally finite groups, Math. Zeitschr. 105 (1968), 367-386.
[BZ99] A. A. Baranov and A. G. Zhilinskii, Diagonal direct limits of simple lie algebras, Comm. Algebra 27 (1999), no. 6, 2749-2766.
[Dix67] J. Dixmier, On some C^{*}-algebras considered by Glimm, J. Functional Analysis 1 (1967), 182-203.
[DM02] Stefaan Delcroix and Ulrich Meierfrankenfeld, Locally finite simple groups of 1-type, J. Algebra 247 (2002), no. 2, 728-746.
[Ell76] G. A. Elliot, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no. 1, 29-44.
[Gli60] J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 381-340.
[Har95] B. Hartley, Simple locally finite groups, Finite and locally finite groups (Istambul, 1994) NATO ASI Series, C471, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995, pp. 1-44.
[HZ97] B. Hartley and A.E. Zalesskii, Confined subgroups of simple locally finite groups and ideal of their group rings, J. Lond. Math. Soc. 55 (1997), no. 1, 210-230.
[KS98] N. V. Kroshko and V. I. Sushchansky, Direct limits of symmetric and alternating groups with strictly diagonal embeddings, Archiv der Mathematik 71 (1998), 173-182.
[KW73] O. H. Kegel and B. A. F. Wehrfritz, Locally finite groups, North-Holland, Amsterdam-London, 1973.
[LN07] Y. Lavrenyuk, V. Nekrashevych, On classification of inductive limits of direct products of alternating groups, J. Lond. Math. Soc. 75 (2007), no. 1, 146-162.
[LS03] Ya. V. Lavrenyuk and V. I. Sushchansky, Automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees, Algebra and Discrete Mathematics (2003), no. 4, 33-49.
[LS05] Yaroslav V. Lavrenyuk and Vitalii I. Sushchansky, Notes to "automorphisms of homogeneous symmetric groups and hierarchomorphisms of rooted trees", Algebra and Discrete Mathematics 4 (2005), no. 2, 70-72.
[Mei95] U. Meierfrankenfeld, Non-finitary locally finite simple groups, Finite and Locally Finite Groups (B. Hartley et al., ed.), Kluwer Academic, Dordrecht, 1995, pp. 189-212.
[Rub89] Matatyahu Rubin, On the reconstruction of topological spaces from their groups of homeomorphisms, Trans. Amer. Math. Soc. 312 (1989), no. 2, 487-538.
[Zal91] A. E. Zalesskii, Group rings of inductive limits of alterating groups, Leningrad Math. J. 2 (1991), 1287-1303.
[Za198] A. E. Zalesskii, Direct limits of finite dimensional algebras and finite groups, Trends in ring theory (Miscolc, 1996) (221-239, ed.), Amer. Math. Soc., Providence,, 1998.

Contact information

Y. Lavrenyuk Kyiv Taras Shevchenko University Mechanics and Mathematics Faculty, Volodymyrska, 60, Kyiv, Ukraine 01033
E-Mail: ylavrenyuk@univ.kiev.ua URL: algebra.kiev.ua/lavrenyuk

V. Nekrashevych Department of Mathematics
Texas A\&M University, College Station, TX 77843-3368
E-Mail: nekrash@math.tamu.edu URL: www.math.tamu.edu/ nekrash

V. Sushchansky Institute of Mathematics Silesian University of Technology ul. Kaszubska 23, 44-100 Gliwice, POLAND
E-Mail: wital.suszczanski@polsl.pl

Received by the editors: 08.04.2010
and in final form 08.04.2010.

[^0]: The results were obtained during the visits of the authors to Uppsala University which was supported by The Swedish Institute. The hospitality of the Uppsala University and financial support of The Swedish Institute are gratefully acknowledged.

 2000 Mathematics Subject Classification: 20F50, 20E32; 20E08, 37A15.
 Key words and phrases: locally finite simple groups, diagonal embeddings, direct limits, measure-preserving actions.

