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Abstract. Let R be a right Noetherian ring which is also
an algebra over Q (Q the field of rational numbers). Let σ be an
automorphism of R and δ a σ-derivation of R. Let further σ be such
that aσ(a) ∈ N(R) implies that a ∈ N(R) for a ∈ R, where N(R)
is the set of nilpotent elements of R. In this paper we study the
associated prime ideals of Ore extension R[x;σ, δ] and we prove the
following in this direction:

Let R be a semiprime right Noetherian ring which is also an
algebra over Q. Let σ and δ be as above. Then P is an associated
prime ideal of R[x;σ, δ] (viewed as a right module over itself) if and
only if there exists an associated prime ideal U of R with σ(U) = U
and δ(U) ⊆ U and P = U [x;σ, δ].

We also prove that if R be a right Noetherian ring which is also
an algebra over Q, σ and δ as usual such that σ(δ(a)) = δ(σ(a))
for all a ∈ R and σ(U) = U for all associated prime ideals U of
R (viewed as a right module over itself), then P is an associated
prime ideal of R[x;σ, δ] (viewed as a right module over itself) if
and only if there exists an associated prime ideal U of R such that
(P ∩R)[x;σ, δ] = P and P ∩R = U .

1. Introduction and preliminaries

Notation: All rings are associative with identity. Throughout this paper
R denotes a ring with identity 1 6= 0. The prime radical of R is denoted by
P (R). The set of nilpotent elements of R is denoted by N(R). The fields
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of rational numbers, real numbers and complex numbers are denoted by
Q, R, C respectively. For any subset J of a right R-module M , annihilator
of J is denoted by Ann(J). The set of prime ideals of R is denoted by
Spec(R), the set of associated prime ideals of R (viewed as a right module
over itself) is denoted by Ass(RR), and the set of minimal prime ideals of
R is denoted by Min.Spec(R). Let R be a right Noetherian ring. For any
uniform right R-module J , the assassinator of J is denoted by Assas(J).
Let M be a right R-module. Consider the set

{Assas(J) | J is a uniform right R-submodule of M}.

We denote this set by A(MR).

Remark 1.1. If R is viewed as a right module over itself, we note that
Ass(RR) = A(RR) (5Y of Goodearl and Warfield [8]).

For any two ideals I, J of R; I ⊂ J means that I is strictly contained
in J .

Let K be an ideal of a ring R such that σm(K) = K for some integer
m ≥ 1, we denote ∩m

i=1σ
i(K) by K0.

Ore extensions: Let R be a ring, σ an endomorphism of R and
δ a σ-derivation of R (δ : R → R is an additive map with δ(ab) =
δ(a)σ(b) + aδ(b), for all a, b ∈ R).

For example let σ be an endomorphism of a ring R and δ : R → R
any map.
Let φ : R → M2(R) defined by

φ(r) =

(

σ(r) 0
δ(r) r

)

, for all r ∈ R be a ring homomorphism.

Then δ is a σ-derivation of R.
We denote the Ore extension R[x;σ, δ] by O(R). If I is an ideal of R

such that I is σ-stable; i.e. σ(I) = I and I is δ-invariant; i.e. δ(I) ⊆ I, then
we denote I[x;σ, δ] by O(I). We would like to mention that R[x;σ, δ] is
the usual set of polynomials with coefficients in R, i.e. {

∑n
i=0 x

iai, ai ∈ R}
in which multiplication is subject to the relation ax = xσ(a) + δ(a) for
all a ∈ R. We take coefficients of the polynomials on the right as followed
in McConnell and Robson [13].

In case δ is the zero map, we denote the skew polynomial ring R[x;σ]
by S(R) and for any ideal I of R with σ(I) = I, we denote I[x;σ] by
S(I).
In case σ is the identity map, we denote the differential operator ring
R[x; δ] by D(R) and for any ideal J of R with δ(J) ⊆ J , we denote J [x; δ]
by D(J).
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Ore-extensions (skew-polynomial rings and differential operator rings)
have been of interest to many authors. For example see [1, 4, 5, 7, 8, 10,
12, 13].

Prime ideals: This article concerns the study of prime ideals of Ore
extensions (skew polynomial rings). Regarding associated prime ideals of
Ore extension R[x;σ, δ], we have the following from S. Annin [1]:

Definition (2.1) of Annin [1]: Let R be a ring and MR be a right
R-module. Let σ be an endomorphism of R and δ be a σ-derivation of R.
MR is said to be σ-compatible if for each m ∈ M , r ∈ R, we have mr = 0
if and only if mσ(r) = 0. Moreover MR is said to be δ-compatible if for
each m ∈ M , r ∈ R, we have mr = 0 implies mδ(r) = 0. If MR is both
σ-compatible and δ-compatible, MR is said to be (σ − δ)-compatible.

Theorem (2.3) of Annin [1]: Let R be a ring. Let σ be an endo-
morphism of R and δ a σ-derivation of R and MR be a right R-module.
If MR is (σ − δ)-compatible, then Ass(M [x]S) = {P [x] | P ∈ Ass(MR)}.

In [12], Leroy and Matczuk have investigated the relationship between
the associated prime ideals of an R-module MR and that of the induced
S-module MS , where S = R[x;σ, δ] (σ is an automorphism and δ is a
σ-derivation of a ring R). They have proved the following:

Theorem (5.7) of [12]: Suppose MR contains enough prime sub-
modules and let for Q ∈ Ass(MS). If for every P ∈ Ass(MR), σ(P ) = P ,
then Q = PS for some P ∈ Ass(MR).

Motivated by these developments, I investigated the nature of associ-
ated prime ideals of R[x;σ, δ] over a right Noetherian ring R and their
relation with those of the coefficient ring R. In this way I generalized
Theorem (2.4) and Theorem (3.7) of Bhat [4] for associated prime ideals
case. The minimal prime ideal case has been generalized in Lemma (2.2)
of Bhat [5].

Before we state these known results we require the following notation:

Let R be a right Noetherian ring. We know that Ass(RR) is finite
and σj(U) ∈ Ass(RR) for any U ∈ Ass(RR), and for all integers j ≥ 1,
therefore, there exists an integer m ≥ 1 such that σm(U) = U for all U ∈
Ass(RR). We denote ∩m

i=1σ
i(U) by U0 as mentioned in the introduction.

Since Min.Spec(R) is also finite, same notation for Min.Spec(R) also.

Theorem (2.4) of [4]: Let R be a right Noetherian ring and σ be
an automorphism of R. Then:

1. P ∈ Ass(S(R)S(R)) if and only if there exists U ∈ Ass(RR) such
that S(P ∩R) = P and (P ∩R) = U0.
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2. P ∈ Min.Spec(S(R)) if and only if there exists U ∈ Min.Spec(R)
Such that S(P ∩R) = P and P ∩R = U0.

Theorem (3.7) of [4]: Let R be a right Noetherian Q-algebra and δ be
a derivation of R. Then:

1. P ∈ Ass(D(R)D(R)) if and only if P = D(P ∩ R) and P ∩ R ∈
Ass(RR).

2. P ∈ Min.Spec(D(R)) if and only if P = D(P ∩ R) and P ∩ R ∈
Min.Spec(R).

Before we state the main result, we require the following:

Weak σ-rigid rings:
Let R be a ring and σ be an endomorphism of R. Recall that in [11],

σ is called a rigid endomorphism if aσ(a) = 0 implies a = 0 for a ∈ R,
and R is called a σ-rigid ring.

Example 1.2. Let R = C, and σ : R → R be the map defined by
σ(a+ ib) = a− ib, a, b ∈ R. Then it can be seen that R is a σ-rigid ring.

Definition 1.3. (Ouyang [14]): Let R be a ring and σ be an endomor-
phism of R. Then R is said to be a weak σ-rigid ring if aσ(a) ∈ N(R) if
and only if a ∈ N(R) for a ∈ R.

Example 1.4. (Example (2.1) of Ouyang [14]: Let σ be an endomorphism
of a ring R such that R is a σ-rigid ring. Let

A =
{





a b c
0 a d
0 0 a



 | a, b, c, d ∈ R
}

be a subring of T3(R), the ring of upper triangular matrices over R. Now
σ can be extended to an endomorphism σ of A by σ((aij)) = (σ(aij)).
The it can be seen that A is a weak σ-rigid ring.

2. Main results

We now state the main result in the form of the following Theorem:

Theorem A: Let R be a semiprime right Noetherian ring, which is
also an algebra over Q. Let σ be an automorphism of R such that R is a
weak σ-rigid ring and δ be a σ-derivation of R. Then P ∈ Ass(O(R)O(R))
if and only if there exists U ∈ Ass(RR) such that O(P ∩ R) = P and
(P ∩R) = U . This result has been proved in Theorem (2.6).

Towards the proof of the above Theorem, we require the following:
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Recall that an ideal of a ring R is said to be completely semiprime if
a2 ∈ R implies that a ∈ R.

Let R be a Noetherian ring and σ an automorphism of R. We now
give a necessary and sufficient condition for R to be a weak σ-rigid ring
in the following Theorem:

Theorem 2.1. Let R be a Noetherian ring. Let σ be an automorphism
of R. Then R is a weak σ-rigid ring if and only if N(R) is completely
semiprime.

Proof. First of all we show that σ(N(R)) = N(R). We have σ(N(R)) ⊆
N(R) as σ(N(R)) is a nilpotent ideal of R. Now for any n ∈ N(R), there
exists a ∈ R such that n = σ(a). So I = σ−1(N(R)) = {a ∈ R such that
σ(a) = n ∈ N(R)} is an ideal of R. Now I is nilpotent, therefore I ⊆ N(R),
which implies that N(R) ⊆ σ(N(R)). Hence σ(N(R)) = N(R).

Now let R be a weak σ-rigid ring. We will show that N(R) is completely
semiprime. Let a ∈ R be such that a2 ∈ N(R). Then
aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈ σ(N(R)) = N(R).
Therefore aσ(a) ∈ N(R) and hence a ∈ N(R). So N(R) is completely
semiprime.

Conversely let N(R) be completely semiprime. We will show that
R is a weak σ-rigid ring. Let a ∈ R be such that aσ(a) ∈ N(R). Now
aσ(a)σ−1(aσ(a)) ∈ N(R) implies that a2 ∈ N(R), and so a ∈ N(R).
Hence R is a weak σ-rigid ring.

Recall that a ring R is 2-primal if and only if N(R) = P (R), i.e. if the
prime radical is a completely semiprime ideal. We note that a reduced is
2-primal and a commutative ring is also 2-primal. For further details on
2-primal rings, we refer the reader to [3, 9].

Proposition 2.2. Let R be a 2-primal right Noetherian ring which is also
an algebra over Q. Let σ be an automorphism of R such that R is a weak
σ-rigid ring and δ a σ-derivation of R. Then σ(U) = U and δ(U) ⊆ U
for all U ∈ Min.Spec(R).

Proof. Let R be 2-primal weak σ-rigid ring. Then N(R) = P (R) and
aσ(a) ∈ N(R) implies that a ∈ N(R). Therefore, aσ(a) ∈ P (R) implies
that a ∈ P (R).

We will now show that P (R) is completely semiprime. Let a ∈ R be
such that a2 ∈ P (R). Then

aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈ σ(P (R)) = P (R).

Therefore aσ(a) ∈ P (R) and hence a ∈ P (R).
We next show that σ(U) = U for all U ∈ Min.Spec(R). Let U = U1 be

a minimal prime ideal of R. Let U2, U3, ..., Un be the other minimal primes
of R. Suppose that σ(U) 6= U . Then σ(U) is also a minimal prime ideal of
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R. Renumber so that σ(U) = Un. Let a ∈ ∩n−1
i=1 Ui. Then σ(a) ∈ Un, and

so aσ(a) ∈ ∩n
i=1Ui = P (R). Now P(R) is completely semiprime implies

that a ∈ P (R), and thus ∩n−1
i=1 Ui ⊆ Un, which implies that Ui ⊆ Un for

some i 6= n, which is impossible. Hence σ(U) = U .
Let now V = {a ∈ U | such that δk(a) ∈ U for all integers k ≥ 1}.
First of all, we will show that V is an ideal of R. Let a, b ∈ V . Then

δk(a) ∈ U and δk(b) ∈ U for all integers k ≥ 1}. Now δk(a − b) =
δk(a)− δk(b) ∈ U for all k ≥ 1}. Therefore a− b ∈ V . Also it is easy to
see that for any a ∈ V and for any r ∈ R, ar ∈ V and ra ∈ V . Therefore
V is a δ-invariant ideal of R.

We will now show that V ∈ Spec(R). Suppose V /∈ Spec(R). Let
a /∈ V , b /∈ V be such that aRb ⊆ V . Let t, s be least such that δt(a) /∈ U
and δs(b) /∈ U . Now there exists c ∈ R such that δt(a)cσt(δs(b)) /∈ U . Let
d = σ−t(c). Now δt+s(adb) ∈ U as aRb ⊆ V . This implies on simplification
that δt(a)σt(d)σt(δs(b)) + u ∈ U , where u is sum of terms involving δl(a)
or δm(b), where l < t and m < s. Therefore by assumption u ∈ U which
implies that δt(a)σt(d)σt(δs(b)) ∈ U . This is a contradiction. Therefore,
our supposition must be wrong. Hence V ∈ Spec(R). Now V ⊆ U , so
V = U as U ∈ Min.Spec(R). Hence δ(U) ⊆ U .

Corollary 2.3. Let R be a 2-primal right Noetherian ring which is also
an algebra over Q. Let σ be an automorphism of R such that σ(U) = U
for all U ∈ Min.Spec(R). Let δ be a σ-derivation of R. Then δ(U) ⊆ U .

Lemma 2.4. Let R be a right Noetherian ring which is also an algebra
over Q. Let σ be an automorphism of R such that R is a weak σ-rigid
ring and δ a σ-derivation of R. Then

1. If U is a minimal prime ideal of R, then O(U) is a minimal prime
ideal of of O(R) and O(U) ∩R = U .

2. If P is a minimal prime ideal of O(R), then P ∩ R is a minimal
prime ideal of R.

Proof. (1) Let U be a minimal prime ideal of R. Then by Proposition
(2.2) σ(U) = U and δ(U) ⊆ U . Now on the same lines as in Theorem
(2.22) of Goodearl and Warfield [8] we have O(U) ∈ Spec(O(R)). Suppose
L ⊂ O(U) be a minimal prime ideal of O(R). Then L ∩R ⊂ U is a prime
ideal of R, a contradiction. Therefore O(U) ∈ Min.Spec(O(R)). Now it
is easy to see that O(U) ∩R = U .

(2) We note that x /∈ P for any prime ideal P of O(R) as it is not
a zero divisor. Now the proof follows on the same lines as in Theorem
(2.22) of Goodearl and Warfield [8] using Lemma (2.1) and Lemma (2.2)
of Bhat [2] and Proposition (2.2).



14 Associated Prime ideals of weak σ-rigid rings

Theorem 2.5 (Hilbert Basis Theorem). Let R be a right/left Noetherian
ring. Let σ and δ be as usual. Then the ore extension O(R) = R[x;σ, δ] is
right/left Noetherian.

Proof. See Theorem (2.6) of Goodearl and Warfield [8].

With this we now state and prove Theorem A:

Theorem 2.6. Let R be a semiprime right Noetherian ring, which is
also an algebra over Q. Let σ be an automorphism of R such that R is a
weak σ-rigid ring and δ be a σ-derivation of R. Then P ∈ Ass(O(R)O(R))
if and only if there exists U ∈ Ass(RR) such that O(P ∩ R) = P and
P ∩R = U .

Proof. O(R) is right Noetherian by Theorem (2.5). Let P ∈ Ass(O(R)O(R)).
Now by Remark (1.1) Ass(O(R)O(R)) = A(O(R)(R)). Let P = Ann(I) =
Assas(I) for some ideal I of O(R) such that I is uniform as a right
O(R)-module. Choose f ∈ I to be nonzero of minimal degree (with lead-
ing coefficient an). Let U = Ann(anR) = Assas(anR). Now R is right
Noetherian implies that Ass(RR) = A(RR), and since R is semiprime,
U ∈ Min.Spec(R) by Proposition (2.2.14) of McConnell and Robson [13].
Now R is a weak σ-rigid ring, therefore, Proposition (2.2) implies that
σ(U) = U and δ(U) ⊆ U . So O(U) is an ideal of O(R). Now fU = 0.
Therefore fO(R)U ⊆ fUO(R) = 0, i.e. U ⊆ P ∩ R. But it is clear that
P ∩R ⊆ U . Thus P ∩R = U .

Conversely let U = Ann(cR) = Assas(cR), c ∈ R. Now R is right
Noetherian implies that Ass(RR) = A(RR), and since R is semiprime, U ∈
Min.Spec(R) by Proposition (2.2.14) of McConnell and Robson [13]. Now
R is a weak σ-rigid ring, therefore, Proposition (2.2) implies that σ(U) = U
and δ(U) ⊆ U . Now it can be easily seen that O(U) = Ann(chO(R)) for
all h ∈ O(R). Therefore O(U) = Ann(cO(R)) = Assas(cO(R)).

Example 2.7. 1. R as in Example 1.2 is a semiprime weak σ-rigid
ring, but R being a field has no ideals and is therefore a trivial
example.

2. Let τ be the conjugacy map on C. Let

R =
{

(

a b
0 a

)

| a, b ∈ C

}

.

Define σ : R → R by σ((aij)) = (τ(aij)). Then it can be seen that
σ is an endomorphism of R and R is a weak σ-rigid ring.

Now for any s ∈ R, define δs : R → R by δs(a) = as − sσ(a), for
a ∈ R. Then δs is a σ-derivation of R.

Let
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U =
{

(

a b
0 0

)

∣

∣

∣ a, b ∈ C

}

∈ Ass(RR).

In fact U = Ann(I) = Assas(I), where I =
{

(

0 0
0 c

)

∣

∣

∣ c ∈ C

}

is a

right ideal of R. Now we note that σ(I) = I, δs(I) ⊆ I, Then it can be
seen that σ is an endomorphism of R and σ(U) ⊆ U . and δs(U) ⊆ U . Also
O(U) ∈ Ass(O(R)O(R)). In fact O(U) = Ann(O(I)) = Assas(O(I)).

Example 2.8. Now let R = F × F , F a field and σ : R → R defined by
σ((u, v)) = (v, u) for u, v ∈ F . Then σ is an automorphism of R. But R
is not a weak σ-rigid ring as for any 0 6= a ∈ F , we have (a, 0)σ((a, 0)) =
(0, 0) ∈ N(R), but (a, 0) /∈ N(R).

Proposition 2.9. Let R be a Noetherian Q-algebra. Let σ be an automor-
phism of R and δ a σ-derivation of R such that σ(δ(a)) = δ(σ(a)) for all
a ∈ R. Then U ∈ Min.Spec(R) with σ(U) = U implies that δ(U) ⊆ U .

Proof. See Lemma (2.6) of Bhat [6].

We now prove the following Theorem:

Theorem 2.10. Let R be a right Noetherian ring which is also an algebra
over Q, σ be an automorphism of R and δ a σ-derivation of R such that
σ(δ(a)) = δ(σ(a)) for all a ∈ R and σ(U) = U for all U ∈ A(RR). Then
P ∈ Ass(O(R)O(R)) if and only if there exists U ∈ Ass(RR) such that
O(P ∩R) = P and P ∩R = U .

Proof. O(R) is right Noetherian by Theorem (2.5). Let J ∈ Ass(O(R)O(R)).
Now by Remark (1.1) Ass(O(R)O(R)) = A(O(R)(R)). Let P = Ann(I) =
Assas(I) for some ideal I of O(R) such that I is uniform as a right O(R)-
module. Choose f ∈ I to be nonzero of minimal degree (with leading
coefficient an). Let U = Ann(anR) = Assas(anR). Now R is right Noethe-
rian implies that Ass(RR) = A(RR). Now by hypothesis σ(U) = U , and
therefore, Proposition (2.9) implies that δ(U) ⊆ U . So O(U) is an ideal of
O(R). Now fU = 0. Therefore fO(R)U ⊆ fUO(R) = 0. So U ⊆ P ∩ R.
But it is clear that P ∩R ⊆ U . Thus P ∩R = U .

Conversely let U = Ann(cR) = Assas(cR), c ∈ R. Now R is right
Noetherian implies that Ass(RR) = A(RR). Now by hypothesis σ(U) = U ,
and therefore, Proposition (2.9) implies that δ(U) ⊆ U . Now it can be
easily seen that O(U) = Ann(chO(R)) for all h ∈ O(R). Therefore
O(U) = Ann(cO(R)) = Assas(cO(R)).

Example 2.11. Let R =
{

(

a b
0 a

)

∣

∣

∣ a, b ∈ R

}

. Then

U =
{

(

a b
0 0

)

∣

∣

∣
a, b ∈ R

}

∈ Ass(RR).
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In fact U = Ann(I) = Assas(I), where I =
{

(

0 0
0 c

)

∣

∣

∣ c ∈ R

}

is a

right ideal of R.

Let σ : R → R be defined by σ
(

(

a b
0 a

)

)

=

(

a 0
0 a

)

. Then it

can be seen that σ is an endomorphism of R and σ(U) ⊆ U .
For any s ∈ R, define δs : R → R by δs(a) = as− sσ(a), for a ∈ R. Then
δs is a σ-derivation of R. Also we see that σ(δs(u)) = δs(σ(u)) for all

u ∈ R. For let u =

(

a b
0 a

)

and s =

(

p q
0 p

)

. Then

σ(δs(u)) =

(

0 0
0 0

)

and δs(σ(u)) =

(

0 0
0 0

)

.

Now we note that σ(I) = I, δs(I) ⊆ I and δs(U) ⊆ U . Also O(U) ∈
Ass(O(R)O(R)). In fact O(U) = Ann(O(I)) = Assas(O(I)).

Example 2.12. Let R =

(

R R

0 R

)

. Then P =

(

R R

0 0

)

∈ Ass(RR).

In fact P = Ann(I) where I =

(

0 0
0 R

)

is a right ideal of R. Let

σ : R → R be defined by σ
(

(

a b
0 c

)

)

=

(

a 0
0 c

)

. Then it can be

seen that σ is an endomorphism of R and σ(P ) ⊆ P .
For any s ∈ R, define δs : R → R by δs(a) = as− sσ(a), for a ∈ R. Then
δs is a σ-derivation of R. But we see that σ(δs(u)) 6= δs(σ(u)) for all

u ∈ R. Let u =

(

a b
0 c

)

and s =

(

p q
0 r

)

. Then

σ(δs(u)) =

(

0 pb+ qc− aq
0 0

)

and δs(σ(u)) =

(

0 0
0 0

)

.

Example 2.13. Let R = R× R, σ : R → R defined by σ((a, b)) = (b, a)
for a, b ∈ R. Then σ is an automorphism of R. Let now r ∈ R. Define
δr : R → R by δr((a, b)) = (a, b)r − rσ((a, b)) for a, b ∈ R. Then δ is a
σ-derivation. Now for any (a, b) ∈ R,

σ(δr((a, b))) = σ((u, v)r − rσ((u, v))) =

= σ((u, v)r − r(v, u)) = σ((ur, vr)− σ(vr, ur)) = (vr, ur)− (ur, vr)).

Also

δr(σ((u, v))) = δr(v, u) = (v, u)r − rσ((v, u)) =

= (v, u)r − r(u, v) = (vr, ur)− (ur, vr)).

Therefore σ(δ((u, v))) = δ(σ((u, v))) for all (u, v) ∈ R. We see that
U = 0×R ∈ Ass(RR). In fact U = Ann(R×{0}) = Assas(R×{0}). But
we note that σ(U) 6= U .
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