Algebra and Discrete Mathematics
Volume 24 (2017). Number 2, pp. 181–190
© Journal “Algebra and Discrete Mathematics"

Some properties
of the nilradical and non-nilradical graphs
over finite commutative ring \mathbb{Z}_n

Shalini Chandra, Om Prakash and Sheela Suthar

Communicated by M. Ya. Komarnytskyy

Abstract. Let \mathbb{Z}_n be the finite commutative ring of residue
classes modulo n with identity and $\Gamma(\mathbb{Z}_n)$ be its zero-divisor graph.
In this paper, we investigate some properties of nilradical graph,
denoted by $N(\mathbb{Z}_n)$ and non-nilradical graph, denoted by $\Omega(\mathbb{Z}_n)$ of
$\Gamma(\mathbb{Z}_n)$. In particular, we determine the Chromatic number and
Energy of $N(\mathbb{Z}_n)$ and $\Omega(\mathbb{Z}_n)$ for a positive integer n. In addition,
we have found the conditions in which $N(\mathbb{Z}_n)$ and $\Omega(\mathbb{Z}_n)$ graphs are
planar. We have also given MATLAB coding of our calculations.

Introduction

The concept of zero-divisor graph was introduced by I. beck in 1988 but
the most common definition of zero-divisor graph given by D. F. Anderson
and P. S. Livingston in 1999 is as follows: “Let R be a commutative ring
(with 1) and let $Z(R)$ be its set of zero-divisors. We associate a simple
graph $\Gamma(R)$ to R with vertices $Z(R)^* = Z(R) - \{0\}$, the set of nonzero
zero-divisors of R, and for distinct $x, y \in Z(R)^*$, the vertices x and y are
adjacent if and only if $xy = 0$. Thus, $\Gamma(R)$ is the empty graph if and only
if R is an integral domain.” We have derived some results for the ring \mathbb{Z}_n.

A complete graph is a graph (without loops and multiple edges) in
which every vertex is adjacent to any other vertices of the graph. A graph
in which all vertices have the same degree is said to be a regular graph.
A complete bipartite graph is a graph whose vertices can be divided into

2010 MSC: 13Axx, 05Cxx, 05C15, 05C10, 65KXX.

Key words and phrases: commutative ring, zero-divisor graph, nilradical graph,
non-nilradical graph, chromatic number, planar graph, energy of a graph.
two sets such that every vertex in one set is connected to every vertex in
the other, and no vertex is connected to any other vertices in the same set.
A star graph is a complete bipartite graph in which at least one of the two
vertex sets contains only one vertex. That one vertex is called the center of
the star graph. A vertex of a graph is isolated if there is no edge incident
on it. A graph is almost connected if there exists a path between any two
non-isolated vertices. A proper coloring of a graph \(Z_n \) is a function that
assigns a color to each vertex such that no any two adjacent vertices have
the same color. The chromatic number of \(Z_n \), denoted by \(\chi(Z_n) \), is the
smallest number of colors required for proper coloring. A planar graph is
a graph that can be embedded in the plane, i.e, it can be drawn on the
plane in such a way that its edges intersect only at their endpoints and
we will repeatedly use Kuratowski’s theorem, which states that a graph is planar if and only if it does not contain a subdivision of \(K_5 \) or \(K_{3,3} \).
The energy of a graph is the sum of absolute value of all eigenvalues of the
adjacency matrix. The adjacency matrix corresponding to a zero divisor
graph is defined as \(A = [a_{i,j}] \), where \(a_{i,j} = 1 \), if \(v_i \) \& \(v_j \) represent zero
divisor, i.e., \(v_i.v_j = 0 \) and \(a_{i,j} = 0 \) otherwise, where \(v_i \) and \(v_j \) are vertices
of the graph.

Nilradical and non-nilradical graphs

Definition 1.1. The nilradical graph of \(Z_n \), denoted by \(N(Z_n) \), is the
graph whose vertices are the nonzero nilpotent elements of \(Z_n \) and any
two vertices are connected by an edge if and only if their product is 0.

Definition 1.2. The non-nilradical graph of \(Z_n \), denoted by \(\Omega(Z_n) \), is
the graph whose vertices are the non-nilpotent zero-divisors of \(Z_n \) and
any two vertices are connected by an edge if and only if their product
is 0.

1. Chromatic number and planarity of nilradical and non-nilradical graphs

Theorem 1. If \(p \) and \(q \) are distinct prime numbers and \(n \) is a positive
integer, then

(1) \(\chi(N(Z_n)) = 0 \) if \(n = pq \);
(2) \(\chi(N(Z_n)) = p - 1 \) if \(n = p^2 \);
(3) \(\chi(N(Z_n)) = pq - 1 \) if \(n = p^2q^2 \);
(4) \(\chi(N(Z_n)) = p \) if \(n = p^3 \);
(5) \(\chi(N(Z_n)) = p - 1 \) if \(n = p^2q \).
Proof. (1) Let \(n = pq \), where \(p \) and \(q \) are distinct primes. Then \(N(\mathbb{Z}_n) \) is an empty graph. So, there is no need of any color for coloring the graph. Hence, chromatic number is zero.

(2) Let \(n = p^2 \), where \(p \) is a prime number. If \(p = 2 \), then \(N(\mathbb{Z}_n) \) has only one vertex. This implies the chromatic number is one. If \(p \geq 3 \), then the number of nilpotent elements which are divisible by \(p^2 \) are \((p - 1)\). Also, these \((p - 1)\) nilpotent elements form a complete graph. So, \((p - 1)\) colors are required for coloring the graph and these \((p - 1)\) colors are minimum in numbers. Therefore, chromatic number is \((p - 1)\).

(3) Let \(n = p^2 q^2 \), where \(p \) and \(q \) are prime numbers and \(p \neq q \). Then the nilpotent elements are multiple of \(pq \) and number of nilpotent elements are \(pq - 1 \). Also, these \((pq - 1)\) elements are connected to each other. Thus, \((pq - 1)\) colors are required for coloring the graph. Hence, chromatic number of \(N(\mathbb{Z}_{p^2 q^2}) \) is \((pq - 1)\).

(4) If \(n = p^3 \), where \(p \) is a prime number, then \(N(\mathbb{Z}_n) \) is a complete \(p \)-partite graph with \((p^2 - 1)\) vertices. Therefore, we required \(p \) colors for proper coloring. Hence, chromatic number of \(N(\mathbb{Z}_n) \) is \(p \).

(5) Let \(n = p^2 q \), where \(p \) and \(q \) are distinct prime numbers. Then the nilpotent elements are multiple of \(pq \), and the number of nilpotent elements are \((p - 1)\). These \((p - 1)\) elements are connected to each other and form a complete graph with \((p - 1)\) vertices. Therefore, \((p - 1)\) colors are required for coloring the graph \(N(\mathbb{Z}_{p^2 q}) \). Hence, chromatic number of \(N(\mathbb{Z}_{p^2 q}) \) is \((p - 1)\).

\[\square \]

Theorem 2. Let \(p \) and \(q \) be two distinct prime numbers and \(n \) a positive integer. Then

1. \(\chi(\Omega(\mathbb{Z}_n)) = m \) if \(n = p_1 p_2 p_3 \ldots p_m \), \(m \geq 1 \), where \(p_1, p_2, \ldots, p_m \) are distinct primes;
2. \(\chi(\Omega(\mathbb{Z}_n)) = 0 \) if \(n = p^2 \);
3. \(\chi(\Omega(\mathbb{Z}_n)) = 0 \) if \(n = p^3 \);
4. \(\chi(\Omega(\mathbb{Z}_n)) = 2 \) if \(n = p^2 q \), for \(q = 2 \) or \(3 \).

Proof. (1) Let \(n = p_1 p_2 p_3 \ldots p_m \), for some positive integer \(m \), such that all \(p_i \) are distinct prime numbers. Then \(\Omega(\mathbb{Z}_n) \) is equal to \(\Gamma(\mathbb{Z}_n) \) and since \(\Gamma(\mathbb{Z}_n) \) is \(m \)-partite graph, therefore \(\Omega(\mathbb{Z}_n) \) is also \(m \)-partite graph. In this case, \(m \) distinct colors are needed for proper coloring of the graph \(\Omega(\mathbb{Z}_n) \). Thus, Chromatic number of graph \(\Omega(\mathbb{Z}_n) \) is \(m \).

(2) Let \(n = p^2 \), where \(p \) is a prime number. Then clearly \(\Omega(\mathbb{Z}_n) \) is an empty graph. Hence, there is no need of any color for coloring the graph \(\Omega(\mathbb{Z}_n) \). Hence, chromatic number is zero.
(3) Let \(n = p^3 \), where \(p \) is a prime number. Then \(\Omega(\mathbb{Z}_n) \) is an empty graph. Hence, there is no need of any color for coloring the graph \(\Omega(\mathbb{Z}_n) \). So, chromatic number is zero.

(4) Let \(n = p^2 q \), where \(p \) and \(q \) are distinct prime numbers. Then multiple of \(p \), \(p^2 \) and \(q^2 \) are not adjacent to themselves. But the vertices which are multiple of \(p^2 \) are adjacent to those vertices which are multiple of \(q \) and not adjacent with multiple of \(p \). Similarly, elements which are multiple of \(q \) are not adjacent with multiple of \(p \). Thus, there are two disjoint sets of vertices which are adjacent from one set to other but not adjacent to each other in a set. Therefore, two colors are required for coloring the \(\Omega(\mathbb{Z}_n) \) graph and also we can use one color from them for isolated vertices. Hence, chromatic number is two for \(\Omega(\mathbb{Z}_n) \), when \(n = p^2 q \), where \(p, q \) are distinct prime numbers.

Theorem 3. If \(p \) and \(q \) are distinct prime numbers and \(n \) is a positive integer, then

1. \(N(\mathbb{Z}_n) \) is planar, where \(n = pq \);
2. \(N(\mathbb{Z}_n) \) is planar for \(p \leq 5 \) and non-planar for \(p > 5 \), where \(n = p^2 \);
3. \(N(\mathbb{Z}_n) \) is planar for \(p \leq 5 \) and \(q \) is any prime number, where \(n = p^2 q \);
4. \(N(\mathbb{Z}_n) \) is planar, if \(p < 5 \) and non-planar for \(p \geq 5 \), where \(n = p^3 \);
5. \(N(\mathbb{Z}_n) \) is planar, where \(n = 4k, \gcd(2, k) = 1, p^2 \not| k \) for any prime \(p \) and \(k \) is any positive integer;
6. \(N(\mathbb{Z}_n) \) is planar, where \(n = 9k, \gcd(3, k) = 1, p^2 \not| k \) for any prime \(p \) and \(k \) is any positive integer.

Proof.

(1) If \(n = pq \), where \(p \) and \(q \) are distinct prime numbers, then \(N(\mathbb{Z}_n) \) is an empty graph. Therefore, \(N(\mathbb{Z}_n) \) graph is a planar graph.

(2) If \(n = p^2 \), where \(p \) is a prime number, then the nilpotent elements of \((\mathbb{Z}_n) \) are multiple of \(p \). So, there are \((p - 1)\) nilpotent elements which form a complete graph with \((p - 1)\) vertices and all vertices are adjacent to each other. If \(p = 2 \), then \(N(\mathbb{Z}_n) \) has only one vertex and when \(p = 3 \), then \(N(\mathbb{Z}_n) \) has two vertices. In this case, \(N(\mathbb{Z}_n) \) is a planar graph. If \(p = 5 \), then \(N(\mathbb{Z}_n) \) is a complete graph with 4 vertices and all vertices are adjacent to each other. Therefore, \(N(\mathbb{Z}_n) \) is a planar graph.

For \(p > 5 \), \(N(\mathbb{Z}_n) \) graph contains \(K_{3,3} \) or \(K_5 \) as a proper subgraph. Hence, \(N(\mathbb{Z}_n) \) is not a planar graph for \(p > 5 \).

(3) If \(n = p^2 q \), where \(p \) and \(q \) are distinct prime numbers, then \(N(\mathbb{Z}_n) \) is a complete graph with \((p - 1)\) vertices. Thus, \(N(\mathbb{Z}_n) \) is a planar graph only when \(p \leq 5 \) and \(q \) is any prime, \(p \neq q \), otherwise \(N(\mathbb{Z}_n) \) contains
as a subgraph which is not planar and therefore \(N(Z_n) \) is a planar if \(p \leq 5 \).

(4) If \(n = p^3 \), where \(p \) is any prime, then \(N(Z_n) \) is a complete \(p \)-partite graph with \((p^2 - 1) \) vertices. Therefore, \(N(Z_n) \) is planar for \(p < 5 \) and non-planar for \(p \geq 5 \).

(5) If \(n = 4k \), and \(p^2 \nmid k \), for a prime \(p \) and \(k \) is any positive integer, then \(N(Z_n) \) has only one vertex, hence \(N(Z_n) \) graph is a planar graph.

(6) If \(n = 9k \), \(p^2 \nmid k \), for all prime \(p \) and \(k \) is any positive integer, then \(N(Z_n) \) has two vertices which are adjacent to each other. Thus, \(N(Z_n) \) is a planar graph.

Theorem 4. If \(p \) and \(q \) are distinct prime numbers and \(n \) is a positive integer, then

1. \(\Omega(Z_n) \) is not planar, for \(n = pq \), (specially \(p \geq 5 \) and \(q \geq 3 \));
2. \(\Omega(Z_n) \) is planar, for \(n = p^2 \);
3. \(\Omega(Z_n) \) is planar, for \(n = p^3 \);
4. \(\Omega(Z_n) \) is planar for \(k \leq 6 \) and non-planar for all \(k > 6 \), where \(n = 4k \), \(\gcd(2, k) = 1 \) and \(p^2 \nmid k \), for a prime \(p \) and \(k \) is any positive integer;
5. \(\Omega(Z_n) \) is a planar for \(k \leq 4 \) and non-planar for all \(k > 4 \), where \(n = 9k \), \(\gcd(3, k) = 1 \) and \(p^2 \nmid k \), for a prime \(p \) and \(k \) is any positive integer;
6. \(\Omega(Z_n) \) is planar for \(q = 2 \) and \(3 \), and \(p \) is any prime number, where \(n = p^2q \).

Proof. (1) Let \(n = pq \), such that \(p \) and \(q \) are distinct primes. Then clearly \(\Omega(Z_n) \) is a bi-partite graph. If, we take \(n = pq \) where \(p = 2 \) and \(q \) is any prime number, then \(\Omega(Z_n) \) is a star graph. We know that star graph is a planar graph. Hence, \(\Omega(Z_n) \) is a planar graph in this case. If \(p = 3 \) and \(q \) is any prime number, then \(\Omega(Z_n) \) is a complete bi-partite graph, which is a planar graph.

(2) Let \(n = p^2 \), where \(p \) is any prime number. Then, there are no non-nilpotent elements of \(Z_n \) in \(\Omega(Z_n) \). Therefore, \(\Omega(Z_n) \) is an empty graph. Hence, \(\Omega(Z_n) \) is a planar graph.

(3) Let \(n = p^3 \), where \(p \) is any prime number. Then, there is no non-nilpotent element of \(Z_n \) in \(\Omega(Z_n) \). Therefore, \(\Omega(Z_n) \) is an empty graph. Hence, \(\Omega(Z_n) \) is a planar graph.

(4) Let \(n = 4k \), where \(p^2 \nmid k \), for a prime \(p \) and \(k \) is any positive integer. Then, \(\Omega(Z_n) \) is planar for \(k \leq 6 \). If we take \(k \) is any prime number,
then \(\Omega(Z_n) \) is always complete bi-partite graph. We know that complete bi-partite graph is planar graph. Therefore, \(\Omega(Z_n) \) is the planar graph for the prime \(k \). On the other hand, if \(k > 6 \), then \(\Omega(Z_n) \) graph contains \(K_{3,3} \) or \(K_5 \) as a subgraph. Thus, for \(k > 6 \), \(\Omega(Z_n) \) graph is not a planar.

(5) Let \(n = 9k \), where \(p^2 \nmid k \), for a prime \(p \) and \(k \) is any positive integer. Then \(\Omega(Z_n) \) is a planar graph for \(k \leq 4 \). For \(k \geq 5 \), \(\Omega(Z_n) \) graph contains \(K_{3,3} \) as a subgraph. Thus, \(\Omega(Z_n) \) is non-planar.

(6) Let \(n = p^2q \), where \(p \) and \(q \) are distinct primes. If \(q = 2 \) and \(p \) is any prime number, \(\Omega(Z_n) \) graph is a star graph. Therefore, \(\Omega(Z_n) \) is planar graph. If \(q = 3 \) and \(p \) is any prime number, \(\Omega(Z_n) \) graph is a complete bi-partite graph. Therefore, \(\Omega(Z_n) \) is planar graph. For \(q \geq 5 \) and \(p \) is any prime greater than 2 (and 3), \(\Omega(Z_n) \) graph contains \(K_{3,3} \) or \(K_5 \) as a subgraph. Thus, \(\Omega(Z_n) \) is non-planar.

Lemma 1. If \(n = pq \), where \(p \) and \(q \) are primes, then there is no isolated vertex in \(\Omega(Z_n) \) graph.

Proof. If \(n = pq \), where \(p \) and \(q \) are distinct primes, \(\Omega(Z_n) \) is a complete bi-partite graph. Hence, there is no isolated vertex. When \(n = p^2 \), for any prime \(p \), there is no vertex in \(\Omega(Z_n) \). Hence, graph is empty. Thus, in this case again we have no isolated vertex.

Lemma 2. If \(n = p^3 \), for any prime \(p \), \(\Omega(Z_n) \) graph has no isolated vertex.

Proof. If \(n = p^3 \), then zero divisor graph has \(p^2 - 1 \) elements in which all elements are nilpotent and no element is non-nilpotent. Also all nilpotent elements are adjacent with nilpotent elements, but in \(\Omega(Z_n) \), there are no non-nilpotent elements. Thus, \(\Omega(Z_n) \) is an empty graph. Therefore, \(\Omega(Z_n) \) graph has no isolated vertex.

Observation 1. If \(n = p^2q \), for \(p \) and \(q \) are distinct prime numbers, \(\Omega(Z_n) \) graph has \((p-1)(q-1)\) isolated vertices.

2. **Energy of nilradical and non-nilradical graphs**

Theorem 5. If \(n = p^2 \), for prime \(p \), then \(E(N(Z_n)) \) is \((2p - 4)\) and \(E(\Omega(Z_n)) \) is zero \((E(\Omega(Z_n)) \) is zero also for \(p^3 \)).

Proof. When \(n = p^2 \), \(N(Z_n) \) is a complete graph with \(p - 1 \) vertices. Then \(f(\lambda) = |\lambda I_{p-1} - M(N(Z_n))| = (\lambda - 1)p^{-2}(\lambda + p - 2) \) by [2], where \(M \)
is a matrix of order \((p - 1)\). If \(f(\lambda) = 0\), then \(\lambda = 1, 2 - p\). Therefore,
\[
\sum_{i=1}^{p-1} |\lambda_i| = 2p - 4.
\]

When \(n = p^2\), then \(\Omega(Z_n)\) graph is an empty graph. Hence, it has zero energy.

When \(n = p^3\), then \(\Omega(Z_n)\) is an empty graph and hence, it has zero energy.

Theorem 6. If \(n = pq\), where \(p\) and \(q\) are distinct primes, then energy of \(\Omega(Z_n)\) is \(2\sqrt{(p - 1)(q - 1)}\) and energy of \(N(Z_n)\) is zero.

Proof. Let \(n = pq\), where \(p\) and \(q\) are two distinct prime. Then \(\Omega(Z_n)\) is a bi-partite graph. Also, its eigen polynomial \(f(\lambda) = \lambda M(q) - M(\Omega(Z_n)) = \lambda^p + q - 2 - \lambda^p - q - 4\), where \(M\) is a matrix of order \((p + q - 2)\). Thus, nonzero eigenvalues are \(\pm \sqrt{(p - 1)(q - 1)}\) and so \(E(\Omega(Z_n)) = 2\sqrt{(p - 1)(q - 1)}\). Also, \(N(Z_n)\) graph has no vertices for distinct primes \(p\) and \(q\). Thus, \(E(N(Z_n))\) has no energy. \(\square\)

Theorem 7. For \(n = p^2q\), energy of \(N(Z_n)\) is \(2p - 4\), for all distinct primes \(p\) and \(q\).

Proof. Same as above Theorem (5). \(\square\)

Observation 2. If \(n = p^2q\), then energy of \(\Omega(Z_n)\) is:

1. \(2\sqrt{pq - 2}\), for \(p = 2\) and \(q\) is any prime number;
2. \(2\sqrt{pq + p(q - 2)}\), for \(p = 3\) and \(q\) is any prime number;
3. \(2\sqrt{2pq + 2p(q - 2)}\), for \(p = 5\) and \(q\) is any prime number.

3. **Computer program**

Now, we offer three algorithms for calculating energy with MATLAB software. These algorithms include several sub-algorithms. It is enough to input \(n\). In the first algorithm at the first stage, we obtain \(M(N(Z_n))\) and plot \(N(Z_n)\) by function \texttt{nil_radical_zn2(p)}). At the second stage, we calculate Energy index by using \texttt{energy}.

In the second algorithm at the first stage, we obtain \(\Omega(N(Z_n))\) and plot \(\Omega(Z_n)\) by function \texttt{non_nil_radical_zn2(p)}). At the second stage, we calculate Energy index by using \texttt{energy}.

In third algorithm, we put the value of \(n\) and call above two functions together.
First algorithm

function Nz=nil_radical_zn2(p)
n=p;
M=[];
for i=1:n-1
 for j=1:n-1
 if mod(i*j,n)==0
 M=[M, i];
 break;
 end
 end
end
M
n=length(M);
for i=0:n-1
 axes(i+1,:)=[cos(2*pi*i/n), sin(2*pi*i/n)];
end
Nz=zeros(n);
hold on
for i=1:n
 plot(axes(i,1),axes(i,2), '∗')
 if mod(M(i)^2,p)==0
 Nz(i,i) = 1;
 plot(axes(i,1),axes(i,2), 'ro')
 end
end
for i=1:n-1
 for j=i+1:n
 if mod(M(i)*M(j),p)==0
 Nz(i,j)=1; Nz(j,i)=1;
 plot(axes([i,j],1),axes([i,j],2));
 end
 end
end
eg=eig(Nz)
E=sum(abs(eg))

Second algorithm

function NNz=non_nil_radical_zn2(p)
n=p;
M=[];
for i=1:n-1
 for j=1:n-1
 if mod(i*j,n)==0
 M=[M, i];
 break;
 end
 end
end
M
n=length(M);
for i=0:n-1
 axes(i+1,:)=[cos(2*pi*i/n), sin(2*pi*i/n)];
end
Nz=zeros(n);
hold on
for i=1:n
 plot(axes(i,1),axes(i,2), '∗')
 if mod(M(i)^2,p)==0
 Nz(i,i) = 1;
 plot(axes(i,1),axes(i,2), 'ro')
 end
end
for i=1:n-1
 for j=i+1:n
 if mod(M(i)*M(j),p)==0
 Nz(i,j)=1; Nz(j,i)=1;
 plot(axes([i,j],1),axes([i,j],2));
 end
 end
end
eg=eig(Nz)
E=sum(abs(eg))
if mod(i*i,n)==0
 M=[M, i];
 break;
end
end
end
end
M
n=length(M);
for i=0:n-1
 axes(i+1,:)=[cos(2*pi*i/n), sin(2*pi*i/n)];
end
NNz=zeros(n);
hold on
for i=1:n
 plot(axes(i,1),axes(i,2), '*')
 if mod(M(i)^2,p)==0
 NNz(i,i)=1;
 plot(axes(i,1),axes(i,2), 'ro')
 end
end
end
for i=1:n-1
 for j=i+1:n
 if mod(M(i)*M(j),p)==0
 NNz(i,j)=1; NNz(j,i)=1;
 plot(axes([i,j],1),axes([i,j],2));
 end
 end
end
eg=eig(NNz)
E=sum(abs(eg))

Third algorithm

p=n;
Nz=nil_radical_zn2(p)
figure;
NNz=non_nil_radical_zn2(p)
figure;

All above algorithms are also useful for p^3. If we use the formula "if mod(i*j,n)==0" at the place of sixth line in the first algorithm, then it will give fruitful result for p^3.
Table 1. The values of $E(N(Z_n))$ and $E(\Omega(Z_n))$ for $n = 27, 45, 77, 121, 225$ and 343.

<table>
<thead>
<tr>
<th>n</th>
<th>$E(N(Z_n))$</th>
<th>$E(\Omega(Z_n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>7.2111</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td>9.7980</td>
</tr>
<tr>
<td>77</td>
<td>0</td>
<td>15.4919</td>
</tr>
<tr>
<td>121</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>225</td>
<td>26.00</td>
<td>21.9089</td>
</tr>
<tr>
<td>343</td>
<td>32.3110</td>
<td>0</td>
</tr>
</tbody>
</table>

References

Contact Information

Shalini Chandra, Sheela Suthar
Department of Mathematics and Statistics, Banasthali Vidyapith, Banasthali, Rajasthan - 304 022, India
E-Mail(s): chandrschalini@gmail.com, sheelasuthar@gmail.com
Web-page(s): www.banasthali.ac.in

Om Prakash
Department of Mathematics, IIT Patna, Patliputra colony, Patna - 800 013, India
E-Mail(s): om@iitp.ac.in
Web-page(s): www.iitp.ac.in

Received by the editors: 24.09.2015
and in final form 25.02.2016.