Algebra and Discrete Mathematics
Volume 23 (2017). Number 1, pp. 1–6
(c) Journal "Algebra and Discrete Mathematics"

A criterion of elementary divisor domain for distributive domains

V. Bokhonko, B. Zabavsky

Communicated by V. Mazorchuk

ABSTRACT. In this paper we introduce the notion of the neat range one for Bezout duo-domains. We show that a distributive Bezout domain is an elementary divisor domain if and only if it is a duo-domain of neat range one.

A problem of describing elementary divisor rings is classical and far from its completion. The most full history of this problem and close to it problems can be found in [4]. In the case of commutative rings there are many developments on this problem in the case of noncommutative rings it is little investigated and fragmented. A general picture is far from its full description.

Among these results are should especially note a result of [5] which shows that a distributive elementary divisor domain is a duo-domain. Tuganbaev extended this result in case of a distributive ring [3].

In this paper we give a criterion when a distributive domain is an elementary divisor domain.

We start with necessary definitions and facts. Under a ring R we understand an associative ring with 1, and $1 \neq 0$. We say that matrices Aand B over a ring R are equivalent if exist invertible matrices P and Q of appropriate sizes such that B = PAQ. The fact that matrices A and B are equivalent is denoted by $A \sim B$. If for a matrix A there exists a diagonal matrix $D = (d_i)$ such that $A \sim D$ and $Rd_{i+1}R \subseteq d_iR \cap Rd_i$ for every i

²⁰¹⁰ MSC: 13F99.

Key words and phrases: distributive domain, Bezout duo-domain, neat ring, clear ring, elementary divisor ring, stable range one, neat range one.

then we say that the matrix A has a canonical diagonal reduction. A ring R is an elementary divisor ring if every matrix over R has a canonical diagonal reduction. If over a ring R every 1×2 (2×1) matrix has a canonical diagonal reduction then R called a right (left) Hermite ring.

A ring which is both a right and left Hermite ring is called an Hermite ring. We note that a right Hermite ring is a right Bezout ring that is a ring in which every finitely generated right ideal is principal [1], [4].

A ring R is called clean if every element of R is the sum of an idempotent and a unit. A ring R is called an exchange ring if for every element $a \in R$ there exists an idempotent $e \in R$ such that $e \in aR$, $1 - e \in (1 - a)R$. [2].

A ring R is called a ring of stable range one if for every $a, b \in R$ such that aR + bR = R there exists an element $t \in R$ such that a (a+bt)R = R.

A ring R is called right (left) distributive if every lattice right (left) ideal of ring R is distributive. A distributive ring is a ring which is both right and left distributive ring [3].

A right (left) quasi-duo ring is a ring in which every a right (left) maximal ideal is ideal. In the case of distributive right (left) Bezout rings a connection with right (left) quasi-duo rings is established by the following theorem.

Theorem 1. [3] The following properties are equivalent for a Bezout ring R.

- 1) R is a distributive ring.
- 2) R is a quasi-duo ring.
- 3) From the condition aR + bR = R it follows that Ra + Rb = R for every elements $a, b \in R$.
- 4) From the condition Ra + Rb = R it follows that aR + bR = R for every elements $a, b \in R$.

Theorem 2. [5] Any distributive elementary divisor domain is a duodomain.

Definition 1. We say that a duo-ring R has neat range one if for every $a, b \in R$ such that aR + bR = R there exists an element $t \in R$ such that a R/(a + bt)R is a clean ring.

We note that every duo-ring of stable range one is a ring of neat range one.

The following two theorems are the main result of this paper.

Theorem 3. Any Bezout duo-domain is an elementary divisor domain if and only if it is a domain of neat range one.

Theorem 4. Any distributive Bezout domain is an elementary divisor domain if and only if it is a duo-domain of neat range one.

Theorem 3 is a consequence of Theorem 5 and Proposition 4.

Theorem 4 is a consequence of Theorems 2 and 3.

We prove the following result which will be useful in the forthcoming research. Recall that a row (a_1, \ldots, a_n) of elements of a ring R is called unimodular if $a_1R + \ldots + a_nR = R$.

Proposition 1. Let R be a right Hermite ring, then every unimodular row (a_1, \ldots, a_n) with elements of the ring R can be completed to an invertible matrix.

Proof. Since R is a right Hermite ring and $a_1R + \ldots + a_nR = R$, then

$$(a_1, \dots, a_n)P = (1, 0 \dots 0)$$
 (1)

for some matrix P of order n over the ring R. Note that

$$P^{-1} = (p_{ij}).$$

From equality (1) we have

$$(a_1,\ldots,a_n) = (1,0\ldots,0)P^{-1},$$

then $a_1 = p_{11}, \ldots, a_n = p_{1n}$ and hence the row (a_1, \ldots, a_n) is the first row invertible matrix P^{-1} . The proposition is proved.

Proposition 2. A Hermite duo-ring R is an elementary divisor ring if for such any elements $a, b, c \in R$ such that aR + bR + cR = R there exist elements $p, q \in R$ such that (pa)R + (pb + qc)R = R.

Proof. Let R be an elementary divisor ring. Let aR + bR + cR = R. The matrix $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ has canonical diagonal reduction, i.e., there exists invertible matrices $P = \begin{pmatrix} p & q \\ * & * \end{pmatrix} \in GL_2(R), Q \in GL_2(R)$ such that

$$PAQ = \begin{pmatrix} 1 & 0 \\ 0 & * \end{pmatrix}.$$

Hence we get that paR + (pb + qc)R = R. The necessity is proved.

In order to prove sufficiency according to [1] it is enough to prove that every matrix $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ where aR + bR + cR = R has canonical diagonal reduction. We see that (pa)R + (pb+qc)R = R for some elements $p, q \in R$. Hence pR + qR = R, as R is an Hermite ring and the row (p, q), by Proposition 1, is adding to an invertible matrix $P \in GL_2(R)$.

Obviously, the matrix PA has canonical diagonal reduction. The proposition is proved.

Proposition 3. Let R be a Bezout duo-domain. For every elements $a, b, c \in R$ such that aR + bR + cR = R the following conditions are equivalent:

- 1) There exist elements $p, q \in R$ such that paR + (pb + qc)R = R;
- 2) There exist elements $\lambda, u, v \in R$ such that $b + \lambda c = v \cdot u$, where uR + aR = R, vR + cR = R.

Proof. 1) \Rightarrow 2) Let condition 1) be true. Then it follows that pR+qcR = Rand hence pR + cR = R. Since R is a duo-ring, Rp + Rc = R. Hence vp + jc = 1 for some elements $v, j \in R$. Then vpb - b = jcb = ct for $t \in R$. Note that since R is a duo-ring, then t = jc, where jc = cj'.

Then v(pb + qc) = vpb + vqc = b + ct + vqc = b + ct + ck, that is $v(pb + qc) - b \in cR$, that is $v(pb + qc) - b = c\lambda$ for some $\lambda \in R$. We note that such an element k exists, since R is a duo-ring. Namely, vqc = ck. Hence vR + cR = R and uR + aR = R where u = pb + qc. We note that the condition uR + aR = R follows obviously from the condition paR + (pb + qc)R = R. Condition 2) is proved.

2) \Rightarrow 1) We assume that exists an element $\lambda \in R$ such that $b+c\lambda = vu$, where vR + cR = R and uR + aR = R. Since vR + cR = R then Rv + Rc = R and pv + jc = 1 for some elements $p, j \in R$.

We note that pR + cR = R. Then $pb = p(vu - c\lambda) = (pv)u - pc\lambda = (1-jc)u - pc\lambda = u - qc$ for an element $q \in R$. Hence u = pb + qc. Therefore, (pb + qc)R + aR = R and pR + cR = R. Since R is a Bezout duo-domain, let pR + qR = dR, where $p = dp_1$, $q = dq_1$ and $p_1R + q_1R = R$ such that $p_1R + (p_1b + q_1c)R = p_1R + q_1cR$ since pR + cR = R and $p_1R + q_1R = R$ then $p_1R + (p_1b + q_1c)R = R$.

Hence $(p_1b+q_1c)R + aR = R$ and $(p_1b+q_1c)R + p_1R = R$ and hence $p_1aR + (p_1b+q_1c)R = R$. Condition 1) is true.

The proposition is proved.

Remark 1. In Proposition 3 we can choose the elements u and v such that uR + vR = R.

Theorem 5. Let R be a Bezout duo-domain. Then the following conditions are equivalent.

- 1) R is an elementary divisor duo-domain;
- 2) For every elements $x, y, z \in R$ such that xR + yR = R there exists an element $\lambda \in R$ such that $x + \lambda y = vu$, where uR + zR = R, vR + (1 - z)R = R.

Proof. 1) \Rightarrow 2) Let R be an elementary divisor domain. By Proposition 2, then for every elements $a, b, c \in R$ such that aR + bR + cR = R there exist elements $p, q \in R$ such that paR + (pb + qc)R = R.

We obtain Condition 2 of Proposition 3 to the elements a = z, b = x, c = y(1 - z).

It is complicated to prove the fact that from Condition 2) of our theorem we obtain the condition that for every $a, b, c \in R$ such that aR + bR + cR = R there exist elements $p, q \in R$ such that paR + (pb+qc)R = R. Let bR + cR = dR and $b = db_1$, $c = dc_1$ where $b_1R + c_1R = R$. Since aR + dR = R = aR + bR + cR = R then dR + aR = R hence $1 - d_1d \in aR$ for an element $d_1 \in R$.

2) \Rightarrow 1) Put $x = b_1, y = c_1, z = d_1 d$. By Condition 2) of our theorem, there exists an element $\lambda_1 \in R$ such that $b_1 + c_1\lambda_1 = vu_1$ where $u_1R + (1 - d_1d)R = R, vR + d_1dR = R$. Since $(1 - d_1d) \in aR$ and also the fact that $u_1R + (1 - d_1d)R = R$, then $u_1R + aR = R$. We show that $u = u_1d$ hence uR + aR = R. Let $\lambda \in R$ be such that $c_1\lambda_1 = \lambda c_1$.

We have that $b + \lambda c = (b_1 + \lambda c_1)d = vu_1d = vu$. As $vR + d_1R = R$ then vR + dR = R. Remark that $vR + cR = vR + dc_1R = vR + c_1R$ as $b_1 + \lambda c_1 = vu_1$, $vR + c_1R = R$ therefore vR + cR = R and this means that Condition 2) of Proposition 3 is true. Therefore according to Proposition 3 we conclude that for every $a, b, c \in R$ with aR + bR + cR = R there exist elements $p, q \in R$ such that paR + (pb + qc)R = R, that is according to Proposition 2, R is an elementary divisor ring.

The theorem is proved.

Proposition 4. Let R be a Bezout duo-domain and $c \in R \setminus \{0\}$. Then $\overline{R} = R/cR$ is a clean ring if and only if for every element $a \in R$ there exist elements v, u such that c = vu where uR + aR = R vR + (1 - a)R = R, uR + vR = R.

Proof. Let R be a clean ring. According to [2], R is an exchange ring. Let $\bar{a} = a + cR$. Then there exists an idempotent $\bar{e} \in \bar{R}$ such that $\bar{e} \in \bar{a}\bar{R}$, $\bar{1} - \bar{e} \in (\bar{1} - \bar{a})\bar{R}$. Since $\bar{e} \in \bar{a}\bar{R}$, e - ap = cs for elements $p, s \in R$. Similarly, $1 - e - (1 - a)\alpha = c\beta$ for elements $\alpha, \beta \in R$. Since $\bar{e}^2 = \bar{e}$, then e(1 - e) = ct

for an element $t \in R$. Let eR + cR = dR. Hence $e = de_0, c = dc_0$ for elements $e_0, c_0 \in R$ such that $e_0R + c_0R = R$, hence $e_0(1 - e) = c_0t$ and $e + c_0j \equiv 1$ for every element $j \in R$.

Denote that v = d, $u = c_0$ we have c = vu. Since $e = 1 - c_0 j$, then uR + eR = R. Since e = ap + cs, then uR + aR = R. We show that vR + (1-a)R = R. As $1 - e + (1-a)\alpha = c\beta$ and $e = de_0, c = dc_0$ hence $1 - de_0 + (1-a)\alpha = dc_0\beta$ and this means that $d(e_0 + c_0\beta) + (1-a)\alpha = 1$, thus dR + (1-a)R = R that is vR + (1-a)R = R. The necessity is proved.

Let c = vu, where uR + aR = R, vR + (1 - a)R = R. Let $\bar{u} = u + cR$, $\bar{v} = v + cR$. From the equality uR + vR = R we have ur + vs = 1 for some elements $r, s \in R$. Hence $vur + v^2s = v$ and $u^2r + uvs = u$ and this means that $\bar{v}^2\bar{s} = \bar{v}, \ \bar{u}^2\bar{r} = \bar{u}$.

Let $\bar{v}\bar{s} = \bar{e}$, it is obvious that $\bar{e}^2 = \bar{e}$ and $\bar{1} - \bar{e} = \bar{u}\bar{r}$. Since uR + aR = R, we have ux + ay = 1 for elements $x, y \in R$. Hence vux + vay = v, vuxs + vays = vs.

Let va = av' for some element v'. Hence vuxs + av'ys = vs and this means that $\bar{a}\bar{v}'\bar{y}\cdot\bar{s} = \bar{v}\cdot\bar{s}$ that is $\bar{a}\bar{j} = \bar{e}$ for $\bar{j} \in R$ that is $\bar{e} \in \bar{a}\bar{R}$. Similarly, from the equality vR + (1-a)R = R it follows that $\bar{1} - \bar{e} \in (\bar{1} - \bar{a})R$. According to [2], \bar{R} is a clean ring. The proposition is proved. \Box

References

- Kaplansky I. Elementary divisirs and modules, Trans. Amer. Math. Soc., 1949, v.66, pp. 464–491.
- [2] Nicholson W. K. Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 1977, v.229, pp. 269 – 278.
- [3] Tuganbaev A. A. Rings of elementary divisors and distributive rings, Russian. Math. Serveys., 1991, v.46, N6, pp. 219 – 220.
- [4] Zabavsky B.V. Diagonal reduction of matrices over rings, Mathematical Studies, Monograp Series, Lviv, 2012, v.XVI, 251 p.
- [5] Zabavsky B.V., Komarnytskii M. Y. Distributive elementary divisor domain, Ukr. Mat. J., 1990, v.42, N7, pp. 1000–1004.

CONTACT INFORMATION

 V. Bokhonko, Department of Mechanics and Mathematics,
 B. Zabavsky Ivan Franko National University, Lviv, Ukraine E-Mail(s): linabokhonko@gmail.com, zabavskii@gmail.com

Received by the editors: 26.09.2015 and in final form 31.01.2017.