On the Fitting ideals of a multiplication module Somayeh Hadjirezaei and Somayeh Karimzadeh

Communicated by V. Futorny

Abstract. In this paper, we characterize all finitely generated multiplication R-modules whose the first nonzero Fitting ideal of them is contained in only finitely many maximal ideals. Also, we prove that a finitely generated multiplication R-module M is faithful if and only if M is a projective of constant rank one R-module.

Introduction

Let R be a commutative ring with identity and M be a finitely generated R-module. For a set $\left\{x_{1}, \ldots, x_{n}\right\}$ of generators of M there is an exact sequence $0 \longrightarrow N \longrightarrow R^{n} \xrightarrow{\varphi} M \longrightarrow 0$ where R^{n} is a free R-module with the set $\left\{e_{1}, \ldots, e_{n}\right\}$ of basis, the R-homomorphism φ is defined by $\varphi\left(e_{j}\right)=x_{j}$ and N is the kernel of φ. Let N be generated by $u_{\lambda}=a_{1 \lambda} e_{1}+\ldots+a_{n \lambda} e_{n}$, with λ in some index set Λ. Let $\operatorname{Fitt}_{i}(M)$ be an ideal of R generated by the minors of size $n-i$ of the matrix

$$
\left(\begin{array}{ccc}
\ldots & a_{1 \lambda} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & a_{n \lambda} & \ldots
\end{array}\right)
$$

For $i>n, \operatorname{Fitt}_{i}(M)$ is defined by R, and for $i<0, \operatorname{Fitt}_{i}(M)$ is defined as the zero ideal. It is known that $\operatorname{Fitt}_{i}(M)$ is the invariant ideal determined

[^0]by M , that is, it is determined uniquely by M and it does not depend on the choice of the set of generators of $\mathrm{M}[8]$. The ideal $\operatorname{Fitt}_{i}(M)$ will be called the i-th Fitting ideal of the module M. It follows from the definition of $\operatorname{Fitt}_{i}(M)$ that $\operatorname{Fitt}_{i}(M) \subseteq \operatorname{Fitt}_{i+1}(M)$. Moreover, it is shown that $\operatorname{Fitt}_{0}(M) \subseteq \operatorname{ann}(M)$ and $(\operatorname{ann}(M))^{n} \subseteq \operatorname{Fitt}_{0}(M)(M$ is generated by n elements) and $\operatorname{Fitt}_{i}(M)_{P}=\operatorname{Fitt}_{i}\left(M_{P}\right)$, for every prime ideal P of $R[6]$. The most important Fitting ideal of M is the first of the $\operatorname{Fitt}_{j}(M)$ that is nonzero. We shall denote this Fitting ideal by $I(M)$. Note that if $I(M)$ contains a nonzerodivisor then $I\left(M_{P}\right)=I(M)_{P}$ for every prime ideal P of R. An element of R is called regular if it is a nonzerodivisor and an ideal of R is regular if it contains a regular element. Assume that $T(M)$, the torsion submodule of M, be the submodule of M consisting of all elements of M that are annihilated by a regular element of R. An R-module M is a torsion module if $M=T(M)$ and is a torsionfree R-module if $T(M)=0$. Fitting ideals are strong tools to identify properties of modules and sometimes to characterize modules. For example Buchsbaum and Eisenbud have shown in [2] that for a finitely generated R-module M, $I(M)=R$ if and only if M is a projective of constant rank module. A lemma of Lipman asserts that if R is a local ring and $M=R^{m} / K$ and $I(M)$ is the $(m-q)$ th Fitting ideal of M then $I(M)$ is a regular principal ideal if and only if K is finitely generated free and $M / T(M)$ is free of rank $m-q$ ([11]). Finally it is shown in [9] that if M is a finitely generated module over a Noetherian local UFD (R, P) then $I(M)=P$ if and only if

1. M is isomorphic to $R^{n} /\left\langle\left(a_{1}, \ldots, a_{n}\right)^{t}\right\rangle$, where $P=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and n is a positive integer if M is torsionfree, and
2. M is isomorphic to $R^{n} \oplus R / P$, for some positive integer n if M is not torsionfree.

Multiplication modules, first were defined by A. Barnard in [1].
An R-module M is called a multiplication module if for each submodule N of $M, N=I M$ for some ideal I of R. In this case we can take $I=(N: M)[15]$.

1. Fitting ideals of multiplication modules

In this section we study some properties of finitely generated multiplication modules and Fitting ideals of them.

Proposition 1. Let $M=M_{1} \oplus M_{2}$ be a finitely generated R-module. Then $\operatorname{Fitt}_{k}(M)=\sum_{i+j=k} \operatorname{Fitt}_{i}\left(M_{1}\right) \operatorname{Fitt}_{j}\left(M_{2}\right)$. Particularly $I(M)=I\left(M_{1}\right) I\left(M_{2}\right)$.

Proof. Let $N_{i} \longrightarrow G_{i} \longrightarrow M_{i} \longrightarrow 0$ be exact sequences and G_{i} be free R-modules of rank r_{i} for $i=1,2$. Let ψ_{1} be the matrix presentation of generators of N_{1} and ψ_{2} be the matrix presentation of generators of N_{2}. Thus $N_{1} \oplus N_{2} \longrightarrow G_{1} \oplus G_{2} \longrightarrow M \longrightarrow 0$ is an exact sequence and $\psi_{1} \oplus \psi_{2}$ is the matrix presentation of generators of $N_{1} \oplus N_{2}$. Let $I_{j}\left(\psi_{1} \oplus \psi_{2}\right)$ be an ideal of R generated by the minors of size j of matrix presentation of $\left(\psi_{1} \oplus \psi_{2}\right)$. Since $\psi_{1} \oplus \psi_{2}=\left(\begin{array}{cc}\psi_{1} & 0 \\ 0 & \psi_{2}\end{array}\right)$, hence $\operatorname{Fitt}_{k}(M)=I_{r_{1}+r_{2}-k}\left(\psi_{1} \oplus \psi_{2}\right)=$ $\sum_{i+j=k} I_{r_{1}-i}\left(\psi_{1}\right) I_{r_{2}-j}\left(\psi_{2}\right)=\sum_{i+j=k} \operatorname{Fitt}_{i}\left(M_{1}\right) \operatorname{Fitt}_{j}\left(M_{2}\right)$.

Theorem 1. Let R be a ring and M be a finitely generated R-module. If $\operatorname{Fitt}_{0}(M)=Q$ be a maximal ideal of R then $M \cong(R / Q)^{n}$, for some positive integer n.

Proof. By [6, Proposition 20-7], $Q=\operatorname{Fitt}_{0}(M) \subseteq \operatorname{ann}(M)$. So M is a vector space over the field R / Q. Hence there exists a positive integer n such that $M \cong(R / Q)^{n}$.

The next Proposition asserts the relation between the 0-th Fitting ideal of a module and the 0-th Fitting ideal of it's submodules.

Proposition 2. Let M be a finitely generated module and N be a submodule of M generated by k elements. Then $\operatorname{Fitt}_{0}(M)^{k} \subseteq \operatorname{Fitt}_{0}(N)$.

Proof. By [6, Proposition 20-7] we have $\operatorname{Fitt}_{0}(M) \subseteq \operatorname{ann}(M) \subseteq \operatorname{ann}(N)$ and $\operatorname{ann}(N)^{k} \subseteq \operatorname{Fitt}_{0}(N)$. Thus $\operatorname{Fitt}_{0}(M)^{k} \subseteq \operatorname{Fitt}_{0}(N)$.

A Theorem of Barnard [1] asserts that every multiplication module is locally cyclic [1]. Here we give another proof for this result using Fitting ideals.

Lemma 1. Let M be a finitely generated multiplication R-module. Then $\operatorname{Fitt}_{1}(M)=R$.

Proof. Let M be generated by $\left\{x_{1}, \ldots, x_{n}\right\}$. Consider the exact sequence $0 \longrightarrow N \longrightarrow R^{n} \xrightarrow{\varphi} M \longrightarrow 0$, where $\varphi\left(e_{j}\right)=x_{j}$ and $N=\operatorname{Ker}(\varphi)$. Put $B_{i}=\left(R x_{i}: M\right)$, for $i, 1 \leqslant i \leqslant n$. For the moment fix $i, 1 \leqslant i \leqslant n$. Let $a_{j i} \in B_{i}, 1 \leqslant j \leqslant n, j \neq i$. Then there exist some $b_{i j} \in R$ such that
$a_{j i} x_{j}=b_{i j} x_{i}, 1 \leqslant j \leqslant n, j \neq i$. Consider the matrix

$$
\left(\begin{array}{cccccc}
a_{1 i} & 0 & \ldots & \ldots & \ldots & 0 \\
0 & a_{2 i} & 0 & \ldots & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-b_{i 1} & -b_{i 2} & \ldots & \ddots & \ldots & -b_{i n} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \ldots & a_{n i}
\end{array}\right)
$$

Since each columns of this matrix belongs to N, so we have

$$
\left|\begin{array}{cccc}
a_{1 i} & 0 & \ldots & 0 \\
0 & a_{2 i} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & a_{n i}
\end{array}\right| \in \operatorname{Fitt}_{1}(M)
$$

This implies that $B_{i}^{n-1} \subseteq \operatorname{Fitt}_{1}(M)$, for all $i, 1 \leqslant i \leqslant n$. Hence $B_{1}^{n-1}+$ $\cdots+B_{n}^{n-1} \subseteq \operatorname{Fitt}_{1}(M)$. So by [13, 2.25],

$$
\begin{gathered}
\sqrt{B_{1}^{n-1}+\cdots+B_{n}^{n-1}}=\sqrt{\sqrt{B_{1}^{n-1}}+\cdots+\sqrt{B_{n}^{n-1}}} \\
=\sqrt{\sqrt{B_{1}}+\cdots+\sqrt{B_{n}}} \subseteq \sqrt{\operatorname{Fitt}_{1}(M)}
\end{gathered}
$$

Since $\left(B_{1}+\cdots+B_{n}\right) M=M$, by [14, Corollary], $R=B_{1}+\cdots+B_{n}+$ $\operatorname{ann}(M)$. on the other hand we have $\operatorname{ann}(M) \subseteq B_{i}=\left(R x_{i}: M\right)$. Thus $R=B_{1}+\cdots+B_{n}$. Therefore $\sqrt{\operatorname{Fitt}_{1}(M)}=R$. Thus $\operatorname{Fitt}_{1}(M)=R$.

Theorem 2. Let M be a finitely generated multiplication module over a ring R. Then M is locally cyclic.

Proof. Let M be a finitely generated multiplication module over a local ring (R, P). Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a minimal generator set for M. Consider the exact sequence $0 \longrightarrow N \longrightarrow R^{n} \xrightarrow{\varphi} M \longrightarrow 0$, where φ is defined by $\varphi\left(e_{j}\right)=x_{j}$ and N is the kernel of φ. Let N be generated by $u_{i}=a_{1 i} e_{1}+$ $\ldots+a_{n i} e_{n}$, with i in some index set I. Since $\left\{x_{1}, \ldots, x_{n}\right\}$ is a minimal generator set for M, hence $a_{i j} \in P$, for all i, j. Thus $\operatorname{Fitt}_{n-1}(M) \subseteq P$. On the other hand by Lemma 1, we have $\operatorname{Fitt}_{n-1}(M)=R$, for $n \geqslant 2$. Hence $n=1$. This means that M is cyclic.

Proposition 3. Let M be a finitely generated multiplication R-module. Then $\operatorname{Fitt}_{0}(M)=\operatorname{ann}(M)$.

Proof. By 1, M_{Q} is cyclic. Thus $\operatorname{Fitt}_{0}\left(M_{Q}\right)=\operatorname{ann}\left(M_{Q}\right)$, for every prime ideal Q of R. Since M is finitely generated, hence $\operatorname{ann}\left(M_{Q}\right)=\operatorname{ann}(M)_{Q}$. Thus by [6, Corollary 20.5], $\operatorname{Fitt}_{0}(M)_{Q}=\operatorname{ann}(M)_{Q}$, for every prime ideal Q of R. Therefore $\operatorname{Fitt}_{0}(M)=\operatorname{ann}(M)$.

Lemma 2. Let R be an integral domain and M be an R-module. Then $T\left(M_{P}\right)=T(M)_{P}$, for every prime ideal P of R.

Proof. Let P be a prime ideal of R. It is easily seen that $T(M)_{P} \subseteq T\left(M_{P}\right)$. Now let R be an integral domain. Assume that $\frac{x}{1} \in T\left(M_{P}\right)$. Thus there exists a regular element $\frac{r}{s} \in R_{P}$ such that $\frac{r}{s} \frac{x}{1}=\frac{0}{1}$. So there exists an element $t \in R \backslash P$ such that $\operatorname{tr} x=0$. Thus $r(t x)=0$. It is sufficient to prove that r is a regular element of R. Then $t x \in T(M)$ and consequently $\frac{x}{1}=\frac{t x}{t} \in T(M)_{P}$. To prove the regularity of r, assume that $a r=0$, for some element a of R. Thus $\frac{r}{s} \frac{a}{1}=\frac{0}{1}$, in R_{P}. Since $\frac{r}{s}$ is a regular element of R_{P}, So $\frac{a}{1}=\frac{0}{1}$. Thus there exists an element $b \in R \backslash P$ such that $a b=0$. Since R is an integral domain and $b \in R \backslash P$, hence $a=0$ and we are done.

Theorem 3. Let M be a finitely generated multiplication module over an integral domain R. Then M is a torsionfree R-module or M is a torsion R-module.

Proof. Let $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a finitely generated nontorsionfree multiplication module over an integral domain R. So $T(M) \neq 0$. Since M is a multiplication module, hence there exists an ideal I of R such that $T(M)=I M$. Let $0 \neq a \in I$ be arbitrary. For $1 \leqslant i \leqslant n$, there exist some $0 \neq r_{i}$ such that $r_{i} a x_{i}=0$. So $r_{1} \ldots r_{n} a \in \operatorname{ann}(M)$. Since $r_{1} \ldots r_{n}$ is a regular element so $M=T(M)$.

Theorem 4. Let M be a finitely generated multiplication module over an integral domain R. Then the following conditions are equivalent.

1) M is a torsionfree R-module.
2) M is a projective of constant rank one R-module.

Proof. $(1 \Longrightarrow 2)$ Let M be a finitely generated torsionfree multiplication module over an integral domain R. So $\operatorname{ann}(M)=0$. Thus $M_{P} \cong$ $R_{P} / \operatorname{ann}(M)_{P}=R_{P} / \operatorname{ann}\left(M_{P}\right)=R_{P}$, for every prime ideal P of R. Hence by [3, 5\&3, Theorem 2] M is a projective of constant rank one R-module.
$(2 \Longrightarrow 1)$ Since M is a projective of constant rank one R-module, hence for every prime ideal p of R, we have $M_{p}=R_{p}$. So $T(M)_{p}=T\left(M_{p}\right)=0$, for every prime ideal p of R. Therefore $T(M)=0$.

Corollary 1. Let M be a finitely generated multiplication module over an integral domain R. Then M is a projective of constant rank R-module or M is a torsion R-module.

Proof. By Theorem 3 and Theorem 4.
Theorem 5. Let M be a finitely generated multiplication R-module. If $I(M)$ is contained in only finitely many maximal ideals of R, then M is cyclic.

Proof. If $\operatorname{ann}(M)=0$, then by Proposition 3, $\operatorname{Fitt}_{0}(M)=0$. So by Lemma $1, I(M)=R$ that is not contained in any maximal ideal of R. Thus $\operatorname{ann}(M) \neq 0$. Then by Proposition 3, $I(M)=\operatorname{Fitt}_{0}(M)=\operatorname{ann}(M)$. Since there exist only finitely many maximal ideals of R containing $I(M)$, hence by [1, Lemma 10], M is a cyclic R-module.

Corollary 2. Let M be a finitely generated multiplication module. Let $I(M)=P_{1}^{n_{1}} \ldots P_{k}^{n_{k}}$, for some maximal ideals P_{i} of R and for some positive integers $n_{i}, 1 \leqslant i \leqslant k$. Then $M \cong R / P_{1}^{n_{1}} \oplus \ldots \oplus R / P_{k}^{n_{k}}$.

Proof. Since $I(M)$ is contained in only finitely many maximal ideals P_{1}, \ldots, P_{n}, hence by Theorem $5, M \cong R / P_{1}^{n_{1}} \ldots P_{k}^{n_{k}} \cong R / P_{1}^{n_{1}} \oplus \ldots \oplus$ $R / P_{k}^{n_{k}}$.

Corollary 3. Let M be a finitely generated multiplication module. Then M is a faithful R-module if and only if M is a projective of constant rank one R-module.

Proof. By Lemma 1, $\operatorname{Fitt}_{1}(M)=R$ and by $\operatorname{Proposition~3,~}^{(} \operatorname{Fitt}_{0}(M)=$ $\operatorname{ann}(M)=0$. So $I(M)=R$. Thus by [2, Lemma 1], M is a projective of constant rank R-module. On the other hand by Theorem $2, M$ is locally cyclic. Hence M is a projective of constant rank one R-module. Now Let M be a projective of constant rank R-module. So ann $\left(M_{P}\right)=\operatorname{ann}(M)_{P}=0$. Thus ann $(M)=0$.

Note that if M is a projective R-module then the converse of the previous lemma is not true always. See the following Lemma.

Lemma 3. Let M be a finitely generated multiplication module. If $I(M)=$ $\langle e\rangle$, where e is an idempotent element of R, then M is a projective R module.

Proof. If $I(M)=\operatorname{Fitt}_{0}(M)$, then by Proposition 3, $\operatorname{Fitt}_{0}(M)=\operatorname{ann}(M)=$ $\langle e\rangle$. So by [4, Theorem 2.1], M is a projective R-module. If $\operatorname{Fitt}_{0}(M)=0$, then by Lemma $1, \operatorname{Fitt}_{1}(M)=R$. So by [2, Lemma 1], M is a projective R-module.

Theorem 6. Let M be a finitely generated multiplication module. If e is an idempotent element of R such that $\operatorname{ann}(M) \subsetneq\langle e\rangle \subsetneq R$, then $M \cong e M \oplus \frac{M}{e M}$.
Proof. Since $\langle e\rangle \neq R$, hence $e M \neq M$. It is easily seen that $\frac{M}{e M}$ is a multiplication module and we have $\operatorname{ann}\left(\frac{M}{e M}\right)=(e M: M) \supseteq\langle e\rangle$. Let $r \in(e M: M)$ and $m \in M$. Thus $r m \in e M$. So there exists an element $m^{\prime} \in M$, such that $r m=e m^{\prime}$. Hence rem $=e^{2} m^{\prime}=e m^{\prime}=r m$. Therefore $(r e-r) m=0$. So $r e-r \in \operatorname{ann}(M) \subseteq\langle e\rangle$. Thus $r \in\langle e\rangle$. So $\operatorname{ann}\left(\frac{M}{e M}\right)=\langle e\rangle$. By Lemma $3, \frac{M}{e M}$ is a projective R-module. So $M \cong e M \oplus \frac{M}{e M}$.

Theorem 7. Let M be a finitely generated multiplication R-module. If $I(M)$ is a primary ideal of R then M is an indecomposable R-module.

Proof. Let $M=N \oplus K$, for some R-submodules N and K of M. Assume that $\pi_{1}, \pi_{2}: M=N \oplus K \longrightarrow M$ be defined by $\pi_{1}(n+k)=n$ and $\pi_{2}(n+k)=k$, for $n \in N$ and $k \in K$. Since M is a finitely generated multiplication module, so by [5, Theorem 3], there exist $0 \neq r_{1}$ and $0 \neq r_{2}$ in R such that $\pi_{1}(m)=r_{1} m$ and $\pi_{2}(m)=r_{2} m$, for every $m \in M$. Since $\pi_{1} o \pi_{2}=\pi_{2} o \pi_{1}=0$, hence $r_{1} r_{2} M=0$. So $r_{1} r_{2} \in \operatorname{ann}(M)=$ $\operatorname{Fitt}_{0}(M)$. Since $I(M)=\operatorname{Fitt}_{0}(M)=\operatorname{ann}(M)$ is a primary ideal of R, hence $r_{1}^{n_{1}} \in \operatorname{ann}(M)$ or $r_{2}^{n_{2}} \in \operatorname{ann}(M)$, for some positive integers n_{1} and n_{2}. If $r_{1}^{n_{1}} \in \operatorname{ann}(M)$, then $\pi_{1}(m)=\pi_{1}^{n_{1}}(m)=r_{1}^{n_{1}} m=0$, for every element $m \in M$. Therefore $N=0$. Similarly if $r_{2}^{n_{2}} \in \operatorname{ann}(M)$, then $\pi_{2}(m)=\pi_{2}^{n_{2}}(m)=r_{2}^{n_{2}} m=0$, for every element $m \in M$. Thus $K=0$.

References

[1] A. Barnard, Multiplication modules, J. Algebra, 71, 1981, pp.174-178.
[2] D. A. Buchsbaum and D. Eisenbud, What makes a complex exact, J. Algebra, 25, 1973, pp.259-268.
[3] N. Bourbaki, Commutative Algebra, Springer-Verlag, 1989.
[4] A. Campillo, T. S. Giralda, Finitely generated projective modules and Fitting ideals, Collect. Math., 30, 1979, pp.97-102.
[5] C. W. Choi, P. F. Smith, On endomorphism of multiplication modules, J. Korean Math. Soc., 31(1), 1994, pp.89-95.
[6] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-verlag, New York, 1995.
[7] Z. A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16, 1988, pp.755-779.
[8] H. Fitting, Die Determinantenideale eines Moduls, Jahresbericht d. Deutschen Math.-Vereinigung, 46, 1936, pp.195-228.
[9] S. Hadjirezaei, S. Hedayat, On the first nonzero Fitting ideal of a module over a UFD, Comm. Algebra, 41, 2013, pp.361-366.
[10] V. Kodiyalam, Integrally closed modules over two-dimensional regular local ring, Trans. Amer. math. soc., 347(9), 1995, pp.3551-3573.
[11] J.Lipman, On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc., 21, 1969, pp.423-426.
[12] J.Ohm, On the first nonzero Fitting ideal of a module, J. Algebra, 320, 2008, pp.417-425.
[13] R. Y. Sharp, Steps in Commutative Algebra, Cambridge university press, 2000.
[14] P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50, 1988, pp.223-235.
[15] Y. Tiras, M. Alkan, Prime modules and submodules, Comm. Algebra, 31, 2003, pp.5253-5261.

Contact information

S. Hadjirezaei, S. Karimzadeh
> Department of Mathematics, > Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111 , Rafsanjan, Iran E-Mail(s): s.hajirezaei@vru.ac.ir, karimzadeh@vru.ac.ir

Received by the editors: 28.09.2015.

[^0]: 2010 MSC: 13C05, 13C99, 11 Y50.
 Key words and phrases: fitting ideals, multiplication module, projective of constant rank, faithful module.

