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Abstract. Let K be an algebraically closed field of cha-
racteristic zero and A a field of algebraic functions in n variables
over K. (i.e. A is a finite dimensional algebraic extension of the
field K(x1, . . . , xn) ). If D is a K-derivation of A, then its diver-
gence divD is an important geometric characteristic of D (D can
be considered as a vector field with coefficients in A). A relation
between expressions of divD in different transcendence bases of A is
pointed out. It is also proved that every divergence-free derivation
D on the polynomial ring K[x, y, z] is a sum of at most two jacobian
derivation.

Introduction

Let K be a field of characteristic zero and A a field of algebraic
functions in n variables over K, i.e. A is a finite dimensional algebraic
extension of the field K(x1, . . . , xn). If D is a K-derivation of A, then
the divergence divD of the derivation D is a very important geometric
characteristic of D (D can be considered as a vector field with coefficients
in A). In the first part of the paper, a relation between expressions of
divD in different transcendence bases is pointed out (Theorem 1). This
theorem generalizes a result of the paper [4]. Naturally, the divergence
of a derivation does not change if we pass from one coordinate system
in a polynomial ring to another coordinate system. In particular, the set

2010 MSC: Primary 13N15; Secondary 13A99, 17B66.
Key words and phrases: polynomial ring, derivation, divergence, jacobian deri-

vation, transcendence basis.



100 On divergence and sums of derivations

of all divergence-free derivations of the polynomial ring K[x1, . . . , xn] is
invariant under action of automorphisms of this ring. Such derivations form
a very important subalgebra L0 of the Lie algebra DerK(K[x1, . . . , xn])
of all K-derivations on K[x1, . . . , xn]. The Lie algebra L0 was studied
by many authors (see, for example, [1], [5], [4]). Note that the algebra
L0 contains all the jacobian derivations of K[x1, . . . , xn] which are the
simplest divergence-free derivations. So, it is interesting to know relations
between divergence-free derivation and jacobian derivations. It is proved
that every divergence-free derivation of the polynomial ring K[x, y, z] is a
sum of at most two jacobian derivations (Theorem 2). Note that every
divergence-free derivation of the ring K[x, y] is a jacobian derivation. A
divergence-free derivation of the polynomial ring K[x, y, z] is pointed out
that is not a jacobian one (Proposition 1).

We use standard notation. The ground field K is of characteristic zero,
K(x1, . . . , xn) is the field of rational functions. We denote by A a field
of algebraic functions in n variables over the field K. Let {y1, . . . , yn} be
a transcendence basis of A (over K). Then every derivation ∂

∂yi
of the

subfield K(y1, . . . , yn) ⊆ A can be uniquely extended to a derivation of the
field A. We denote this extension for convenience by the same notation ∂

∂yi
.

Denote by Y the set { ∂
∂y1

, . . . , ∂
∂yn

} of K-derivations of A. If a1, . . . , an−1

are elements of A, then the jacobian derivation Da1,...,an−1
is defined by the

rule: D(a1,...,an−1)(h) = detJ(a1, . . . , an−1, h), where J(a1, . . . , an−1, h) is
the Jacobi matrix of the functions a1, . . . , an−1, h ∈ A. The divergence
divD of a derivation D ∈ DerK(A), D =

∑

pi
∂

∂xi
is defined by the rule:

divD =
∑n

i=1
∂pi

∂xi
.

1. On behavior of divergence under change

of a transcendence basis

LetA ⊇ K(x1, . . . , xn) be a field of algebraic functions. It is known that
the Lie algebra DerK(A) of all K-derivations of A is vector space over A of
dimension n (but not a Lie algebra over A). The set X = { ∂

∂x1
, . . . , ∂

∂xn
}

of partial differentiations is a basis of DerK(A) over A. Thus every element
D ∈ DerKR can be uniquely written in the form

D =
n

∑

i=1

pi
∂

∂xi
, p1, . . . , pn ∈ A. (1)

Let y1, . . . , yn ∈ A be a transcendence basis of the field A over the
field K. Then Y = { ∂

∂y1
, . . . , ∂

∂yn
} is also a basis of the linear space
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DerK(A) over the field A. Therefore for a given derivation D ∈ DerK(A)
there exist elements q1, . . . , qn ∈ A such that

D =
n

∑

i=1

qi
∂

∂yi
, q1, . . . , qn ∈ A. (2)

Denote the divergence of the derivation D in the transcendence bases
x1, . . . , xn and y1, . . . , yn respectively by

divXD =
n

∑

i=1

∂pi

∂xi
, divY D =

n
∑

i=1

∂qi

∂yi
.

Theorem 1. Let D ∈ DerK(A). Then

divXD = divY D +
D(∆)

∆
, where ∆ = det

( ∂yi

∂xj

)n

i,j=1
.

Proof. Since ∂yi

∂yj
= δij we have by (2) the following equalities

qi = D(yi) =
n

∑

j=1

pj
∂yi

∂xj
, i = 1, . . . , n. (3)

The derivations ∂
∂y1

, . . . , ∂
∂yn

form a basis of the vector space DerK(A),
so we can write

∂

∂xj
=

n
∑

i=1

r
j
i

∂

∂yi
, j = 1, . . . , n. (4)

for some rj
i ∈ A, i, j = 1, . . . , n. These elements can be found from (4):

r
j
i =

∂yi

∂xj
, i, j = 1, . . . , n.

Thus we have
∂

∂xj
=

n
∑

i=1

∂yi

∂xj

∂

∂yi
, j = 1, . . . , n.

Analogously we get

∂

∂yi
=

n
∑

j=1

∂xj

∂yi

∂

∂xj
, i = 1, . . . , n.
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Using the relation (3) we obtain

divY D =
n

∑

i=1

∂qi

∂yi
=

n
∑

i=1

∂

∂yi

(

n
∑

j=1

pj
∂yi

∂xj

)

=
n

∑

i,j=1

∂pj

∂yi

∂yi

∂xj
+

n
∑

i,j=1

pj
∂

∂yi

( ∂yi

∂xj

)

. (5)

The first summand in the right side of (5) can be written (using (3)) in
the form

n
∑

i,j=1

∂pj

∂yi

∂yi

∂xj
=

n
∑

j=1

(

n
∑

i=1

∂yi

∂xj

∂

∂yi

)

(pj) =
n

∑

j=1

∂

∂xj
(pj) = divXD.

Write the second summand in the right side of (5) (using (4) and the
equality [ ∂

∂xi
, ∂

∂xj
] = 0) in the form

n
∑

i,j=1

pj
∂

∂yi

( ∂yi

∂xj

)

=
n

∑

i,j,k=1

pj
∂xk

∂yi

∂

∂xj

( ∂yi

∂xk

)

=
n

∑

i,k=1

∂xk

∂yi

(

n
∑

j=1

pj
∂

∂xj

)( ∂yi

∂xk

)

=
n

∑

i,k=1

∂xk

∂yi
D

( ∂yi

∂xk

)

.

The matrix
(∂xk

∂yi

)n

k,i=1
is inverse to the matrix

(∂yk

∂xi

)n

k,i=1
, so we have

∂xk

∂yi
=
Ai

k

∆
, i, j = 1, . . . , n,

where Ak
i is the cofactor of the element ∂yk

∂xi
in the determinant ∆ =

det
(

∂yk

∂xi

)n

k,i=1
. Thus

n
∑

i,k=1

∂xk

∂yi
D

( ∂yi

∂xk

)

=
1

∆

n
∑

i,k=1

Ai
kD

( ∂yi

∂xk

)

=
1

∆

n
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

∂y1

∂x1
· · · D

( ∂y1

∂xk

)

· · · ∂y1

∂xn

... · · ·
... · · ·

...
∂yn

∂x1
· · · D

(∂yn

∂xk

)

· · · ∂yn

∂xn
=

∣

∣

∣

∣

∣

∣

∣

∣

=
D(∆)

∆
.

The proof is complete.
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2. Divergence-free and jacobian derivations

Some known results about divergence-free derivations are collected in
the next Lemma (see, for example, [2]) or [3]):

Lemma 1. 1) If D is a jacobian derivation of the ring K[x1, . . . , xn],
then divD = 0;

2) Every divergence-free derivation of the polynomial ring K[x, y] is a

jacobian derivation;

3) If D1, D2 are divergence-free derivations of the ring K[x1, . . . , xn],
then so are D1 +D2 and [D1, D2].

Theorem 2. Let D be a K-derivation of the polynomial ring K[x, y, z]
with divD = 0. Then there exist jacobian derivations D1 and D2 of the

ring K[x, y, z] such that D = D1 +D2.

Proof. Write D in the form

D = p(x, y, z)
∂

∂x
+ q(x, y, z)

∂

∂y
+ r(x, y, z)

∂

∂z
,

where p, q, r ∈ K[x, y, z]. Then by the conditions of the theorem, p′

x + q′

y +
r′

z = divD = 0. First find a jacobian derivation D1 of the ring K[x, y, z]
of the form

D1 = p(x, y, z)
∂

∂x
+ q1(x, y, z)

∂

∂y

for some q1 ∈ K[x, y, z]. Denote by s = s(x, y, z) a polynomial in K[x, y, z]
such that s′

y = p, i.e. s =
∫

p(x, y, z)dy (it is obvious that such a po-
lynomial does exist). Denote by D1 = D(s,z) the jacobian derivation
determined by the polynomials s, z ∈ K[x, y, z]. It is easy to see that

D1 = p(x, y, z)
∂

∂x
− s′

x(x, y, z)
∂

∂y
.

Set D2 = D − D1. Let us show that D2 is a jacobian derivation of the
ring K[x, y, z]. It is obvious that

D2 = q2(x, y, z)
∂

∂y
+ r(x, y, z)

∂

∂z
, where q2 = q − s′

x.

Consider q2(x, y, z) and r(x, y, z) as polynomials of variables y, z with
coefficients in the ring K[x]. Since divD2 = divD − divD1 = 0 we have
∂q2

∂y
+ ∂r

∂z
= 0. Denote for convenience ϕ = −r, ψ = q2. Then the vector field
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ϕ ∂
∂y

+ ψ ∂
∂z

is potential since the equality ϕ′

z = ψ′

y holds. Therefore there

exists a polynomial t(x, y, z) such that t′y = ϕ, t′z = ψ (the polynomial
t can be obtained by formal integrating the polynomials ψ and ϕ on
variables y and z respectively).

t(x, y, z) =

∫ M(x,y,z)

0,0,0
ϕ(x, y, z)dy + ψ(x, y, z)dz.

Thus t′y = −r(x, y, z), t′z = q2(x, y, z). Let us consider the jacobian
derivation D(t,x). It is obvious that

D(t,x) = t′z
∂

∂y
− t′y

∂

∂z
= q2(x, y, z)

∂

∂y
+ r(x, y, z)

∂

∂z
= D2.

So we have D = D1 +D2, where D1, D2 are jacobian derivations.

Proposition 1. The derivation D = x ∂
∂x

+ y ∂
∂y

− 2z ∂
∂z

of the polynomial

ring K[x, y, z] is divergence-free but not a jacobian derivation.

Proof. By Theorem 10.1.1 from [3], it holds KerD 6= K. Take any polyno-
mial f ∈ KerD and write it as a sum f = f0 +f1 + . . .+fn of homogeneous
components. Since the derivation D is homogeneous, all the polynomials
fi are also in KerD. Therefore we can assume without loss of generality
that f is a homogenous polynomial of degree k. The equality D(f) = 0
means that xf ′

x + yf ′

y − 2zf ′

z = 0 and therefore it holds

kf − 3zf ′

z = 0 (6)

(here xf ′

x + yf ′

y + zf ′

z = kf since deg f = k). Consider the polynomial f
as a polynomial of z with coefficients in K[y, z] and write

f = ϕ0 + ϕ1z + . . .+ ϕmz
m, ϕi ∈ K[x, y],m = degz f.

Then 3zf ′

z = 3zϕ1 + 6z2ϕ2 + . . .+ 3mϕmz
m and using (6) we get

ϕ0 = 0, zϕ1(k − 3) = 0, z2ϕ2(k − 6) = 0, . . . , zmϕm(k − 3m) = 0. (7)

Since ϕm 6= 0 (because of equality m = degz f) we have k = 3m and

ϕ1 = 0, . . . , ϕm−1 = 0.

The latter means that f = zmϕm, where k = 3m. The equality deg f = k

implies degϕm = 2m and therefore ϕm = ϕm(x, y) is a homogeneous
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polynomial of degree 2m. Denote for convenience ψ2m = ϕm. Then
f = zm·ψ2m is a homogeneous polynomial of degree 3m.

Conversely, if f = zm·ψ2m is a homogeneous polynomial of degree
3m, where ψ2m = ψ2m(x, y), then 3zf ′

z = 3mf ′. Setting k = 3m we get
zh′

z = 3kf, i.e. the polynomial f satisfies the equality (6). Then

xf ′

x + yf ′

y − 2zf ′

z = 0

and therefore f ∈ KerD. Thus KerD is a linear combination of homo-
geneous polynomials of the form zmψ2m, where ψ2m is a homogeneous
polynomial of degree 2m in variables x, y.

Now suppose D = D(a,b) for some a, b ∈ K[x, y, z]. Then a, b ∈ KerD
and omitting the constant terms in the polynomials a and b we get

a = α1zϕ2 +α2z
2ϕ4 +. . .+αmz

mϕ2m, b = β1zψ2 +β2z
2ψ4 +. . .+βsz

sψ2s

for some ϕi, ψj ∈ K[x, y], αi, βj ∈ K, αm 6= 0, βs 6= 0. Then

D(x) = D(a,b)(x) = a′

yb
′

y − a′

zb
′

y.

On the other hand, D(x) = x and therefore a′

yb
′

y − a′

zb
′

y = x. The polyno-
mials a′

y and b′

y are divided by z, so the polynomial x is also divided by z.
The obtained contradiction shows that D is not a jacobian derivation.
The proof is complete.
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