On recurrence in G-spaces

Igor Protasov and Ksenia Protasova

To the memory of Vitaly Sushchansky

Abstract. We introduce and analyze the following general concept of recurrence. Let G be a group and let X be a G-space with the action $G \times X \to X$, $(g, x) \mapsto gx$. For a family \mathcal{F} of subsets of X and $A \in \mathcal{F}$, we denote $\Delta_{\mathcal{F}}(A) = \{ g \in G : gB \subseteq A \text{ for some } B \in \mathcal{F}, B \subseteq A \}$, and say that a subset R of G is \mathcal{F}-recurrent if $R \cap \Delta_{\mathcal{F}}(A) \neq \emptyset$ for each $A \in \mathcal{F}$.

Let G be a group with the identity e and let X be a G-space, a set with the action $G \times X \to X$, $(g, x) \mapsto gx$. If $X = G$ and gx is the product of g and x then X is called a left regular G-space.

Given a G-space X, a family \mathcal{F} of subsets of X and $A \in \mathcal{F}$, we denote

$$\Delta_\mathcal{F}(A) = \{ g \in G : gB \subseteq A \text{ for some } B \in \mathcal{F}, B \subseteq A \}.$$

Clearly, $e \in \Delta_\mathcal{F}(A)$ and if \mathcal{F} is upward directed ($A \in \mathcal{F}, A \subseteq C$ imply $C \in \mathcal{F}$) and if \mathcal{F} is G-invariant ($A \in \mathcal{F}$, $g \in G$ imply $gA \in \mathcal{F}$) then

$$\Delta_\mathcal{F}(A) = \{ g \in G : gA \cap A \in \mathcal{F} \}, \quad \Delta_\mathcal{F}(A) = (\Delta_\mathcal{F}(A))^{-1}.$$

If X is a left regular G-space and $\emptyset \notin \mathcal{F}$ then $\Delta_\mathcal{F}(A) \subseteq AA^{-1}$.

For a G-space X and a family \mathcal{F} of subsets of X, we say that a subset R of G is \mathcal{F}-recurrent if $\Delta_\mathcal{F}(A) \cap R \neq \emptyset$ for every $A \in \mathcal{F}$. We denote by $\mathcal{R}_\mathcal{F}$ the filter on G with the base $\cap \{ \Delta_\mathcal{F}(A) : A \in \mathcal{F} \}$, where \mathcal{F}' is a finite subfamily of \mathcal{F}, and note that, for an ultrafilter p on G, $\mathcal{R}_\mathcal{F} \in p$ if and only if each member of p is \mathcal{F}-recurrent.

2010 MSC: 37A05, 22A15, 03E05.

Key words and phrases: G-space, recurrent subset, ultrafilters, Stone-\check{C}ech compactification.
The notion of an \mathcal{F}-recurrent subset is well-known in the case in which G is an amenable group, X is a left regular G-space and $\mathcal{F} = \{ A \subseteq X : \mu(A) > 0 \text{ for some left invariant Banach measure } \mu \text{ on } X \}$. See [1] and [2] for historical background.

Now we endow G with the discrete topology and identify the Stone-Čech compactification βG of G with the set of all ultrafilters on G. Then the family $\{ \overline{A} : A \subseteq G \}$, where $\overline{A} = \{ p \in \beta G : A \in p \}$, forms a base for the topology of βG. Given a filter φ on G, we denote $\varphi = \cap \{ A : A \subseteq \varphi \}$.

We use the standard extension [3] of the multiplication on G to the semigroup multiplication on βG. We take two ultrafilters $p, q \in \beta G$, choose $P \in p$ and, for each $x \in P$, pick $Q_x \in q$. Then $\cup_{x \in P} xQ_x \in pq$ and the family of these subsets forms a base of the ultrafilter pq.

We recall [4] that a filter φ on a group G is left topological if φ is a base at the identity e for some (uniquely at defined) left translation invariant (each left shift $x \mapsto gx$ is continuous) topology on G. If φ is left topological then φ is a subgroup of βG [4]. If $G = X$ and a filter φ is left topological then $\varphi = R\varphi$.

Proposition 1. For every G-space X and any family \mathcal{F} of subsets of X, the filter $R\mathcal{F}$ is left topological.

Proof. By [4], a filter φ on a group G is left topological if and only if, for every $\Phi \in \varphi$, there is $H \in \varphi, H \subseteq \Phi$ such that, for every $x \in H$, $xH_x \subseteq \Phi$ for some $H_x \in \varphi$.

We take an arbitrary $A \in \mathcal{F}$, put $\Phi = \triangle \mathcal{F}(A)$ and, for each $g \in \triangle \mathcal{F}(A)$, choose $B_g \in \mathcal{F}$ such that $gB_g \in A$. Then $g\triangle \mathcal{F}(B_g) \subseteq \triangle \mathcal{F}(A)$ so put $H = \Phi$.

To conclude the proof, let $A_1, \ldots, A_n \in \mathcal{F}$. We denote

$$\Phi_1 = \triangle \mathcal{F}(A_1), \ldots, \Phi_n = \triangle \mathcal{F}(A_n), \quad \Phi = \Phi_1 \cap \ldots \cap \Phi_n.$$

We use the above paragraph, to choose H_1, \ldots, H_n corresponding to Φ_1, \ldots, Φ_n and put $H = H_1 \cap \ldots \cap H_n$.

Let X be a G-space and let \mathcal{F} be a family of subsets of X. We say that a family \mathcal{F}' of subsets of X is \mathcal{F}-disjoint if $A \cap B \notin \mathcal{F}$ for any distinct $A, B \in \mathcal{F}'$.

A family \mathcal{F}' of subsets of X is called \mathcal{F}-packing large if, for each $A \in \mathcal{F}'$, any \mathcal{F}-disjoint family of subsets of X of the form $gA, g \in G$ is finite.
We say that a subset S of a group G is a Δ_ω-set if $e \in A$ and every infinite subset Y of G contains two distinct elements x, y such that $x^{-1}y \in S$ and $y^{-1}x \in S$.

Proposition 2. Let X be a G-space and let \mathcal{F} be a G-invariant upward directed family of subsets of X. Then \mathcal{F} is \mathcal{F}-packing large if and only if, for each $A \in \mathcal{F}$, the subset $\Delta_\mathcal{F}(A)$ of G is a Δ_ω-set.

Proof. We assume that \mathcal{F} is \mathcal{F}-packing large and take an arbitrary infinite subset Y of G. Then we choose distinct $g, h \in Y$ such that $gA \cap hA \in \mathcal{F}$, so $g^{-1}h \in \Delta_\mathcal{F}(A)$, $hg \in \Delta_\mathcal{F}(A)$ and $\Delta_\mathcal{F}(A)$ is a Δ_ω-set.

Now we suppose that $\Delta_\mathcal{F}(A)$ is a Δ_ω-set and take an arbitrary infinite subset Y of G. Then there are distinct $g, h \in Y$ such that $g^{-1}h \in \Delta_\mathcal{F}(A)$ so $g^{-1}hA \cap A \in \mathcal{F}$ and $gA \cap hA \in \mathcal{F}$. It follows that the family $\{gA : g \in Y\}$ is not \mathcal{F}-disjoint. \hfill \square

Proposition 3. For every infinite group G, the following statements hold

(i) a subset $A \subseteq G$ is a Δ_ω-set if and only if $e \in A$ and every infinite subset Y of G contains an infinite subset Z such that $x^{-1}y \in A$, $y^{-1}x \in A$ for any distinct $x, y \in Z$;

(ii) the family φ of all Δ_ω-sets of G is a filter;

(iii) if $A \in \varphi$ then $G = FA$ for some finite subset F of G.

Proof. (i) We assume that A is a Δ_ω-set and define a coloring χ of $[Y]^2$, $\chi : [Y]^2 \to \{0, 1\}$ by the rule: $\chi(\{x, y\}) = 1$ if and only if $x^{-1}y \in A$, $y^{-1}x \in A$. By the Ramsey theorem, there is an infinite subset Z of Y such that χ is monochrome on $[Z]^2$. Since A is a Δ_ω-set $\chi(\{x, y\}) = 1$ for all $\{x, y\} \in [Z]^2$.

(ii) follows from (i).

(iii) We assume the contrary and choose an injective sequence $(x_n)_{n \in \omega}$ in G such that $x_{n+1} \notin x_iA$ for each $i \in \{0, \ldots, n\}$, and denote $Y = \{x_n : n \in \omega\}$. Then $x_{m}^{-1}x_n \in A$ for every $m, n, m < n$, so A is not a Δ_ω-set. \hfill \square

Proposition 4. Let G be a infinite group and let φ denotes the filter of all Δ_ω-sets of G. Then φ is the smallest closed subset of βG containing all ultrafilters on G of the form $q^{-1}q$, $q \in \beta G$, $g^{-1} = \{A^{-1} : A \in q\}$.

Proof. We denote by Q the smallest closed subset of βG containing all $q^{-1}q$, $q \in \beta G$. It follows directly from the definition of the multiplication in βG that $p \in Q$ if and only if either p is principal and $p = e$ or, for each $P \in p$, there is an injective sequence $(x_n)_{n \in \omega}$ in G such that $x_{m}^{-1}x_n \in P$ for all $m < n$.

I. Protasov, K. Protasova 281
Applying Proposition 3(i), we conclude that $q^{-1}q \in \overline{\varphi}$ for each $q \in \beta G$ so $Q \subseteq \overline{\varphi}$. On the other hand, if $p \notin \overline{\varphi}$ then there is $P \in p$ such that $G \setminus P$ is a Δ_ω-set. By above paragraph, $p \notin Q$ so $\overline{\varphi} \subseteq Q$. \hfill \Box

Now let G be an amenable group, X be a left regular G-space and $\mathcal{F} = \{A \in X : \mu(A) > 0\}$ for some left invariant Banach measure μ on G. For combinatorial characterization of \mathcal{F} see [6]. Clearly, \mathcal{F} is upward directed G-invariant and \mathcal{F}-packing large. By Proposition 2, $\overline{\varphi} \subseteq \overline{\mathcal{F}}$. By Proposition 4, $\overline{\mathcal{F}}$ contains all ultrafilters of the form $q^{-1}q$, $q \in \beta G$, so we get Theorem 3.14 from [1].

We suppose that a G-space X is endowed with a G-invariant probability measure μ defined on some ring of subsets of X. Then the family $\mathcal{F}\{A \subseteq X : \mu(B) > 0\text{ for some } B \subseteq A\}$ is \mathcal{F}-packing large.

In particular, we can take a compact group X, endow X with the Haar measure, choose an arbitrary subgroup G of X and endow G with the discrete topology.

Another example: let a discrete group G acts on a topological space X so that, for each $g \in G$, the mapping $X \rightarrow X$, $(g, x) \mapsto gx$ is continuous. We take a point $x \in X$, denote by \mathcal{F} the filter of all neighborhoods of x, and recall that x is recurrent if, for every $U \in \mathcal{F}$, there exists $g \in G \setminus \{e\}$ such that $gx \in U$. Clearly, x is a recurrent point if and only if $G \setminus \{e\}$ if a set of \mathcal{F}-recurrence, so by Proposition 1, x defines some non-discrete left translation invariant topology on G.

Proposition 5. Let G be an infinite group, A be a Δ_ω-set of G and let τ be a left translation invariant topology on G with continuous inversion $x \mapsto x^{-1}$ at the identity e. Then the closure $cl_\tau A$ is a neighborhood of e in τ.

Proof. On the contrary, we suppose that $cl_\tau A$ is not a neighborhood of e, put $U = G \setminus cl_\tau A$. Then U is open and $e \in cl_\tau U$.

We take an arbitrary $x_0 \in U$ and choose an open neighborhood U_0 of the identity such that $x_0U_0^{-1} \subseteq U$. Then we take $x_1 \in U_0 \cap U$ and choose an open neighborhood U_1 of e such that $U_1 \subseteq U_0$ and $x_1U_1^{-1} \subseteq U$. We take $x_2 \in U_1 \cap U$ and choose an open neighborhood U_0 of e such that $U_2 \subseteq U_1$ and $x_2U_2^{-1} \subseteq U$ and so on. After ω steps, we get a sequence $(x_n)_{n \in \omega}$ in G such that $x_nx_m^{-1} \subseteq U$ for all $n < m$. We denote $Y = \{x_n^{-1} : n \in \omega\}$. Then $(x_n^{-1})^{-1}x_m^{-1} \in A$ for all $n < m$, so A is not a Δ_ω-set. \hfill \Box

A subset A of an infinite group G is called a $\Delta_{<\omega}$-set if $e \in A$ and there exists a natural number n such that every subset Y of G, $|Y| = n$
contains two distinct \(x, y \in Y \) such that \(x^{-1}y \in A \), \(y^{-1}x \in A \). These subsets were introduced in [5] under name thick subsets, but thick subsets are well-known in combinatorics with another meaning [3]: \(A \) is thick if, for every finite subset \(F \) of, there is \(g \in A \) such that \(Fg \subseteq A \). The family \(\psi \) of all \(\triangleleft \omega \)-sets of \(G \) is a filter [5], clearly, \(\psi \subseteq \varphi \). Every infinite group \(G \) has a \(\triangle \omega \)-set but not \(\triangleleft \omega \)-set \(A \): it suffices to choose inductively a sequence \((X_n)_{n \in \omega} \) of subsets of \(G \), \(|X_n| = n \) such that \(\bigcup_{n \in \omega} X_n^{-1}X_n \) has no infinite subsets of the form \(Y^{-1}Y \) and put

\[
A = \{e\} \cup (G \setminus \bigcup_{n \in \omega} X_n^{-1}X_n),
\]
so \(\psi \subset \varphi \).

By analogy with Propositions 3 and 4, we can prove

Proposition 6. Let \(G \) be an infinite group and let \(\psi \) be the filter of all \(\triangleleft \omega \)-subsets of \(G \). Then \(p \in \bar{\psi} \) if and only if either \(p \) is principal and \(p = e \) or, for every \(A \in p \), there exists a sequence \((X_n)_{n \in \omega} \) of subsets of \(G \), \(|X_n| = n + 1 \), \(X_n = \{x_{n0}, \ldots, x_{nn}\} \) such that \(x_{ni}^{-1}x_{nj} \in A \) for all \(i < j \leq n \).

Let \(A \) be a subset of a group \(G \) such that \(e \in A \), \(A = A^{-1} \). We consider the Cayley graph \(\Gamma_A \) with the set of vertices \(G \) and the set of edges \(\{\{x, y\} : x^{-1}y \in A, x \neq y\} \). We recall that a subset \(S \) of vertices of a graph is **independent** if any two distinct vertices from \(S \) are not incident. Clearly, \(A \) is a \(\triangle \omega \)-set if and only if any independent set in \(\Gamma_A \) is finite, and \(A \) is \(\triangle \omega \)-set if and only if there exists a natural number \(n \) such that any independent set \(S \) is of size \(|S| < n \).

Problem 1. Characterize all infinite graphs with only finite independent set of vertices.

Problem 2. Given a natural number \(n \), characterize all infinite graphs such that any independent set \(S \) of vertices is of size \(|S| < n \).

In the context of this note, above problems are especially interesting in the case of Cayley graphs of groups.

References

Contact Information

I. Protasov, K. Protasova
Kyiv University, Department of Cybernetics,
Kyiv National University, Volodimirska 64,
Kyiv 01033, Ukraine
E-Mail(s): i.v.protasov@gmail.com, k.d.ushakova@gmail.com

Received by the editors: 04.02.2017.