A criterion of elementary divisor domain for distributive domains

V. Bokhonko, B. Zabavsky

Communicated by V. Mazorchuk

Abstract. In this paper we introduce the notion of the neat range one for Bezout duo-domains. We show that a distributive Bezout domain is an elementary divisor domain if and only if it is a duo-domain of neat range one.

A problem of describing elementary divisor rings is classical and far from its completion. The most full history of this problem and close to it problems can be found in [4]. In the case of commutative rings there are many developments on this problem in the case of noncommutative rings it is little investigated and fragmented. A general picture is far from its full description.

Among these results are should especially note a result of [5] which shows that a distributive elementary divisor domain is a duo-domain. Tuganbaev extended this result in case of a distributive ring [3].

In this paper we give a criterion when a distributive domain is an elementary divisor domain.

We start with necessary definitions and facts. Under a ring R we understand an associative ring with 1 , and $1 \neq 0$. We say that matrices A and B over a ring R are equivalent if exist invertible matrices P and Q of appropriate sizes such that $B=P A Q$. The fact that matrices A and B are equivalent is denoted by $A \sim B$. If for a matrix A there exists a diagonal matrix $D=\left(d_{i}\right)$ such that $A \sim D$ and $R d_{i+1} R \subseteq d_{i} R \cap R d_{i}$ for every i

[^0]then we say that the matrix A has a canonical diagonal reduction. A ring R is an elementary divisor ring if every matrix over R has a canonical diagonal reduction. If over a ring R every $1 \times 2(2 \times 1)$ matrix has a canonical diagonal reduction then R called a right (left) Hermite ring.

A ring which is both a right and left Hermite ring is called an Hermite ring. We note that a right Hermite ring is a right Bezout ring that is a ring in which every finitely generated right ideal is principal [1], [4].

A ring R is called clean if every element of R is the sum of an idempotent and a unit. A ring R is called an exchange ring if for every element $a \in R$ there exists an idempotent $e \in R$ such that $e \in a R$, $1-e \in(1-a) R$. [2].

A ring R is called a ring of stable range one if for every $a, b \in R$ such that $a R+b R=R$ there exists an element $t \in R$ such that a $(a+b t) R=R$.

A ring R is called right (left) distributive if every lattice right (left) ideal of ring R is distributive. A distributive ring is a ring which is both right and left distributive ring [3].

A right (left) quasi-duo ring is a ring in which every a right (left) maximal ideal is ideal. In the case of distributive right (left) Bezout rings a connection with right (left) quasi-duo rings is established by the following theorem.

Theorem 1. [3] The following properties are equivalent for a Bezout ring R.

1) R is a distributive ring.
2) R is a quasi-duo ring.
3) From the condition $a R+b R=R$ it follows that $R a+R b=R$ for every elements $a, b \in R$.
4) From the condition $R a+R b=R$ it follows that $a R+b R=R$ for every elements $a, b \in R$.

Theorem 2. [5] Any distributive elementary divisor domain is a duodomain.

Definition 1. We say that a duo-ring R has neat range one if for every $a, b \in R$ such that $a R+b R=R$ there exists an element $t \in R$ such that a $R /(a+b t) R$ is a clean ring.

We note that every duo-ring of stable range one is a ring of neat range one.

The following two theorems are the main result of this paper.
Theorem 3. Any Bezout duo-domain is an elementary divisor domain if and only if it is a domain of neat range one.

Theorem 4. Any distributive Bezout domain is an elementary divisor domain if and only if it is a duo-domain of neat range one.

Theorem 3 is a consequence of Theorem 5 and Proposition 4.
Theorem 4 is a consequence of Theorems 2 and 3 .
We prove the following result which will be useful in the forthcoming research. Recall that a row $\left(a_{1}, \ldots, a_{n}\right)$ of elements of a ring R is called unimodular if $a_{1} R+\ldots+a_{n} R=R$.

Proposition 1. Let R be a right Hermite ring, then every unimodular row $\left(a_{1}, \ldots, a_{n}\right)$ with elements of the ring R can be completed to an invertible matrix.

Proof. Since R is a right Hermite ring and $a_{1} R+\ldots+a_{n} R=R$, then

$$
\begin{equation*}
\left(a_{1}, \ldots, a_{n}\right) P=(1,0 \ldots 0) \tag{1}
\end{equation*}
$$

for some matrix P of order n over the $\operatorname{ring} R$. Note that

$$
P^{-1}=\left(p_{i j}\right)
$$

From equality (1) we have

$$
\left(a_{1}, \ldots, a_{n}\right)=(1,0 \ldots 0) P^{-1}
$$

then $a_{1}=p_{11}, \ldots, a_{n}=p_{1 n}$ and hence the row $\left(a_{1}, \ldots, a_{n}\right)$ is the first row invertible matrix P^{-1}. The proposition is proved.

Proposition 2. A Hermite duo-ring R is an elementary divisor ring if for such any elements $a, b, c \in R$ such that $a R+b R+c R=R$ there exist elements $p, q \in R$ such that $(p a) R+(p b+q c) R=R$.

Proof. Let R be an elementary divisor ring. Let $a R+b R+c R=R$. The matrix $A=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ has canonical diagonal reduction, i.e., there exists invertible matrices $P=\left(\begin{array}{ll}p & q \\ * & *\end{array}\right) \in G L_{2}(R), Q \in G L_{2}(R)$ such that

$$
P A Q=\left(\begin{array}{ll}
1 & 0 \\
0 & *
\end{array}\right)
$$

Hence we get that $p a R+(p b+q c) R=R$. The necessity is proved.

In order to prove sufficiency according to [1] it is enough to prove that every matrix $A=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ where $a R+b R+c R=R$ has canonical diagonal reduction. We see that $(p a) R+(p b+q c) R=R$ for some elements $p, q \in R$. Hence $p R+q R=R$, as R is an Hermite ring and the row (p, q), by Proposition 1, is adding to an invertible matrix $P \in G L_{2}(R)$.

Obviously, the matrix $P A$ has canonical diagonal reduction. The proposition is proved.

Proposition 3. Let R be a Bezout duo-domain. For every elements $a, b, c \in R$ such that $a R+b R+c R=R$ the following conditions are equivalent:

1) There exist elements $p, q \in R$ such that $p a R+(p b+q c) R=R$;
2) There exist elements $\lambda, u, v \in R$ such that $b+\lambda c=v \cdot u$, where $u R+a R=R, v R+c R=R$.

Proof. 1) $\Rightarrow 2$ Let condition 1) be true. Then it follows that $p R+q c R=R$ and hence $p R+c R=R$. Since R is a duo-ring, $R p+R c=R$. Hence $v p+j c=1$ for some elements $v, j \in R$. Then $v p b-b=j c b=c t$ for $t \in R$. Note that since R is a duo-ring, then $t=j c$, where $j c=c j^{\prime}$.

Then $v(p b+q c)=v p b+v q c=b+c t+v q c=b+c t+c k$, that is $v(p b+q c)-b \in c R$, that is $v(p b+q c)-b=c \lambda$ for some $\lambda \in R$. We note that such an element k exists, since R is a duo-ring. Namely, $v q c=c k$. Hence $v R+c R=R$ and $u R+a R=R$ where $u=p b+q c$. We note that the condition $u R+a R=R$ follows obviously from the condition $p a R+(p b+q c) R=R$. Condition 2$)$ is proved.
$2) \Rightarrow 1)$ We assume that exists an element $\lambda \in R$ such that $b+c \lambda=v u$, where $v R+c R=R$ and $u R+a R=R$. Since $v R+c R=R$ then $R v+R c=R$ and $p v+j c=1$ for some elements $p, j \in R$.

We note that $p R+c R=R$. Then $p b=p(v u-c \lambda)=(p v) u-p c \lambda=$ $(1-j c) u-p c \lambda=u-q c$ for an element $q \in R$. Hence $u=p b+q c$. Therefore, $(p b+q c) R+a R=R$ and $p R+c R=R$. Since R is a Bezout duo-domain, let $p R+q R=d R$, where $p=d p_{1}, q=d q_{1}$ and $p_{1} R+q_{1} R=R$ such that $p_{1} R+\left(p_{1} b+q_{1} c\right) R=p_{1} R+q_{1} c R$ since $p R+c R=R$ and $p_{1} R+q_{1} R=R$ then $p_{1} R+\left(p_{1} b+q_{1} c\right) R=R$.

Hence $\left(p_{1} b+q_{1} c\right) R+a R=R$ and $\left(p_{1} b+q_{1} c\right) R+p_{1} R=R$ and hence $p_{1} a R+\left(p_{1} b+q_{1} c\right) R=R$. Condition 1) is true.

The proposition is proved.
Remark 1. In Proposition 3 we can choose the elements u and v such that $u R+v R=R$.

Theorem 5. Let R be a Bezout duo-domain. Then the following conditions are equivalent.

1) R is an elementary divisor duo-domain;
2) For every elements $x, y, z \in R$ such that $x R+y R=R$ there exists an element $\lambda \in R$ such that $x+\lambda y=v u$, where $u R+z R=R$, $v R+(1-z) R=R$.

Proof. 1) \Rightarrow 2) Let R be an elementary divisor domain. By Proposition 2, then for every elements $a, b, c \in R$ such that $a R+b R+c R=R$ there exist elements $p, q \in R$ such that $p a R+(p b+q c) R=R$.

We obtain Condition 2 of Proposition 3 to the elements $a=z, b=$ $x, c=y(1-z)$.

It is complicated to prove the fact that from Condition 2) of our theorem we obtain the condition that for every $a, b, c \in R$ such that $a R+$ $b R+c R=R$ there exist elements $p, q \in R$ such that $p a R+(p b+q c) R=R$. Let $b R+c R=d R$ and $b=d b_{1}, c=d c_{1}$ where $b_{1} R+c_{1} R=R$. Since $a R+d R=R=a R+b R+c R=R$ then $d R+a R=R$ hence $1-d_{1} d \in a R$ for an element $d_{1} \in R$.
2) $\Rightarrow 1)$ Put $x=b_{1}, y=c_{1}, z=d_{1} d$. By Condition 2) of our theorem, there exists an element $\lambda_{1} \in R$ such that $b_{1}+c_{1} \lambda_{1}=v u_{1}$ where $u_{1} R+$ $\left(1-d_{1} d\right) R=R, v R+d_{1} d R=R$. Since $\left(1-d_{1} d\right) \in a R$ and also the fact that $u_{1} R+\left(1-d_{1} d\right) R=R$, then $u_{1} R+a R=R$. We show that $u=u_{1} d$ hence $u R+a R=R$. Let $\lambda \in R$ be such that $c_{1} \lambda_{1}=\lambda c_{1}$.

We have that $b+\lambda c=\left(b_{1}+\lambda c_{1}\right) d=v u_{1} d=v u$. As $v R+d_{1} R=R$ then $v R+d R=R$. Remark that $v R+c R=v R+d c_{1} R=v R+c_{1} R$ as $b_{1}+\lambda c_{1}=v u_{1}, v R+c_{1} R=R$ therefore $v R+c R=R$ and this means that Condition 2) of Proposition 3 is true. Therefore according to Proposition 3 we conclude that for every $a, b, c \in R$ with $a R+b R+c R=R$ there exist elements $p, q \in R$ such that $p a R+(p b+q c) R=R$, that is according to Proposition $2, R$ is an elementary divisor ring.

The theorem is proved.
Proposition 4. Let R be a Bezout duo-domain and $c \in R \backslash\{0\}$. Then $\bar{R}=R / c R$ is a clean ring if and only if for every element $a \in R$ there exist elements v, u such that $c=v u$ where $u R+a R=R v R+(1-a) R=R$, $u R+v R=R$.

Proof. Let R be a clean ring. According to [2], R is an exchange ring. Let $\bar{a}=a+c R$. Then there exists an idempotent $\bar{e} \in \bar{R}$ such that $\bar{e} \in \bar{a} \bar{R}$, $\overline{1}-\bar{e} \in(\overline{1}-\bar{a}) \bar{R}$. Since $\bar{e} \in \bar{a} \bar{R}, e-a p=c s$ for elements $p, s \in R$. Similarly, $1-e-(1-a) \alpha=c \beta$ for elements $\alpha, \beta \in R$. Since $\bar{e}^{2}=\bar{e}$, then $e(1-e)=c t$
for an element $t \in R$. Let $e R+c R=d R$. Hence $e=d e_{0}, c=d c_{0}$ for elements $e_{0}, c_{0} \in R$ such that $e_{0} R+c_{0} R=R$, hence $e_{0}(1-e)=c_{0} t$ and $e+c_{0} j \equiv 1$ for every element $j \in R$.

Denote that $v=d, u=c_{0}$ we have $c=v u$. Since $e=1-c_{0} j$, then $u R+e R=R$. Since $e=a p+c s$, then $u R+a R=R$. We show that $v R+(1-a) R=R$. As $1-e+(1-a) \alpha=c \beta$ and $e=d e_{0}, c=d c_{0}$ hence $1-d e_{0}+(1-a) \alpha=d c_{0} \beta$ and this means that $d\left(e_{0}+c_{0} \beta\right)+(1-a) \alpha=1$, thus $d R+(1-a) R=R$ that is $v R+(1-a) R=R$. The necessity is proved.

Let $c=v u$, where $u R+a R=R, v R+(1-a) R=R$. Let $\bar{u}=u+c R$, $\bar{v}=v+c R$. From the equality $u R+v R=R$ we have $u r+v s=1$ for some elements $r, s \in R$. Hence $v u r+v^{2} s=v$ and $u^{2} r+u v s=u$ and this means that $\bar{v}^{2} \bar{s}=\bar{v}, \bar{u}^{2} \bar{r}=\bar{u}$.

Let $\bar{v} \bar{s}=\bar{e}$, it is obvious that $\bar{e}^{2}=\bar{e}$ and $\overline{1}-\bar{e}=\bar{u} \bar{r}$. Since $u R+a R=R$, we have $u x+a y=1$ for elements $x, y \in R$. Hence $v u x+v a y=v$, vuxs + vays $=v s$.

Let $v a=a v^{\prime}$ for some element v^{\prime}. Hence $v u x s+a v^{\prime} y s=v s$ and this means that $\bar{a} \bar{v}^{\prime} \bar{y} \cdot \bar{s}=\bar{v} \cdot \bar{s}$ that is $\bar{a} \bar{j}=\bar{e}$ for $\bar{j} \in R$ that is $\bar{e} \in \bar{a} \bar{R}$. Similarly, from the equality $v R+(1-a) R=R$ it follows that $\overline{1}-\bar{e} \in(\overline{1}-\bar{a}) R$. According to [2], \bar{R} is a clean ring. The proposition is proved.

References

[1] Kaplansky I. Elementary divisirs and modules, Trans. Amer. Math. Soc., 1949, v.66, pp. 464-491.
[2] Nicholson W. K. Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 1977, v.229, pp. $269-278$.
[3] Tuganbaev A. A. Rings of elementary divisors and distributive rings, Russian. Math. Serveys., 1991, v.46, N6, pp. $219-220$.
[4] Zabavsky B. V. Diagonal reduction of matrices over rings, Mathematical Studies, Monograp Series, Lviv, 2012, v.XVI, 251 p.
[5] Zabavsky B.V., Komarnytskii M. Y. Distributive elementary divisor domain, Ukr. Mat. J., 1990, v.42, N7, pp. 1000-1004.

Contact information

V. Bokhonko, B. Zabavsky
Department of Mechanics and Mathematics, Ivan Franko National University, Lviv, Ukraine E-Mail(s): linabokhonko@gmail.com, zabavskii@gmail.com

Received by the editors: 26.09.2015
and in final form 31.01.2017.

[^0]: 2010 MSC: 13F99.
 Key words and phrases: distributive domain, Bezout duo-domain, neat ring, clear ring, elementary divisor ring, stable range one, neat range one.

