Abstract. Let R be a ring and M be a right R-module. We say a submodule S of M is a (weak) Goldie-Rad-supplement of a submodule N in M, if $M = N + S$, $(N \cap S \leq \text{Rad}(M))$ $N \cap S \leq \text{Rad}(S)$ and $N^\beta \ast S$, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements in M. In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if M is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian.

Introduction

Throughout this article, all rings are associative with unity and R denotes such a ring. All modules are unital right R-modules unless indicated otherwise. Let M be an R-module. $N \leq M$ will mean N is a submodule of M. $\text{End}(M)$ and $\text{Rad}(M)$ will denote the ring of endomorphisms of M and the Jacobson radical of M, respectively. The notions which are not explained here will be found in [6].

This study was supported by Anadolu University Scientific Research Projects Commission under the grant no:1505F225.

2010 MSC: 16D10, 16D40, 16D70.

Key words and phrases: Supplement submodule, Goldie-Rad-Supplement submodule, amply Goldie-Rad-Supplemented module.
Recall that a submodule S of M is called small in M (notation $S \ll M$) if $M \neq S + T$ for any proper submodule T of M. A module H is called hollow if every proper submodule of H is small in H. Let N and L be submodules of M. Then N is called a supplement of L in M if $N + L = M$ and N is minimal with respect to this property, or equivalently, N is a supplement of L in M if $M = N + L$ and $N \cap L \ll N$. N is said to be a supplement submodule of M if N is a supplement of some submodule of M. Recall from [3] that M is called a supplemented module if any submodule of M has a supplement in M. M is called an amply supplemented module if for any two submodule A and B of M with $A + B = M$, B contains a supplement of A. M is called a weakly supplemented module if for each submodule A of M there exists a submodule B of M such that $M = A + B$ and $A \cap B \ll M$. Let $K, N \subseteq M$. K is a (weak) Rad-supplement of N in M, if $M = N + K$ and $(N \cap K \leq \text{Rad}(M))$ $N \cap K \leq \text{Rad}(K)$ (in this case K is a (weak) generalized supplement of N (see, [5])). K is said to be a (weak) Rad-supplement submodule of M if K is a (weak) Rad-supplement of some submodule of M (in this case K is a generalized (weakly) supplement submodule (see, [5])). A module M is called (weakly) Rad-supplemented if every submodule of M has a (weak) Rad-supplement (in this case M is a generalized (weakly) supplemented module (see, [5])).

In [2], the authors introduced a new class of modules namely Goldie*-Supplemented by defining and studying the β^* relation as the following:

Let $X, Y \subseteq M$. X and Y are β^* equivalent, $X \beta^* Y$, provided $\frac{X+Y}{X} \ll \frac{M}{X}$ and $\frac{X+Y}{Y} \ll \frac{M}{Y}$. After this work, Talebi et. al. [4] defined and studied the β^{**} relation and investigated some properties of this relation. In [4], this β^{**} relation was defined as the following:

Let $X, Y \subseteq M$. X and Y are β^{**} equivalent, $X \beta^{**} Y$, provided $\frac{X+Y}{X} \leq \frac{\text{Rad}(M)+X}{X}$ and $\frac{X+Y}{Y} \leq \frac{\text{Rad}(M)+Y}{Y}$.

Based on definition of β^{**} relation they introduced a new class of modules namely Goldie-Rad-supplemented. A module M is called Goldie-Rad-supplemented if for any submodule N of M, there exists a Rad-supplement submodule D of M such that $N \beta^{**} D$.

Let M be an R-module. We say a submodule S is a (weak) Goldie-Rad-supplement of a submodule N in M, if $M = N + S$, $(N \cap S \leq \text{Rad}(M))$ $N \cap S \leq \text{Rad}(S)$ and $N \beta^{**} S$. We say that M is weakly Goldie-Rad-supplemented if every submodule of M has a weak Goldie-Rad-supplement in M. We say that a submodule N of M has ample (weak) Goldie-Rad-supplements in M if, for every $L \subseteq M$ with $N + L = M$, there exists a (weak) Goldie-Rad-supplement S of N with $S \subseteq L$. We say that M is
amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements in M.

We prove that every distributive projective weakly Goldie-Rad-supplemented module is amply weakly Goldie-Rad-supplemented. We show that if M is an amply (weakly) Goldie-Rad-supplemented module and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian. In addition, let M be a radical module ($\text{Rad}(M) = M$). Then M is Artinian if and only if M is an amply (weakly) Goldie-Rad-supplemented module and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules. Moreover, we also show that the class of amply (weakly) Goldie-Rad-supplemented modules is closed under supplement submodules and homomorphic images.

Lemma 1. ([6, 41.1]) Let M be a module and K be a supplement submodule of M. Then $K \cap \text{Rad}(M) = \text{Rad}(K)$.

Theorem 1. ([1, Theorem 5]) Let R be any ring and M be a module. Then $\text{Rad}(M)$ is Artinian if and only if M satisfies DCC on small submodules.

1. Amply (weakly) Goldie-Rad-supplemented modules

In this section, we discuss the concept of amply (weakly) Goldie-Rad-supplemented modules and we give some properties of such modules.

Proposition 1. Every amply (weakly) Goldie-Rad-supplemented module is a (weakly) Goldie-Rad-supplemented module.

Proof. Let M be an amply (weakly) Goldie-Rad-supplemented module and N be a submodule of M. Then $N + M = M$. Since M is amply (weakly) Goldie-Rad-supplemented, M contains a (weak) Goldie-Rad-supplement S of N. So S is a (weak) Goldie-Rad-supplement of N in M. Hence M is (weakly) Goldie-Rad-supplemented. \qed

Example 1. An hollow radical module M ($\text{Rad}(M) = M$) is amply Goldie-Rad-supplemented.

Lemma 2. Let M be an R-module and $L \leq N \leq M$. If S is a (weak) Goldie-Rad-supplement of N in M, then $(S + L)/L$ is a (weak) Goldie-Rad-supplement of N/L in M/L.
Proof. By the proof of [5, Proposition 2.6 (1)], \((S + L)/L\) is a (weak) Rad-supplement of \(N/L\) in \(M/L\). By [4, Proposition 2.3 (1)], \(\frac{N}{L} \otimes \beta^{**} \left(\frac{S + L}{L}\right)\). Hence \((S + L)/L\) is a (weak) Goldie-Rad-supplement of \(N/L\) in \(M/L\). \(\square\)

Proposition 2. Every factor module of an amply (weakly) Goldie-Rad-supplemented module is amply (weakly) Goldie-Rad-supplemented.

Proof. Let \(M\) be an amply (weakly) Goldie-Rad-supplemented module and \(M/K\) be any factor module of \(M\). Let \(N/K \leq M/K\). For \(L/K \leq M/K\), let \(N/K + L/K = M/K\). Then \(N + L = M\). Since \(M\) is an amply (weakly) Goldie-Rad-supplemented module, there exists a (weak) Goldie-Rad-supplement \(S\) of \(N\) with \(S \leq L\). By Lemma 2, \((S + K)/K\) is a (weak) Goldie-Rad-supplement of \(N/K\) in \(M/K\). Since \((S + K)/K \leq L/K\), \(N/K\) has ample (weak) Goldie-Rad-supplements in \(M/K\). Thus \(M/K\) is amply (weakly) Goldie-Rad-supplemented. \(\square\)

Corollary 1. Every direct summand of an amply (weakly) Goldie-Rad-supplemented module is amply (weakly) Goldie-Rad-supplemented.

Proof. Let \(M\) be an amply (weakly) Goldie-Rad-supplemented module. Since every direct summand of \(M\) is isomorphic to a factor module of \(M\), then by Proposition 2, every direct summand of \(M\) is amply (weakly) Goldie-Rad-supplemented. \(\square\)

Corollary 2. Every homomorphic image of an amply (weakly) Goldie-Rad-supplemented module is amply (weakly) Goldie-Rad-supplemented.

Proof. Let \(M\) be an amply (weakly) Goldie-Rad-supplemented module. Since every homomorphic image of \(M\) is isomorphic to a factor module of \(M\), every homomorphic image of \(M\) is amply (weakly) Goldie-Rad-supplemented by Proposition 2. \(\square\)

Let \(M\) be a module. Then \(M\) is called *distributive* if its lattice of submodules is a distributive lattice, equivalently for submodules \(K, L, N\) of \(M\), \(N + (K \cap L) = (N + K) \cap (N + L)\) or \(N \cap (K + L) = (N \cap K) + (N \cap L)\).

Proposition 3. Every supplement submodule of a distributive amply (weakly) Goldie-Rad-supplemented module is amply (weakly) Goldie-Rad-supplemented.

Proof. Let \(M\) be an amply (weakly) Goldie-Rad-supplemented module and \(S\) be any supplement submodule of \(M\). Then there exists a submodule \(N\) of \(M\) such that \(S\) is a supplement of \(N\). Let \(L \leq S\) and \(L + S' = S\)
for $S' \subseteq S$. Then $N + L + S' = M$. Since M is amply (weakly) Goldie-Rad-supplemented, $N + L$ has a (weak) Goldie-Rad-supplement S'' in M with $S'' \subseteq S'$.

In this case $(N + L) + S'' = M$, ($(N + L) \cap S'' \subseteq \text{Rad}(M)$) $(N + L) \cap S'' \subseteq \text{Rad}(S'')$ and $(N + L)\beta**S''$. Since $L + S'' \subseteq S$ and S is a supplement of N in M, $L + S'' = S$. On the other hand, $L \cap S'' \subseteq (N + L) \cap S'' \subseteq \text{Rad}(S'')$. Now, we show that $L\beta**S''$ in S. By Lemma 1, $S \cap \text{Rad}(M) = \text{Rad}(S)$. Therefore, since $(N + L)\beta**S''$,

$$\frac{L + S''}{S''} = \frac{S \cap (L + S'')}{S''} \leq \frac{S \cap (N + L + S'')}{S''} \leq \frac{S \cap (\text{Rad}(M) + S'')}{S''} = \frac{S'' + (S \cap \text{Rad}(M))}{S''} = \frac{S'' + \text{Rad}(S)}{S''},$$

and since $N \cap S \ll S$, $N + L + S'' \subseteq \text{Rad}(M) + N + L$,

$$\frac{L + S''}{L} = \frac{S \cap (L + S'')}{L} \leq \frac{S \cap (L + S'' + N)}{L} \leq \frac{S \cap (\text{Rad}(M) + N + L)}{L} = \frac{L + (S \cap (\text{Rad}(M) + N))}{L} \leq \frac{L + \text{Rad}(S)}{L}.$$

Hence S'' is a (weak) Goldie-Rad-supplement of L in S. Since $S'' \subseteq S'$, L has ample (weak) Goldie-Rad-supplements in S. Thus S is amply (weakly) Goldie-Rad-supplemented.

A module M is said to be π-projective if, for every two submodules N, L of M with $L + N = M$, there exists $f \in \text{End}(M)$ with $\text{Im}f \leq L$ and $\text{Im}(1 - f) \leq N$ (see, [6]).

Theorem 2. Let M be a distributive weakly Goldie-Rad-supplemented and π-projective module. Then M is an amply weakly Goldie-Rad-supplemented module.

Proof. Let $N \subseteq M$ and $L + N = M$ for $L \subseteq M$. Since M is weakly Goldie-Rad-supplemented, there exists a weak Goldie-Rad-supplement S of N in M. Then $S + N = M$, $S \cap N \subseteq \text{Rad}(M)$ and $S\beta**N$. Since M is π-projective, there exists $f \in \text{End}(M)$ such that $f(M) \subseteq L$ and $(1 - f)(M) \subseteq N$. Note that $f(N) \subseteq N$ and $(1 - f)(L) \subseteq L$. Then

$$M = f(M) + (1 - f)(M) \leq f(S + N) + N = f(S) + N.$$

Let $n \in N \cap f(S)$. Then there exists $s \in S$ with $n = f(s)$. In this case $s - n = s - f(s) = (1 - f)(s) \in N$ and then $s \in N$. Hence $s \in N \cap S$ and
\[N \cap f(S) \leq f(N \cap S). \] Since \(N \cap S \leq \text{Rad}(M) \), \(f(N \cap S) \leq f(\text{Rad}(M)) \). Then
\[
N \cap f(S) \leq f(N \cap S) \leq f(\text{Rad}(M)) \leq \text{Rad}(f(M)) \leq \text{Rad}(M)
\]
Next we show that \(f(S) \beta^{**} N \). Since \(S \beta^{**} N \), \(S + N \leq \text{Rad}(M) + N \) and \(S + N \leq \text{Rad}(M) + S \). Hence
\[
f(S) + N = M = S + N \leq \text{Rad}(M) + N,
\]
and since \(S \cap N \leq \text{Rad}(M) \),
\[
f(S) + N = f(S) + (N \cap M) = f(S) + (N \cap (\text{Rad}(M) + S)) \leq f(S) + \text{Rad}(M).
\]
Hence \(f(S) \) is a weak Goldie-Rad-supplement of \(N \) in \(M \). Since \(f(S) \leq L \), \(N \) has ample weak Goldie-Rad-supplements in \(M \). Thus \(M \) is amply weakly Goldie-Rad-supplemented.

Corollary 3. Every projective distributive weakly Goldie-Rad-supplemented module is an amply weakly Goldie-Rad-supplemented module.

Proof. Since every projective module is \(\pi \)-projective, every projective and distributive weakly Goldie-Rad-supplemented module is an amply weakly Goldie-Rad-supplemented module by Theorem 2.

Corollary 4. Let \(M = \bigoplus_{i=1}^{n} M_i \) be a distributive module and \(M_1, M_2, \ldots, M_n \) be projective modules. Then \(M = \bigoplus_{i=1}^{n} M_i \) is amply weakly Goldie-Rad-supplemented if and only if for every \(1 \leq i \leq n \), \(M_i \) is amply weakly Goldie-Rad-supplemented.

Proof. "\(\Rightarrow \)" is clear from Corollary 1.
"\(\Leftarrow \)" Since \(M_i \) is amply weakly Goldie-Rad-supplemented, \(M_i \) is weakly Goldie-Rad-supplemented. Let \(U \leq M \) and \(U_i = M_i \cap U \). There exists \(S_i \leq M_i \) such that \(S_i \beta^{**} U_i, S_i + U_i = M_i, S_i \cap U_i \leq \text{Rad}(M_i) \) for \(i = 1, \ldots, n \).

By [4, Proposition 2.5], \(U \beta^{**} (\Sigma_{i=1}^{n} S_i) \). Moreover, \(U + (\Sigma_{i=1}^{n} S_i) = M \) and \(U \cap (\Sigma_{i=1}^{n} S_i) = \Sigma_{i=1}^{n} (S_i \cap U_i) \leq \Sigma_{i=1}^{n} \text{Rad}(M_i) \leq \text{Rad}(\Sigma_{i=1}^{n} M_i) = \text{Rad}(M) \).

This means that, \((\Sigma_{i=1}^{n} S_i) \) is a weak Goldie-Rad-supplement of \(U \) in \(M \). Hence \(M \) is weakly Goldie-Rad-supplemented. Since, for every \(1 \leq i \leq n \), \(M_i \) is projective, \(M = \bigoplus_{i=1}^{n} M_i \) is also projective. Then \(M \) is amply weakly Goldie-Rad-supplemented by Corollary 3.
Proposition 4. Let M be an amply (weakly) Goldie-Rad-supplemented module. If M satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian.

Proof. Let M be an amply (weakly) Goldie-Rad-supplemented module which satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules. Then $\text{Rad}(M)$ is Artinian by Theorem 1. It suffices to show that $M/\text{Rad}(M)$ is Artinian. Let N be any submodule of M containing $\text{Rad}(M)$. Then there exists a (weak) Goldie-Rad-supplement S of N in M, i.e., $M = N + S$, $N \cap S \leq \text{Rad}(S) \leq \text{Rad}(M)$ and $N \beta \ast S$. Thus $M/\text{Rad}(M) = (N/\text{Rad}(M)) \oplus ((S + \text{Rad}(M))/\text{Rad}(M))$ and so every submodule of $M/\text{Rad}(M)$ is a direct summand. Therefore $M/\text{Rad}(M)$ is semisimple.

Now suppose that $\text{Rad}(M) \leq N_1 \leq N_2 \leq N_3 \leq \cdots$ is an ascending chain of submodules of M. Because M is amply (weakly) Goldie-Rad-supplemented, there exists a descending chain of submodules $S_1 \geq S_2 \geq S_3 \geq \cdots$ such that S_i is a (weak) Goldie-Rad-supplement of N_i in M for each $i \geq 1$. By hypothesis, there exists a positive integer t such that $S_t = S_{t+1} = S_{t+2} = \cdots$. Because $M/\text{Rad}(M) = N_t/\text{Rad}(M) \oplus (S_t + \text{Rad}(M))/\text{Rad}(M)$ for all $i \geq t$, it follows that $N_t = N_{t+1} = \cdots$. Thus $M/\text{Rad}(M)$ is Noetherian and since $M/\text{Rad}(M)$ is semisimple, by [6, 31.3] $M/\text{Rad}(M)$ is Artinian, as desired. \hfill \Box

Corollary 5. Let M be a finitely generated amply (weakly) Goldie-Rad-supplemented module. If M satisfies DCC on small submodules, then M is Artinian.

Proof. Since $M/\text{Rad}(M)$ is semisimple and M is finitely generated, then by [6, 31.3] $M/\text{Rad}(M)$ is Artinian. Now that M satisfies DCC on small submodules, $\text{Rad}(M)$ is Artinian by Theorem 1. Thus M is Artinian. \hfill \Box

Corollary 6. Let M be a radical module ($\text{Rad}(M) = M$). Then M is Artinian if and only if M is an amply (weakly) Goldie-Rad-supplemented module and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules.

Proof. "\Leftarrow" is clear by Proposition 4.

"\Rightarrow" It suffices to prove that M is amply (weakly) Goldie-Rad-supplemented. It is well known that a module M is Artinian if and only if M is an amply supplemented module and satisfies DCC on supplement submodules and on small submodules. Since an amply supplemented
module is amply Rad-supplemented and for every submodules N, S of M, $N^{\beta**}S$, M is amply (weakly) Goldie-Rad-supplemented, as desired. □

References

Contact Information

F. Takıl Mutlu
Department of Mathematics, Anadolu University, 26470, Eskişehir, Turkey
E-Mail(s): figent@anadolu.edu.tr

Received by the editors: 26.09.2015
and in final form 24.02.2016.