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Abstract. In this paper, we characterize all finitely gene-

rated multiplication R-modules whose the first nonzero Fitting ideal

of them is contained in only finitely many maximal ideals. Also, we

prove that a finitely generated multiplication R-module M is faithful

if and only if M is a projective of constant rank one R-module.

Introduction

Let R be a commutative ring with identity and M be a finitely gene-
rated R-module. For a set {x1, . . . , xn} of generators of M there is an

exact sequence 0 // N // Rn
ϕ

//M // 0 where Rn is a free
R-module with the set {e1, . . . , en} of basis, the R-homomorphism ϕ is
defined by ϕ(ej) = xj and N is the kernel of ϕ. Let N be generated by
uλ = a1λe1 + . . . + anλen, with λ in some index set Λ. Let Fitti(M) be
an ideal of R generated by the minors of size n− i of the matrix







. . . a1λ . . .
...

...
...

. . . anλ . . .






.

For i > n, Fitti(M) is defined by R, and for i < 0, Fitti(M) is defined as
the zero ideal. It is known that Fitti(M) is the invariant ideal determined
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by M, that is, it is determined uniquely by M and it does not depend
on the choice of the set of generators of M [8]. The ideal Fitti(M) will
be called the i-th Fitting ideal of the module M . It follows from the
definition of Fitti(M) that Fitti(M) ⊆ Fitti+1(M). Moreover, it is shown
that Fitt0(M) ⊆ ann(M) and (ann(M))n ⊆ Fitt0(M) (M is generated by
n elements) and Fitti(M)P = Fitti(MP ), for every prime ideal P of R [6].
The most important Fitting ideal of M is the first of the Fittj(M) that is
nonzero. We shall denote this Fitting ideal by I(M). Note that if I(M)
contains a nonzerodivisor then I(MP ) = I(M)P for every prime ideal P
of R. An element of R is called regular if it is a nonzerodivisor and an
ideal of R is regular if it contains a regular element. Assume that T (M),
the torsion submodule of M , be the submodule of M consisting of all
elements ofM that are annihilated by a regular element ofR. An R-module
M is a torsion module if M = T (M) and is a torsionfree R-module if
T (M) = 0. Fitting ideals are strong tools to identify properties of modules
and sometimes to characterize modules. For example Buchsbaum and
Eisenbud have shown in [2] that for a finitely generated R-module M ,
I(M) = R if and only if M is a projective of constant rank module. A
lemma of Lipman asserts that if R is a local ring and M = Rm/K and
I(M) is the (m− q)th Fitting ideal of M then I(M) is a regular principal
ideal if and only if K is finitely generated free and M/T (M) is free of rank
m − q ([11]). Finally it is shown in [9] that if M is a finitely generated
module over a Noetherian local UFD (R,P ) then I(M) = P if and only if

1. M is isomorphic to Rn/〈(a1, . . . , an)
t〉, where P = 〈a1, . . . , an〉 and

n is a positive integer if M is torsionfree, and

2. M is isomorphic to Rn ⊕R/P , for some positive integer n if M is
not torsionfree.

Multiplication modules, first were defined by A. Barnard in [1].

An R-moduleM is called a multiplication module if for each submodule
N of M , N = IM for some ideal I of R. In this case we can take
I = (N :M) [15].

1. Fitting ideals of multiplication modules

In this section we study some properties of finitely generated multipli-
cation modules and Fitting ideals of them.

Proposition 1. Let M =M1⊕M2 be a finitely generated R-module. Then
Fittk(M)=

∑

i+j=kFitti(M1) Fittj(M2). Particularly I(M)=I(M1)I(M2).
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Proof. Let Ni
// Gi //Mi

// 0 be exact sequences and Gi be
free R-modules of rank ri for i = 1, 2. Let ψ1 be the matrix presentation
of generators of N1 and ψ2 be the matrix presentation of generators of N2.
Thus N1 ⊕N2

// G1 ⊕G2
//M // 0 is an exact sequence and

ψ1⊕ψ2 is the matrix presentation of generators of N1⊕N2. Let Ij(ψ1⊕ψ2)
be an ideal of R generated by the minors of size j of matrix presentation of

(ψ1⊕ψ2). Since ψ1⊕ψ2 =
(

ψ1 0

0 ψ2

)

, hence Fittk(M) = Ir1+r2−k(ψ1⊕ψ2) =
∑

i+j=k Ir1−i(ψ1)Ir2−j(ψ2) =
∑

i+j=k Fitti(M1) Fittj(M2).

Theorem 1. Let R be a ring and M be a finitely generated R-module.
If Fitt0(M) = Q be a maximal ideal of R then M ∼= (R/Q)n, for some
positive integer n.

Proof. By [6, Proposition 20-7], Q = Fitt0(M) ⊆ ann(M). So M is a
vector space over the field R/Q. Hence there exists a positive integer n
such that M ∼= (R/Q)n.

The next Proposition asserts the relation between the 0-th Fitting
ideal of a module and the 0-th Fitting ideal of it’s submodules.

Proposition 2. Let M be a finitely generated module and N be a sub-
module of M generated by k elements. Then Fitt0(M)k ⊆ Fitt0(N).

Proof. By [6, Proposition 20-7] we have Fitt0(M) ⊆ ann(M) ⊆ ann(N)
and ann(N)k ⊆ Fitt0(N). Thus Fitt0(M)k ⊆ Fitt0(N).

A Theorem of Barnard [1] asserts that every multiplication module is
locally cyclic [1]. Here we give another proof for this result using Fitting
ideals.

Lemma 1. Let M be a finitely generated multiplication R-module. Then
Fitt1(M) = R.

Proof. Let M be generated by {x1, . . . , xn}. Consider the exact sequence

0 // N // Rn
ϕ

//M // 0 , where ϕ(ej) = xj and N = Ker(ϕ).
Put Bi = (Rxi : M), for i, 1 6 i 6 n. For the moment fix i, 1 6 i 6 n.
Let aji ∈ Bi, 1 6 j 6 n, j 6= i. Then there exist some bij ∈ R such that
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ajixj = bijxi, 1 6 j 6 n, j 6= i. Consider the matrix






















a1i 0 . . . . . . . . . 0
0 a2i 0 . . . . . . 0
...

...
. . .

...
...

...

−bi1 −bi2 . . .
. . . . . . −bin

...
...

...
...

. . .
...

0 0 0 . . . . . . ani























.

Since each columns of this matrix belongs to N , so we have
∣

∣

∣

∣

∣

∣

∣

∣

∣

a1i 0 . . . 0
0 a2i . . . 0
...

...
. . .

...
0 . . . 0 ani

∣

∣

∣

∣

∣

∣

∣

∣

∣

∈ Fitt1(M).

This implies that Bn−1

i ⊆ Fitt1(M), for all i, 1 6 i 6 n. Hence Bn−1

1
+

· · ·+Bn−1
n ⊆ Fitt1(M). So by [13, 2.25],

√

Bn−1

1
+ · · ·+Bn−1

n =

√

√

Bn−1

1
+ · · ·+

√

Bn−1
n

=

√

√

B1 + · · ·+
√

Bn ⊆
√

Fitt1(M).

Since (B1 + · · · + Bn)M = M , by [14, Corollary], R = B1 + · · · + Bn +
ann(M). on the other hand we have ann(M) ⊆ Bi = (Rxi : M). Thus
R = B1 + · · ·+Bn. Therefore

√

Fitt1(M) = R. Thus Fitt1(M) = R.

Theorem 2. Let M be a finitely generated multiplication module over a
ring R. Then M is locally cyclic.

Proof. LetM be a finitely generated multiplication module over a local ring
(R,P ). Let {x1, . . . , xn} be a minimal generator set for M . Consider the

exact sequence 0 // N // Rn
ϕ

//M // 0 , where ϕ is defined
by ϕ(ej) = xj and N is the kernel of ϕ. Let N be generated by ui = a1ie1+
. . .+ anien, with i in some index set I. Since {x1, . . . , xn} is a minimal
generator set for M , hence aij ∈ P , for all i, j. Thus Fittn−1(M) ⊆ P . On
the other hand by Lemma 1, we have Fittn−1(M) = R, for n > 2. Hence
n = 1. This means that M is cyclic.

Proposition 3. Let M be a finitely generated multiplication R-module.
Then Fitt0(M) = ann(M).
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Proof. By 1, MQ is cyclic. Thus Fitt0(MQ) = ann(MQ), for every prime
ideal Q of R. Since M is finitely generated, hence ann(MQ) = ann(M)Q.
Thus by [6, Corollary 20.5], Fitt0(M)Q = ann(M)Q, for every prime ideal
Q of R. Therefore Fitt0(M) = ann(M).

Lemma 2. Let R be an integral domain and M be an R-module. Then
T (MP ) = T (M)P , for every prime ideal P of R.

Proof. Let P be a prime ideal of R. It is easily seen that T (M)P ⊆ T (MP ).

Now let R be an integral domain. Assume that
x

1
∈ T (MP ). Thus there

exists a regular element
r

s
∈ RP such that

r

s

x

1
=

0

1
. So there exists an

element t ∈ R \ P such that trx = 0. Thus r(tx) = 0. It is sufficient to
prove that r is a regular element of R. Then tx ∈ T (M) and consequently
x

1
=
tx

t
∈ T (M)P . To prove the regularity of r, assume that ar = 0, for

some element a of R. Thus
r

s

a

1
=

0

1
, in RP . Since

r

s
is a regular element of

RP , So
a

1
=

0

1
. Thus there exists an element b ∈ R \ P such that ab = 0.

Since R is an integral domain and b ∈ R \ P , hence a = 0 and we are
done.

Theorem 3. Let M be a finitely generated multiplication module over an
integral domain R. Then M is a torsionfree R-module or M is a torsion
R-module.

Proof. Let M = 〈x1, . . . , xn〉 be a finitely generated nontorsionfree mul-
tiplication module over an integral domain R. So T (M) 6= 0. Since M
is a multiplication module, hence there exists an ideal I of R such that
T (M) = IM . Let 0 6= a ∈ I be arbitrary. For 1 6 i 6 n, there exist some
0 6= ri such that riaxi = 0. So r1 . . . rna ∈ ann(M). Since r1 . . . rn is a
regular element so M = T (M).

Theorem 4. Let M be a finitely generated multiplication module over an
integral domain R. Then the following conditions are equivalent.

1) M is a torsionfree R-module.
2) M is a projective of constant rank one R-module.

Proof. (1 =⇒ 2) Let M be a finitely generated torsionfree multiplica-
tion module over an integral domain R. So ann(M) = 0. Thus MP

∼=
RP / ann(M)P = RP / ann(MP ) = RP , for every prime ideal P of R. Hence
by [3, 5&3, Theorem 2] M is a projective of constant rank one R-module.
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(2 =⇒ 1) Since M is a projective of constant rank one R-module, hence
for every prime ideal p of R, we have Mp = Rp. So T (M)p = T (Mp) = 0,
for every prime ideal p of R. Therefore T (M) = 0.

Corollary 1. Let M be a finitely generated multiplication module over
an integral domain R. Then M is a projective of constant rank R-module
or M is a torsion R-module.

Proof. By Theorem 3 and Theorem 4.

Theorem 5. Let M be a finitely generated multiplication R-module. If
I(M) is contained in only finitely many maximal ideals of R, then M is
cyclic.

Proof. If ann(M) = 0, then by Proposition 3, Fitt0(M) = 0. So by
Lemma 1, I(M) = R that is not contained in any maximal ideal of R.
Thus ann(M) 6= 0. Then by Proposition 3, I(M) = Fitt0(M) = ann(M).
Since there exist only finitely many maximal ideals of R containing I(M),
hence by [1, Lemma 10], M is a cyclic R-module.

Corollary 2. Let M be a finitely generated multiplication module. Let
I(M) = Pn1

1
. . . Pnk

k , for some maximal ideals Pi of R and for some
positive integers ni, 1 6 i 6 k. Then M ∼= R/Pn1

1
⊕ . . .⊕R/Pnk

k .

Proof. Since I(M) is contained in only finitely many maximal ideals P1,
. . . , Pn, hence by Theorem 5, M ∼= R/Pn1

1
. . . Pnk

k
∼= R/Pn1

1
⊕ . . . ⊕

R/Pnk

k .

Corollary 3. Let M be a finitely generated multiplication module. Then
M is a faithful R-module if and only if M is a projective of constant rank
one R-module.

Proof. By Lemma 1, Fitt1(M) = R and by Proposition 3, Fitt0(M) =
ann(M) = 0. So I(M) = R. Thus by [2, Lemma 1], M is a projective of
constant rank R-module. On the other hand by Theorem 2, M is locally
cyclic. Hence M is a projective of constant rank one R-module. Now LetM
be a projective of constant rank R-module. So ann(MP ) = ann(M)P = 0.
Thus ann(M) = 0.

Note that if M is a projective R-module then the converse of the
previous lemma is not true always. See the following Lemma.
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Lemma 3. Let M be a finitely generated multiplication module. If I(M) =
〈e〉, where e is an idempotent element of R, then M is a projective R-
module.

Proof. If I(M) = Fitt0(M), then by Proposition 3, Fitt0(M) = ann(M) =
〈e〉. So by [4, Theorem 2.1], M is a projective R-module. If Fitt0(M) = 0,
then by Lemma 1, Fitt1(M) = R. So by [2, Lemma 1], M is a projective
R-module.

Theorem 6. Let M be a finitely generated multiplication module. If
e is an idempotent element of R such that ann(M) ( 〈e〉 ( R, then

M ∼= eM ⊕
M

eM
.

Proof. Since 〈e〉 6= R, hence eM 6= M . It is easily seen that
M

eM
is a

multiplication module and we have ann(
M

eM
) = (eM : M) ⊇ 〈e〉. Let

r ∈ (eM : M) and m ∈ M . Thus rm ∈ eM . So there exists an element
m′ ∈M , such that rm = em′. Hence rem = e2m′ = em′ = rm. Therefore

(re−r)m = 0. So re−r ∈ ann(M) ⊆ 〈e〉. Thus r ∈ 〈e〉. So ann(
M

eM
) = 〈e〉.

By Lemma 3,
M

eM
is a projective R-module. So M ∼= eM ⊕

M

eM
.

Theorem 7. Let M be a finitely generated multiplication R-module. If
I(M) is a primary ideal of R then M is an indecomposable R-module.

Proof. Let M = N ⊕K, for some R-submodules N and K of M . Assume
that π1, π2 : M = N ⊕ K −→ M be defined by π1(n + k) = n and
π2(n + k) = k, for n ∈ N and k ∈ K. Since M is a finitely generated
multiplication module, so by [5, Theorem 3], there exist 0 6= r1 and
0 6= r2 in R such that π1(m) = r1m and π2(m) = r2m, for every m ∈M .
Since π1oπ2 = π2oπ1 = 0, hence r1r2M = 0. So r1r2 ∈ ann(M) =
Fitt0(M). Since I(M) = Fitt0(M) = ann(M) is a primary ideal of R,
hence rn1

1
∈ ann(M) or rn2

2
∈ ann(M), for some positive integers n1

and n2. If rn1

1
∈ ann(M), then π1(m) = πn1

1
(m) = rn1

1
m = 0, for every

element m ∈ M . Therefore N = 0. Similarly if rn2

2
∈ ann(M), then

π2(m) = πn2

2
(m) = rn2

2
m = 0, for every element m ∈M . Thus K = 0.

References

[1] A. Barnard, Multiplication modules, J. Algebra, 71, 1981, pp.174-178.

[2] D. A. Buchsbaum and D. Eisenbud, What makes a complex exact, J. Algebra, 25,
1973, pp.259-268.



“adm-n1” — 2018/4/2 — 12:46 — page 34 — #36

34 on the fitting ideals of a multiplication module

[3] N. Bourbaki, Commutative Algebra, Springer-Verlag, 1989.

[4] A. Campillo, T. S. Giralda, Finitely generated projective modules and Fitting ideals,
Collect. Math., 30, 1979, pp.97-102.

[5] C. W. Choi, P. F. Smith, On endomorphism of multiplication modules, J. Korean
Math. Soc., 31(1), 1994, pp.89-95.

[6] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry,
Springer-verlag, New York, 1995.

[7] Z. A. El-Bast and P.F. Smith, Multiplication modules , Comm. Algebra, 16, 1988,
pp.755-779.

[8] H. Fitting, Die Determinantenideale eines Moduls, Jahresbericht d. Deutschen
Math.-Vereinigung, 46, 1936, pp.195-228.

[9] S. Hadjirezaei, S. Hedayat, On the first nonzero Fitting ideal of a module over a

UFD, Comm. Algebra, 41, 2013, pp.361-366.

[10] V. Kodiyalam, Integrally closed modules over two-dimensional regular local ring,
Trans. Amer. math. soc., 347(9), 1995, pp.3551-3573.

[11] J.Lipman, On the Jacobian ideal of the module of differentials, Proc. Amer. Math.
Soc., 21, 1969, pp.423-426.

[12] J.Ohm, On the first nonzero Fitting ideal of a module, J. Algebra, 320, 2008,
pp.417-425.

[13] R. Y. Sharp, Steps in Commutative Algebra, Cambridge university press, 2000.

[14] P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50, 1988,
pp.223-235.

[15] Y. Tiras, M. Alkan, Prime modules and submodules, Comm. Algebra, 31, 2003,
pp.5253-5261.

Contact information

S. Hadjirezaei,

S. Karimzadeh

Department of Mathematics,
Vali-e-Asr University of Rafsanjan,
P.O.Box 7718897111, Rafsanjan, Iran
E-Mail(s): s.hajirezaei@vru.ac.ir,

karimzadeh@vru.ac.ir

Received by the editors: 28.09.2015.


