© Algebra and Discrete Mathematics Volume **29** (2020). Number 2, pp. 211–220 DOI:10.12958/adm429

Attached primes and annihilators of top local cohomology modules defined by a pair of ideals

S. Karimi and Sh. Payrovi

Communicated by V. Lyubashenko

ABSTRACT. Assume that R is a complete Noetherian local ring and M is a non-zero finitely generated R-module of dimension $n = \dim(M) \ge 1$. It is shown that any non-empty subset T of Assh(M) can be expressed as the set of attached primes of the top local cohomology modules $H_{I,J}^n(M)$ for some proper ideals I, Jof R. Moreover, for ideals $I, J = \bigcap_{\mathfrak{p} \in \operatorname{Att}_R(H_I^n(M))} \mathfrak{p}$ and J' of Rit is proved that $T = \operatorname{Att}_R(H_{I,J}^n(M)) = \operatorname{Att}_R(H_{I,J'}^n(M))$ if and only if $J' \subseteq J$. Let $H_{I,J}^n(M) \neq 0$. It is shown that there exists $Q \in \operatorname{Supp}(M)$ such that $\dim(R/Q) = 1$ and $H_Q^n(R/\mathfrak{p}) \neq 0$, for each $\mathfrak{p} \in \operatorname{Att}_R(H_{I,J}^n(M))$. In addition, we prove that if I and J are two proper ideals of a Noetherian local ring R, then $\operatorname{Ann}_R(H_{I,J}^n(M)) =$ $\operatorname{Ann}_R(M/T_R(I,J,M))$, where $T_R(I,J,M)$ is the largest submodule of M with $\operatorname{cd}(I,J,T_R(I,J,M)) < \operatorname{cd}(I,J,M)$, here $\operatorname{cd}(I,J,M)$ is the cohomological dimension of M with respect to I and J. This result is a generalization of [1, Theorem 2.3] and [2, Theorem 2.6].

Introduction

Assume that R is a Noetherian ring and I, J are two ideals of R and M is an R-module. As a generalization of the usual local cohomology modules, the local cohomology modules with respect to a system of ideals was introduced, in [3]. As a special case of these extended modules, in [13],

²⁰¹⁰ MSC: 13D45, 14B15.

Key words and phrases: associated prime ideals, attached prime ideals, top local cohomology modules.

the local cohomology modules with respect to a pair of ideals is defined. To be more precise, let

$$W(I, J) = \{ \mathfrak{p} \in \operatorname{Spec}(R) | I^n \subseteq \mathfrak{p} + J \text{ for some positive integer } n \}.$$

The (I, J)-torsion submodule $\Gamma_{I,J}(M)$ of M, which consists of all elements x of M with $\operatorname{Supp}(Rx) \subseteq W(I, J)$, is considered. For an integer i, the local cohomology functor $H^i_{I,J}$ with respect to (I, J) is defined to be the i-th right derived functor of $\Gamma_{I,J}$. The i-th local cohomology module of M with respect to (I, J) is denoted by $H^i_{I,J}(M)$. When J = 0, then $H^i_{I,J}$ coincides with the usual local cohomology functor H^i_I with the support in the closed subset V(I).

Recall that for an *R*-module *K*, a prime ideal \mathfrak{p} of *R* is said to be an attached prime ideal of *K* if $\mathfrak{p} = \operatorname{Ann}(K/N)$ for some submodule *N* of *K*. The set of attached prime ideals of *K* is denoted by $\operatorname{Att}_R(K)$. When *K* has a secondary representation, this definition agrees with the usual definition of attached primes in [12].

Let R be a Noetherian local ring with maximal ideal \mathfrak{m} and M be a finitely generated R-module of dimension n. The main theorem in Section 2, shows that if R is complete with respect to \mathfrak{m} -adic topology, then for any non-empty subset T of Assh(M) there exist ideals I, J of R such that $T = Att_R(H_I^n(M)) = Att_R(H_{I,J}^n(M))$ which is an another version of Theorem 2.8 in [8]. Moreover we show that for each $\mathfrak{p} \in Att_R(H_{I,J}^n(M))$ there exists $Q \in \operatorname{Supp}(M)$ such that $\dim(R/Q) = 1$ and $H_Q^n(R/\mathfrak{p}) \neq 0$.

Let R be a Noetherian ring, I, J be two ideals of R and M be a nonzero finitely generated R-module of dimension n. Let cd(I, J, M) denote the supremum of all integers r for which $H^r_{I,J}(M) \neq 0$. We call this integer the cohomological dimension of M with respect to ideals I, J, see [7]. In Section 3, first we define $T_R(I, J, M)$ the largest submodule of M such that $cd(I, J, T_R(I, J, M)) < cd(I, J, M)$ and we show that

$$T_R(I, J, M) = \Gamma_{\mathfrak{a}}(M) = \bigcap_{\operatorname{cd}(I, J, R/\mathfrak{p}_j) = c} N_j,$$

where $0 = \bigcap_{j=1}^{n} N_j$ denotes a reduced primary decomposition of the zero submodule of M, N_j is a \mathfrak{p}_j -primary submodule of M and $\mathfrak{a} = \prod_{\mathrm{cd}(I,J,R/\mathfrak{p}_j)\neq c} \mathfrak{p}_j$. We show $\mathrm{Ann}_R(H^n_{I,J}(M)) = \mathrm{Ann}_R(M/T_R(I,J,M))$, which is a generalization of [1, Theorem 2.3] and [2, Theorem 2.6] and some applications of this theorem are given.

1. Attached prime ideals of top local cohomology modules

In this section we assume that (R, \mathfrak{m}) is local and complete with respect to \mathfrak{m} -adic topology, M is a non-zero finitely generated R-module of dimension $n \ge 1$ and T is a non-empty subset of Assh(M).

Definition 1. Let K be an R-module, a prime ideal \mathfrak{p} of R is said to be an attached prime ideal of K if $\mathfrak{p} = \operatorname{Ann}(K/N)$ for some submodule N of K. The set of attached prime ideals of K is denoted by $\operatorname{Att}_R(K)$.

Lemma 1. [1, Lemma 3.2] Let K be an R-module. Then the set of minimal elements of $V(\operatorname{Ann}_R(K))$ coincides with that of $\operatorname{Att}_R(K)$. In particular, $\sqrt{\operatorname{Ann}_R(K)} = \bigcap_{\mathfrak{p} \in \operatorname{Att}_R(K)} \mathfrak{p}.$

Theorem 1. Let M be a non-zero finitely generated R-module of dimension n and T be a non-empty subset of Assh(M). Then the following statements are true:

- (i) If $T \subseteq \operatorname{Att}_R(H^n_I(M))$ for some ideal I, then $T = \operatorname{Att}_R(H^n_{I,J}(M))$, where $J = \bigcap_{\mathfrak{p} \in T} \mathfrak{p}$.
- (ii) $T = \operatorname{Att}_R(H_I^{n}(M)) = \operatorname{Att}_R(H_{I,J}^n(M))$, where I, J are ideals of Rand $J = \sqrt{\operatorname{Ann}_R(H_I^n(M))}$.

Proof. (i) By assumption T is a non-empty subset of $\operatorname{Assh}(M)$. Set $J := \bigcap_{\mathfrak{p} \in T} \mathfrak{p}$. We show that $T = \operatorname{Att}_R(H^n_{I,J}(M))$. Assume that $\mathfrak{q} \in \operatorname{Att}_R(H^n_{I,J}(M))$. Then by [6, Theorem 2.1] it follows that $J \subseteq \mathfrak{q}$. Thus $\mathfrak{p} \subseteq \mathfrak{q}$ for some $\mathfrak{p} \in T$. Hence, this fact that $\mathfrak{p}, \mathfrak{q}$ are in $\operatorname{Assh}(M)$ shows that $\mathfrak{p} = \mathfrak{q}$ and so $\mathfrak{q} \in T$. Now, let $\mathfrak{q} \in T$. Then $J \subseteq \mathfrak{q}$ and also $\mathfrak{q} \in \operatorname{Att}_R(H^n_I(M))$. Therefore, $\mathfrak{q} \in \operatorname{Att}_R(H^n_I(M))$ by [6, Theorem 2.1].

(ii) In view of [8, Theorem 2.8] there exists an ideal I of R such that $T = \operatorname{Att}_R(H^n_I(M))$. Thus by (i) and Lemma 1 the result follows.

Corollary 1. Let M be a non-zero finitely generated R-module of dimension n and let I_1 , I_2 , J_1 , J_2 be ideals of R. Then the following statements hold:

- (i) If $T \subseteq \operatorname{Att}_R(H^n_{I_1,J_1}(M)) \cup \operatorname{Att}_R(H^n_{I_2,J_2}(M))$ is a non-empty set and $J = \bigcap_{\mathfrak{p} \in T} \mathfrak{p}$, then $\operatorname{Att}_R(H^n_{I_1+I_2,J}(M)) = T$.
- (ii) If $T = \operatorname{Att}_R(H^n_{I_1,J_1}(M)) \cup \operatorname{Att}_R(H^n_{I_2,J_2}(M))$ is a non-empty set and $J = \bigcap_{\mathfrak{p}\in T}\mathfrak{p}$, then $\operatorname{Att}_R(H^n_{I_1+I_2,J}(M)) = \operatorname{Att}_R(H^n_{I_1,J_1}(M)) \cup \operatorname{Att}_R(H^n_{I_2,J_2}(M)).$
- (iii) If $T = \operatorname{Att}_R(H^n_{I_1,J_1}(M)) \cap \operatorname{Att}_R(H^n_{I_2,J_2}(M))$ is a non-empty set and $J = \bigcap_{\mathfrak{p} \in T} \mathfrak{p}$, then $\operatorname{Att}_R(H^n_{I_1+I_2,J}(M)) = \operatorname{Att}_R(H^n_{I_1,J_1}(M)) \cap \operatorname{Att}_R(H^n_{I_2,J_2}(M))$.

Proof. Let $\mathfrak{p} \in T$ and $\mathfrak{p} \in \operatorname{Att}_R(H^n_{I_1,J_1}(M))$. Then $\mathfrak{p} \in \operatorname{Att}_R(H^n_{I_1}(M))$, by [6, Theorem 2.1]. Thus dim $R/\mathfrak{p} = n$ and by Lichtenbaum-Hartshorne Vanishing Theorem dim $R/(I_1 + \mathfrak{p}) = 0$. Since $I_1 + \mathfrak{p} \subseteq I_1 + I_2 + \mathfrak{p}$, it follows that dim $R/(I_1 + I_2 + \mathfrak{p}) = 0$ and so $H^n_{I_1+I_2}(R/\mathfrak{p}) \neq 0$. Thus $\mathfrak{p} \in$ Att_R $(H^n_{I_1+I_2}(M))$, by [9, Theorem A]. Therefore, $T \subseteq \operatorname{Att}_R(H^n_{I_1+I_2}(M))$ and the result follows by Theorem 1(i).

Corollary 2. Let I, J be ideals of R and let M be a non-zero finitely generated R-module of dimension n. If $T = \operatorname{Att}_R(H^n_I(M))$ and $J' = J + \bigcap_{\mathfrak{p} \in T} \mathfrak{p}$, then $\operatorname{Att}_R(H^n_{I,J}(M)) = \operatorname{Att}_R(H^n_{\mathfrak{m},J'}(M))$.

Proof. In view of [6, Theorem 2.1] and Lichtenbaum-Hartshorne Vanishing Theorem, we have

$$\operatorname{Att}_R(H^n_{I,J}(M)) = \{\mathfrak{p} \in \operatorname{Supp}(M) \cap V(J) : \sqrt{I + \mathfrak{p}} = \mathfrak{m}\}\$$

Let $\mathfrak{p} \in \operatorname{Att}_R(H^n_{I,J}(M))$. Then $\mathfrak{p} \in \operatorname{Att}_R(H^n_I(M))$ and $0 \neq H^n_I(R/\mathfrak{p}) \cong H^n_{I+\mathfrak{p}}(R/\mathfrak{p}) \cong H^n_\mathfrak{m}(R/\mathfrak{p})$. Hence, $\mathfrak{p} \in \operatorname{Att}_R(H^n_{\mathfrak{m},J'}(M))$. The proof of the opposite inclusion is similar.

Theorem 2. Let M be a non-zero finitely generated R-module of dimension n and let I, $J = \bigcap_{\mathfrak{p} \in \operatorname{Att}_R(H^n_I(M))} \mathfrak{p}$ and J' be ideals of R. Then $\operatorname{Att}_R(H^n_{I,J}(M)) = \operatorname{Att}_R(H^n_{I,J'}(M))$ if and only if $J' \subseteq J$.

Proof. Let $\operatorname{Att}_R(H^n_{I,J}(M)) = \operatorname{Att}_R(H^n_{I,J'}(M))$. Then Theorem 1 shows that $\operatorname{Att}_R(H^n_I(M)) = \operatorname{Att}_R(H^n_{I,J}(M))$. Hence, by [6, Theorem 2.1]

$$J' \subseteq \bigcap_{\mathfrak{p} \in \operatorname{Att}_R(H^n_{I,J'}(M))} \mathfrak{p} = \bigcap_{\mathfrak{p} \in \operatorname{Att}_R(H^n_{I,J}(M))} \mathfrak{p} = \bigcap_{\mathfrak{p} \in \operatorname{Att}_R(H^n_I(M))} \mathfrak{p} = J.$$

Conversely, if $J' \subseteq J$, then by [6, Theorem 2.1] we have

$$\operatorname{Att}_{R}(H_{I}^{n}(M)) = \operatorname{Att}_{R}(H_{I,J}^{n}(M)) \subseteq \operatorname{Att}_{R}(H_{I,J'}^{n}(M)) \subseteq \operatorname{Att}_{R}(H_{I}^{n}(M)).$$

So the result follows.

Theorem 3. Let M be a non-zero finitely generated R-module of dimension n and let I, I' and $J = \bigcap_{\mathfrak{p} \in \operatorname{Att}_R(H^n_I(M))} \mathfrak{p}$ be ideals of R such that $I \subseteq I'$. Then $\operatorname{Att}(H^n_{I,J}(M)) = \operatorname{Att}(H^n_{I',J}(M))$

Proof. Assume that $\mathfrak{p} \in \operatorname{Att}(H^n_{I,J}(M))$. Thus [6, Theorem 2.1] shows that $\mathfrak{p} \in \operatorname{Att}(H^n_I(M))$ and $J \subseteq \mathfrak{p}$. By assumption and [10, Proposition

1.6], $\operatorname{Att}_R(H^n_I(M)) \subseteq \operatorname{Att}_R(H^n_{I'}(M))$ so that $\mathfrak{p} \in \operatorname{Att}(H^n_{I'}(M))$ and $\mathfrak{p} \in \operatorname{Att}(H^n_{I',J}(M))$. Thus $\operatorname{Att}(H^n_{I,J}(M)) \subseteq \operatorname{Att}(H^n_{I',J}(M))$. Therefore,

$$J\subseteq \bigcap_{\mathfrak{p}\in \operatorname{Att}(H^n_{I',J}(M))}\mathfrak{p}\subseteq \bigcap_{\mathfrak{p}\in \operatorname{Att}(H^n_{I,J}(M))}\mathfrak{p}=J$$

which shows that $\operatorname{Att}(H^n_{I,J}(M)) = \operatorname{Att}(H^n_{I',J}(M)).$

Theorem 4. Let M be a finitely generated R-module of dimension n and I, J be ideals of R such that $H^n_{I,J}(M) \neq 0$. Then there exists $Q \in \text{Supp}(M)$ such that $\dim(R/Q) = 1$ and $H^n_Q(R/\mathfrak{p}) \neq 0$, for each $\mathfrak{p} \in \text{Att}_R(H^n_{I,J}(M))$.

Proof. By assumption $T = \operatorname{Att}_R(H^n_{I,J}(M)) \neq \emptyset$. Then in view of [8, Theorem 2.8] we have $T = \operatorname{Att}_R H^n_{\mathfrak{a}}(M)$ for some ideal \mathfrak{a} of R. Now, [8, Proposition 2.1] shows that there exists an integer r such that for all $1 \leq i \leq r$ there exists $Q_i \in \operatorname{Supp}(M)$ with $\dim(R/Q_i) = 1$ such that $\bigcap_{\mathfrak{p}\in T}\mathfrak{p} \not\subseteq Q_i$. In addition, we may assume that $\mathfrak{a} = \bigcap_{i=1}^r Q_i$. Let $\mathfrak{p} \in \operatorname{Att}_R H^n_{I,J}(M)$. Then $\mathfrak{p} \in \operatorname{Att}_R H^n_{\mathfrak{a}}(M)$ and so $H^n_{\bigcap_{i=1}^r Q_i}(R/\mathfrak{p}) \neq 0$. Now, by setting $\mathfrak{b} = \bigcap_{i=1}^{r-1} Q_i$ and $\mathfrak{c} = Q_r$ we have the following long exact sequence

$$H^n_{\mathfrak{b}+\mathfrak{c}}(R/\mathfrak{p}) \to H^n_{\mathfrak{b}}(R/\mathfrak{p}) \oplus H^n_{\mathfrak{c}}(R/\mathfrak{p}) \to H^n_{\mathfrak{b}\cap\mathfrak{c}}(R/\mathfrak{p}) \to 0,$$

where $H^n_{\mathfrak{b}\cap\mathfrak{c}}(R/\mathfrak{p}) = H^n_{Q_1\cap\cdots\cap Q_r}(R/\mathfrak{p}) \neq 0$. So $H^n_{\mathfrak{b}}(R/\mathfrak{p}) \oplus H^n_{\mathfrak{c}}(R/\mathfrak{p}) \neq 0$. Therefore $H^n_{\mathfrak{b}}(R/\mathfrak{p}) \neq 0$ or $H^n_{\mathfrak{c}}(R/\mathfrak{p}) \neq 0$. If $H^n_{\mathfrak{c}}(R/\mathfrak{p}) \neq 0$ we are done. Otherwise, one can set $\mathfrak{b} = \bigcap_{i=1}^{r-2} Q_i$ and $\mathfrak{c} = Q_{r-1}$ and with repeat this method, to get the result.

Corollary 3. Let M be a finitely generated R-module of dimension $n \ge 1$ and I, J be ideals of R such that $H^n_{I,J}(M) \ne 0$. Then there exists $Q \in$ $\operatorname{Supp}(M)$ such that $\dim(R/Q) = 1$ and $\operatorname{Att}_R(H^n_{O,J}(M)) \ne \emptyset$.

2. Annihilators of top local cohomology modules

In this section (R, \mathfrak{m}) is a Noetherian local ring with maximal ideal \mathfrak{m} and I, J are two proper ideals of R.

Let M be a non-zero finitely generated R-module and let cd(I, J, M)denote the supremum of all integers r for which $H_{I,J}^r(M) \neq 0$. We call this integer the cohomological dimension of M with respect to ideals I, J. When J = 0, we have cd(I, 0, M) = cd(I, M) which is just the supremum of all integers r for which $H_I^r(M) \neq 0$. In [7, Corollary 3.3] a characterization of cd(I, J, M) is provided.

Lemma 2. [7, Proposition 3.2] Let M and N be two finitely generated R-modules such that $\operatorname{Supp}(N) \subseteq \operatorname{Supp}(M)$. Then $\operatorname{cd}(I, J, N) \leq \operatorname{cd}(I, J, M)$.

Definition 2. Let M be a non-zero finitely generated R-module of cohomological dimension c. We denote by $T_R(I, J, M)$ the largest submodule of M such that $cd(I, J, T_R(I, J, M)) < cd(I, J, M)$.

It is easy to check that $T_R(I, J, M) = \bigcup \{N : N \leq M, \operatorname{cd}(I, J, N) < \operatorname{cd}(I, J, M)\}$. When J = 0, this definition coincides with that of [1, Definition 2.2].

Lemma 3. Let M be a non-zero finitely generated R-module of dimension n such that $n = \operatorname{cd}(I, J, M)$. Then $T_R(\mathfrak{m}, M) \subseteq T_R(I, M) \subseteq T_R(I, J, M)$.

Proof. For the first inclusion let $x \notin T_R(I, M)$. Then cd(I, J, Rx) = nand so $H^n_I(Rx) \neq 0$. Thus dim(Rx) = n. Hence, by Grothendieck's Vanishing Theorem $H^n_{\mathfrak{m}}(Rx) \neq 0$ and $x \notin T_R(\mathfrak{m}, M)$. Let $x \notin T_R(I, J, M)$. Then cd(I, J, Rx) = n and so $H^n_{I,J}(Rx) \neq 0$. Thus $Att_R(H^n_{I,J}(Rx)) \neq \emptyset$ and $Att_R(H^n_I(Rx)) \neq \emptyset$ by [6, Theorem 2.1]. Hence, $H^n_I(Rx) \neq 0$ and cd(I, Rx) = n. Therefore, $x \notin T_R(I, M)$.

Theorem 5. Let M be a non-zero finitely generated R-module with cohomological dimension c = cd(I, J, M). Then

$$T_R(I, J, M) = \Gamma_{\mathfrak{a}}(M) = \bigcap_{\operatorname{cd}(I, J, R/\mathfrak{p}_j) = c} N_j.$$

Here $0 = \bigcap_{j=1}^{n} N_j$ is a reduced primary decomposition of the zero submodule of M, N_j is a \mathfrak{p}_j -primary submodule of M and $\mathfrak{a} = \prod_{\mathrm{cd}(I,J,R/\mathfrak{p}_j)\neq c} \mathfrak{p}_j$.

Proof. First we show the equality $\Gamma_{\mathfrak{a}}(M) = \bigcap_{\mathrm{cd}(I,J,R/\mathfrak{p}_j)=c} N_j$. To do this, the inclusion $\bigcap_{\mathrm{cd}(I,J,R/\mathfrak{p}_j)=c} N_j \subseteq \Gamma_{\mathfrak{a}}(M)$ follows easily by the proof of [11, Theorem 6.8(ii)]. In order to prove the opposite inclusion, suppose, the contrary is true. Then there exists $x \in \Gamma_{\mathfrak{a}}(M)$ such that $x \notin \bigcap_{\mathrm{cd}(I,J,R/\mathfrak{p}_j)=c} N_j$. Thus there exists an integer t such that $x \notin N_t$ and $\mathrm{cd}(I,J,R/\mathfrak{p}_t)=c$. Now, as $x \in \Gamma_{\mathfrak{a}}(M)$, it follows that there is an integer $s \ge 1$ such that $\mathfrak{a}^s x = 0$, and so $\mathfrak{a}^s x \subseteq N_t$. Because of $x \notin N_t$ and N_t is a \mathfrak{p}_t -primary submodule, it yields that $\mathfrak{a} \subseteq \mathfrak{p}_t$. Hence, there is an integer j such that $\mathfrak{p}_j \subseteq \mathfrak{p}_t$ and $\mathrm{cd}(I,J,R/\mathfrak{p}_j) \leqslant c-1$. Therefore, in view of Lemma 2, we have

$$\operatorname{cd}(I, J, R/\mathfrak{p}_t) \leq \operatorname{cd}(I, J, R/\mathfrak{p}_j) \leq c - 1,$$

which is a contradiction. Now, we show that $T_R(I, J, M) = \Gamma_{\mathfrak{a}}(M)$. Let $x \in T_R(I, J, M)$. Then in view of Lemma 2, $\operatorname{cd}(I, J, Rx) \leq c-1$. Let \mathfrak{p} be a minimal prime ideal of $\operatorname{Ann}_R(Rx)$, it follows that $\operatorname{cd}(I, J, R/\mathfrak{p}) \leq c-1$. So

$$\mathfrak{a} \subseteq \bigcap_{\mathrm{cd}(I,J,R/\mathfrak{p}_j) \leqslant c-1} \mathfrak{p}_j \subseteq \bigcap_{\mathfrak{p} \in \mathrm{Ass}_R(Rx)} \mathfrak{p} = \sqrt{\mathrm{Ann}_R(Rx)}.$$

Thus there exists an integer $k \ge 1$ such that $\mathfrak{a}^k \subseteq \operatorname{Ann}_R(Rx)$. Hence, $\mathfrak{a}^k x = 0$ and $x \in \Gamma_\mathfrak{a}(T_R(I, J, M))$. Thus $T_R(I, J, M) = \Gamma_\mathfrak{a}(T_R(I, J, M))$. Now, we have $T_R(I, J, M) = \Gamma_\mathfrak{a}(T_R(I, J, M)) \subseteq \Gamma_\mathfrak{a}(M)$. We show that $\Gamma_\mathfrak{a}(M) \subseteq T_R(I, J, M)$, to do this, we show $\operatorname{cd}(I, J, \Gamma_\mathfrak{a}(M)) \le c - 1$. Let $\mathfrak{p} \in \operatorname{Supp}(\Gamma_\mathfrak{a}(M))$. Then $\mathfrak{a} \subseteq \mathfrak{p}$ and there exists $\mathfrak{p}_j \subseteq \mathfrak{p}$ such that $\operatorname{cd}(I, J, R/\mathfrak{p}_j) \le c - 1$. Thus by Lemma 2, $\operatorname{cd}(I, J, R/\mathfrak{p}) \le c - 1$. Hence, $\operatorname{cd}(I, J, \Gamma_\mathfrak{a}(M)) \le c - 1$ by [7, Theorem 3.1]. Therefore, $T_R(I, J, M) =$ $\Gamma_\mathfrak{a}(M)$.

Corollary 4. Let M be a non-zero finitely generated R-module of dimension n with cohomological dimension c = cd(I, J, M). Then the following statements are true:

- (i) $\operatorname{Ass}_R(T_R(I, J, M)) = \{ \mathfrak{p} \in \operatorname{Ass}_R(M) : \operatorname{cd}(I, J, R/\mathfrak{p}) \leq c 1 \},\$
- (ii) $\operatorname{Ass}_R(M/T_R(I, J, M)) = \{\mathfrak{p} \in \operatorname{Ass}_R(M) : \operatorname{cd}(I, J, R/\mathfrak{p}) = c\}$. If n = c, then $\operatorname{Ass}_R(M/T_R(I, J, M)) = \operatorname{Att}_R(H^n_{I,J}(M))$.

Proof. By Theorem 5, $T_R(I, J, M) = \Gamma_{\mathfrak{a}}(M)$, where $\prod_{\mathrm{cd}(I, J, R/\mathfrak{p}_j) \leq c-1} \mathfrak{p}_j = \mathfrak{a}$. So by [4, Section 2.1, Proposition 10] we have

$$\operatorname{Ass}_R(T_R(I, J, M)) = \operatorname{Ass}_R(M) \cap V(\mathfrak{a}).$$

Now (i) follows from Lemma 2.

In order to show (ii), use [5, Exercise 2.1.12] and [6, Theorem 2.1]. \Box

Corollary 5. Let M be a non-zero finitely generated R-module of dimension n such that n = cd(I, J, M). Then there exists a positive integer t such that $J^t M \subseteq T_R(I, J, M)$.

Proof. Let $0 = \bigcap_{j=1}^{n} N_j$ denote a reduced primary decomposition of the zero submodule of M, where N_j is a \mathfrak{p}_j -primary submodule of M. In view of Theorem 5, $T_R(I, J, M) = \bigcap_{\mathrm{cd}(I, J, R/\mathfrak{p}_j)=n} N_j$. If $\mathrm{cd}(I, J, R/\mathfrak{p}_j) = n$, then $H_{I,J}^n(R/\mathfrak{p}_j) \neq 0$. Thus $J \subseteq \mathfrak{p}_j = \sqrt{\mathrm{Ann}_R(M/N_j)}$ by [13, Theorem 4.3]. Hence, there exists a positive integer t_j such that $J^{t_j}M \subseteq N_j$. Let $t = \max\{t_j : \mathrm{cd}(I, J, R/\mathfrak{p}_j) = n\}$. Then $J^tM \subseteq \bigcap_{\mathrm{cd}(I, J, R/\mathfrak{p}_j)=n} N_j = T_R(I, J, M)$.

Theorem 6. Let M be a non-zero finitely generated R-module of dimension n = cd(I, J, M). Then

$$\operatorname{Ann}_{R}(H^{n}_{I,J}(M)) = \operatorname{Ann}_{R}(M/T_{R}(I,J,M)).$$

Proof. By Corollary 5, $J^t M \subseteq T_R(I, J, M)$ for some integer $t \ge 1$ and by [13, Proposition 1.4(8)], $H^i_{I,J}(M) \cong H^i_{I,J^t}(M)$ for all $i \ge 0$. Then we can assume that $JM \subseteq T_R(I, J, M)$. First we show that $T_R(I, M/JM) = T_R(I, J, M)/JM$. Let $x \in M$ and consider the exact sequence

$$0 \to Rx \cap JM \to Rx \to \frac{Rx}{Rx \cap JM} \to 0$$

that induce an exact sequence

$$\dots \to H^n_{I,J}(Rx \cap JM) \to H^n_{I,J}(Rx) \to H^n_{I,J}(\frac{Rx}{Rx \cap JM}) \to 0.$$
(*)

If $x + JM \in T_R(I, M/JM)$, then $H^n_{I,J}(Rx/Rx \cap JM) \cong H^n_I(R(x + JM)) = 0$, by [13, Corollary 2.5]. As $Rx \cap JM \subseteq T_R(I, J, M)$ it follows that $H^n_{I,J}(Rx \cap JM) = 0$. Hence, $H^n_{I,J}(Rx) = 0$. So that $x \in T_R(I, J, M)$. If $x \in T_R(I, J, M)$, then $H^n_{I,J}(Rx) = 0$. Thus $H^n_{I,J}(Rx/Rx \cap JM) = H^n_I(R(x + JM)) = 0$ by (*). Therefore, $x + JM \in T_R(I, M/JM)$. Now, from the exact sequence

$$0 \to JM \to M \to \frac{M}{JM} \to 0$$

we have the exact sequence

$$\cdots \to H^n_{I,J}(JM) \to H^n_{I,J}(M) \to H^n_{I,J}(\frac{M}{JM}) \to 0.$$

Since $JM \subseteq T_R(I, J, M)$, it follows that $H^n_{I,J}(JM) = 0$ and so we have $H^n_{I,J}(M) \cong H^n_{I,J}(M/JM)$. Thus $H^n_{I,J}(M) \cong H^n_I(M/JM)$. Therefore,

$$\operatorname{Ann}_{R}(H_{I,J}^{n}(M)) = \operatorname{Ann}_{R}(H_{I}^{n}(M/JM)) = \operatorname{Ann}_{R}(\frac{M/JM}{T_{R}(I,M/JM)})$$
$$= \operatorname{Ann}_{R}(\frac{M/JM}{T_{R}(I,J,M)/JM}) = \operatorname{Ann}_{R}(M/T_{R}(I,J,M)),$$

see [1, Theorem 2.3].

Corollary 6. Let M be a non-zero finitely generated R-module of dimension $n = \operatorname{cd}(I, J, M)$ and $JM \subseteq T_R(I, M)$. Then $\operatorname{Ann}_R(H^n_I(M)) = \operatorname{Ann}_R(H^n_{I,J}(M))$. *Proof.* By a similar argument to that of Theorem 6, one can show that $T_R(I, M/JM) = T_R(I, M)/JM$. Also, by Lemma 3 we have $T_R(I, M) \subseteq$ $T_R(I, J, M)$. Thus $JM \subseteq T_R(I, J, M)$ and so $H^n_{I,J}(JM) = 0$. Hence, it follows by (*) that $H^n_{I,J}(M) \cong H^n_I(M/JM)$. Therefore,

$$\operatorname{Ann}_{R}(H_{I,J}^{n}(M)) = \operatorname{Ann}_{R}(H_{I}^{n}(M/JM)) = \operatorname{Ann}_{R}(\frac{M/JM}{T_{R}(I,M/JM)})$$
$$= \operatorname{Ann}_{R}(\frac{M/JM}{T_{R}(I,M)/JM}) = \operatorname{Ann}_{R}(M/T_{R}(I,M)).$$

Now, the result follows by [1, Theorem 2.3] and Theorem 6.

Corollary 7. Let M be a non-zero finitely generated R-module of dimension n = cd(I, J, M). Then the following statements hold:

- (i) $\sqrt{\operatorname{Ann}_R(H^n_{I,J}(M))} = \bigcap_{\mathfrak{p} \in \operatorname{Ass}_R M, \operatorname{cd}(I,J,R/\mathfrak{p})=n} \mathfrak{p},$
- (ii) $\dot{V}(\operatorname{Ann}_R(H^n_{I,J}(M))) = \operatorname{Supp}(M/T_R(I,J,M)),$
- (iii) If $T_R(I, J, M) = 0$, then $\operatorname{Supp}(M) = V(\operatorname{Ann}_R(H^n_{I, I}(M)))$.

Proof. (i) It follows by Lemma 1 and [6, Theorem 2.1]. To prove (ii) use Theorem 6. (iii) It follows from (ii).

Corollary 8. Let $d = \dim R = \operatorname{cd}(I, J, R)$. Then the following statements hold:

(i) $\operatorname{cd}(I, J, \operatorname{Ann}_R(H^d_{I,J}(R))) < \dim R.$

(ii) If $d \ge 1$, then dim $R = \dim R / \operatorname{Ann}_R(H^d_{I,J}(R)) = \dim R / \Gamma_{I,J}(R)$.

Proof. (i) It follows from Theorem 6.

(ii) By [13, Corollary 1.13 (4)], $H^d_{I,J}(R) \cong H^d_{I,J}(R/\Gamma_{I,J}(R))$. So that $\Gamma_{I,J}(R) \subseteq \operatorname{Ann}_R(H^d_{I,J}(R)).$

Corollary 9. If R is a domain of dim R = d and $H^d_{I,I}(R) \neq 0$, then $\operatorname{Ann}_R(H^d_{I,J}(R)) = 0.$

Proof. It follows by Theorems 5 and 6.

3. Acknowledgment

The authors are deeply grateful to the S. Babaei and the referee for careful reading of the manuscript, very helpful suggestions and insightful comments.

 \square

 \square

References

- A. Atazadeh, M. Sedghi and R. Naghipour, On the annihilators and attached primes of top local cohomology modules, Arch. Math., 102 (2014), 225-236.
- [2] K. Bahmanpour, J. A'zami and Gh. Ghasemi, On the annihilators of local cohomology modules, J. Algebra, 363 (2012), 8-13.
- [3] M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative Noetherian rings, J. London Math. Soc., 19 (1979), 402- 410.
- [4] N. Bourbaki, Commutative algebra, Herman, Paris 1972.
- [5] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge studies in advanced mathematics, 60, Cambridge University Press, Cambridge, (1998).
- [6] L. Chu, Top local cohomology modules with respect to a pair of ideals, Proc. Amer. Math. Soc., 139 (2011), 777-782.
- [7] L. Chu and Q. Wang, Some results on local cohomology modules defined by a pair of ideals, J. Math. Kyoto Univ., 49 (2009), 193-200.
- [8] M. T. Dibaei and R. Jafari, Top local cohomology modules with specified attached primes, Algebra Colloq., 15 (2008), 341-344.
- M. T. Dibaei and S. Yassemi, Attached primes of the top local cohomology modules with respect to an ideal, Arch. Math., 84 (2005), no. 4, 292-297.
- [10] M. T. Dibaei and S. Yassemi, Attached primes of the top local cohomology modules with respect to an ideal (II), arXiv: 0501063 v1 [math AC] 5 Jan 2005.
- [11] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
- [12] I. G. MacDonald, Secondary representations of modules over a commutative rings, Symp. Math. Vol., XI (1973), 23-43.
- [13] R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals, J. Pure Appl. Algebra, 213 (2009), 582-600.

CONTACT INFORMATION

Susan Karimi	Department of Mathematics, Payame Noor University, 19395-3679, Tehran, Iran <i>E-Mail(s)</i> : susan_karimi2@yahoo.com
Shiroyeh Payrovi	Department of Mathematics, Imam Khomeini International University, 34149-1-6818, Qazvin, Iran <i>E-Mail(s)</i> : shpayrovir@sci.ikiu.ac.ir

Received by the editors: 13.03.2017.