On divergence and sums of derivations

E. Chapovsky and O. Shevchyk

Communicated by A. P. Petravchuk

Abstract. Let K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over \mathbb{K}. (i.e. A is a finite dimensional algebraic extension of the field $\left.\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)\right)$. If D is a \mathbb{K}-derivation of A, then its divergence $\operatorname{div} D$ is an important geometric characteristic of $D(D$ can be considered as a vector field with coefficients in A). A relation between expressions of $\operatorname{div} D$ in different transcendence bases of A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring $\mathbb{K}[x, y, z]$ is a sum of at most two jacobian derivation.

Introduction

Let \mathbb{K} be a field of characteristic zero and A a field of algebraic functions in n variables over \mathbb{K}, i.e. A is a finite dimensional algebraic extension of the field $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$. If D is a \mathbb{K}-derivation of A, then the divergence $\operatorname{div} D$ of the derivation D is a very important geometric characteristic of $D(D$ can be considered as a vector field with coefficients in A). In the first part of the paper, a relation between expressions of divD in different transcendence bases is pointed out (Theorem 1). This theorem generalizes a result of the paper [4]. Naturally, the divergence of a derivation does not change if we pass from one coordinate system in a polynomial ring to another coordinate system. In particular, the set

[^0]of all divergence-free derivations of the polynomial ring $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is invariant under action of automorphisms of this ring. Such derivations form a very important subalgebra L_{0} of the Lie algebra $\operatorname{Der} r_{\mathbb{K}}\left(\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]\right)$ of all \mathbb{K}-derivations on $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. The Lie algebra L_{0} was studied by many authors (see, for example, [1], [5], [4]). Note that the algebra L_{0} contains all the jacobian derivations of $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ which are the simplest divergence-free derivations. So, it is interesting to know relations between divergence-free derivation and jacobian derivations. It is proved that every divergence-free derivation of the polynomial ring $\mathbb{K}[x, y, z]$ is a sum of at most two jacobian derivations (Theorem 2). Note that every divergence-free derivation of the ring $\mathbb{K}[x, y]$ is a jacobian derivation. A divergence-free derivation of the polynomial ring $\mathbb{K}[x, y, z]$ is pointed out that is not a jacobian one (Proposition 1).

We use standard notation. The ground field \mathbb{K} is of characteristic zero, $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ is the field of rational functions. We denote by A a field of algebraic functions in n variables over the field \mathbb{K}. Let $\left\{y_{1}, \ldots, y_{n}\right\}$ be a transcendence basis of A (over \mathbb{K}). Then every derivation $\frac{\partial}{\partial y_{i}}$ of the subfield $\mathbb{K}\left(y_{1}, \ldots, y_{n}\right) \subseteq A$ can be uniquely extended to a derivation of the field A. We denote this extension for convenience by the same notation $\frac{\partial}{\partial y_{i}}$. Denote by Y the set $\left\{\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{n}}\right\}$ of \mathbb{K}-derivations of A. If a_{1}, \ldots, a_{n-1} are elements of A, then the jacobian derivation $D_{a_{1}, \ldots, a_{n-1}}$ is defined by the rule: $D_{\left(a_{1}, \ldots, a_{n-1}\right)}(h)=\operatorname{det} J\left(a_{1}, \ldots, a_{n-1}, h\right)$, where $J\left(a_{1}, \ldots, a_{n-1}, h\right)$ is the Jacobi matrix of the functions $a_{1}, \ldots, a_{n-1}, h \in A$. The divergence $\operatorname{div} D$ of a derivation $D \in \operatorname{Der}_{\mathbb{K}}(A), D=\sum p_{i} \frac{\partial}{\partial x_{i}}$ is defined by the rule: $\operatorname{div} \mathrm{D}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\partial \mathrm{p}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{i}}}$.

1. On behavior of divergence under change of a transcendence basis

Let $A \supseteq \mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ be a field of algebraic functions. It is known that the Lie algebra $\operatorname{Der}_{\mathbb{K}}(A)$ of all \mathbb{K}-derivations of A is vector space over A of dimension n (but not a Lie algebra over A). The set $X=\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$ of partial differentiations is a basis of $\operatorname{Der}_{\mathbb{K}}(A)$ over A. Thus every element $D \in \operatorname{Der}_{\mathbb{K}} R$ can be uniquely written in the form

$$
\begin{equation*}
D=\sum_{i=1}^{n} p_{i} \frac{\partial}{\partial x_{i}}, p_{1}, \ldots, p_{n} \in A \tag{1}
\end{equation*}
$$

Let $y_{1}, \ldots, y_{n} \in A$ be a transcendence basis of the field A over the field \mathbb{K}. Then $Y=\left\{\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{n}}\right\}$ is also a basis of the linear space
$\operatorname{Der}_{\mathbb{K}}(A)$ over the field A. Therefore for a given derivation $D \in \operatorname{Der}_{\mathbb{K}}(A)$ there exist elements $q_{1}, \ldots, q_{n} \in A$ such that

$$
\begin{equation*}
D=\sum_{i=1}^{n} q_{i} \frac{\partial}{\partial y_{i}}, q_{1}, \ldots, q_{n} \in A \tag{2}
\end{equation*}
$$

Denote the divergence of the derivation D in the transcendence bases x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} respectively by

$$
\operatorname{div}_{X} D=\sum_{i=1}^{n} \frac{\partial p_{i}}{\partial x_{i}}, \quad \operatorname{div}_{Y} D=\sum_{i=1}^{n} \frac{\partial q_{i}}{\partial y_{i}}
$$

Theorem 1. Let $D \in \operatorname{Der}_{\mathbb{K}}(A)$. Then

$$
\operatorname{div}_{X} D=\operatorname{div}_{Y} D+\frac{D(\Delta)}{\Delta}, \quad \text { where } \Delta=\operatorname{det}\left(\frac{\partial y_{i}}{\partial x_{j}}\right)_{i, j=1}^{n}
$$

Proof. Since $\frac{\partial y_{i}}{\partial y_{j}}=\delta_{i j}$ we have by (2) the following equalities

$$
\begin{equation*}
q_{i}=D\left(y_{i}\right)=\sum_{j=1}^{n} p_{j} \frac{\partial y_{i}}{\partial x_{j}}, \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

The derivations $\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{n}}$ form a basis of the vector space $\operatorname{Der}_{\mathbb{K}}(A)$, so we can write

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}=\sum_{i=1}^{n} r_{i}^{j} \frac{\partial}{\partial y_{i}}, \quad j=1, \ldots, n \tag{4}
\end{equation*}
$$

for some $r_{i}^{j} \in A, i, j=1, \ldots, n$. These elements can be found from (4):

$$
r_{i}^{j}=\frac{\partial y_{i}}{\partial x_{j}}, \quad i, j=1, \ldots, n
$$

Thus we have

$$
\frac{\partial}{\partial x_{j}}=\sum_{i=1}^{n} \frac{\partial y_{i}}{\partial x_{j}} \frac{\partial}{\partial y_{i}}, \quad j=1, \ldots, n
$$

Analogously we get

$$
\frac{\partial}{\partial y_{i}}=\sum_{j=1}^{n} \frac{\partial x_{j}}{\partial y_{i}} \frac{\partial}{\partial x_{j}}, \quad i=1, \ldots, n
$$

Using the relation (3) we obtain

$$
\begin{align*}
\operatorname{div}_{Y} D & =\sum_{i=1}^{n} \frac{\partial q_{i}}{\partial y_{i}}=\sum_{i=1}^{n} \frac{\partial}{\partial y_{i}}\left(\sum_{j=1}^{n} p_{j} \frac{\partial y_{i}}{\partial x_{j}}\right) \\
& =\sum_{i, j=1}^{n} \frac{\partial p_{j}}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{j}}+\sum_{i, j=1}^{n} p_{j} \frac{\partial}{\partial y_{i}}\left(\frac{\partial y_{i}}{\partial x_{j}}\right) . \tag{5}
\end{align*}
$$

The first summand in the right side of (5) can be written (using (3)) in the form

$$
\sum_{i, j=1}^{n} \frac{\partial p_{j}}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{j}}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} \frac{\partial y_{i}}{\partial x_{j}} \frac{\partial}{\partial y_{i}}\right)\left(p_{j}\right)=\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(p_{j}\right)=\operatorname{div}_{X} D
$$

Write the second summand in the right side of (5) (using (4) and the equality $\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right]=0$) in the form

$$
\begin{aligned}
& \sum_{i, j=1}^{n} p_{j} \frac{\partial}{\partial y_{i}}\left(\frac{\partial y_{i}}{\partial x_{j}}\right)=\sum_{i, j, k=1}^{n} p_{j} \frac{\partial x_{k}}{\partial y_{i}} \frac{\partial}{\partial x_{j}}\left(\frac{\partial y_{i}}{\partial x_{k}}\right) \\
& \quad=\sum_{i, k=1}^{n} \frac{\partial x_{k}}{\partial y_{i}}\left(\sum_{j=1}^{n} p_{j} \frac{\partial}{\partial x_{j}}\right)\left(\frac{\partial y_{i}}{\partial x_{k}}\right)=\sum_{i, k=1}^{n} \frac{\partial x_{k}}{\partial y_{i}} D\left(\frac{\partial y_{i}}{\partial x_{k}}\right) .
\end{aligned}
$$

The matrix $\left(\frac{\partial x_{k}}{\partial y_{i}}\right)_{k, i=1}^{n}$ is inverse to the matrix $\left(\frac{\partial y_{k}}{\partial x_{i}}\right)_{k, i=1}^{n}$, so we have

$$
\frac{\partial x_{k}}{\partial y_{i}}=\frac{A_{k}^{i}}{\Delta}, \quad i, j=1, \ldots, n
$$

where A_{i}^{k} is the cofactor of the element $\frac{\partial y_{k}}{\partial x_{i}}$ in the determinant $\Delta=$ $\operatorname{det}\left(\frac{\partial y_{k}}{\partial x_{i}}\right)_{k, i=1}^{n}$. Thus

$$
\begin{aligned}
& \sum_{i, k=1}^{n} \frac{\partial x_{k}}{\partial y_{i}} D\left(\frac{\partial y_{i}}{\partial x_{k}}\right)=\frac{1}{\Delta} \sum_{i, k=1}^{n} A_{k}^{i} D\left(\frac{\partial y_{i}}{\partial x_{k}}\right) \\
& \quad=\frac{1}{\Delta} \sum_{k=1}^{n}\left|\begin{array}{ccccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & D\left(\frac{\partial y_{1}}{\partial x_{k}}\right) & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
\frac{\partial y_{n}}{\partial x_{1}} & \cdots & D\left(\frac{\partial y_{n}}{\partial x_{k}}\right) & \cdots & \frac{\partial y_{n}}{\partial x_{n}}=
\end{array}\right|=\frac{D(\Delta)}{\Delta} .
\end{aligned}
$$

The proof is complete.

2. Divergence-free and jacobian derivations

Some known results about divergence-free derivations are collected in the next Lemma (see, for example, [2]) or [3]):

Lemma 1. 1) If D is a jacobian derivation of the ring $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, then $\operatorname{div} D=0$;
2) Every divergence-free derivation of the polynomial ring $\mathbb{K}[x, y]$ is a jacobian derivation;
3) If D_{1}, D_{2} are divergence-free derivations of the ring $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, then so are $D_{1}+D_{2}$ and $\left[D_{1}, D_{2}\right]$.

Theorem 2. Let D be a \mathbb{K}-derivation of the polynomial ring $\mathbb{K}[x, y, z]$ with $\operatorname{div} \mathrm{D}=0$. Then there exist jacobian derivations D_{1} and D_{2} of the ring $\mathbb{K}[x, y, z]$ such that $D=D_{1}+D_{2}$.

Proof. Write D in the form

$$
D=p(x, y, z) \frac{\partial}{\partial x}+q(x, y, z) \frac{\partial}{\partial y}+r(x, y, z) \frac{\partial}{\partial z}
$$

where $p, q, r \in \mathbb{K}[x, y, z]$. Then by the conditions of the theorem, $p_{x}^{\prime}+q_{y}^{\prime}+$ $r_{z}^{\prime}=\operatorname{div} \mathrm{D}=0$. First find a jacobian derivation D_{1} of the ring $\mathbb{K}[x, y, z]$ of the form

$$
D_{1}=p(x, y, z) \frac{\partial}{\partial x}+q_{1}(x, y, z) \frac{\partial}{\partial y}
$$

for some $q_{1} \in \mathbb{K}[x, y, z]$. Denote by $s=s(x, y, z)$ a polynomial in $\mathbb{K}[x, y, z]$ such that $s_{y}^{\prime}=p$, i.e. $s=\int p(x, y, z) d y$ (it is obvious that such a polynomial does exist). Denote by $D_{1}=D_{(s, z)}$ the jacobian derivation determined by the polynomials $s, z \in \mathbb{K}[x, y, z]$. It is easy to see that

$$
D_{1}=p(x, y, z) \frac{\partial}{\partial x}-s_{x}^{\prime}(x, y, z) \frac{\partial}{\partial y}
$$

Set $D_{2}=D-D_{1}$. Let us show that D_{2} is a jacobian derivation of the ring $\mathbb{K}[x, y, z]$. It is obvious that

$$
D_{2}=q_{2}(x, y, z) \frac{\partial}{\partial y}+r(x, y, z) \frac{\partial}{\partial z}, \text { where } q_{2}=q-s_{x}^{\prime}
$$

Consider $q_{2}(x, y, z)$ and $r(x, y, z)$ as polynomials of variables y, z with coefficients in the ring $\mathbb{K}[x]$. Since $\operatorname{div} D_{2}=\operatorname{div} D-\operatorname{div} D_{1}=0$ we have $\frac{\partial q_{2}}{\partial y}+\frac{\partial r}{\partial z}=0$. Denote for convenience $\varphi=-r, \psi=q_{2}$. Then the vector field
$\varphi \frac{\partial}{\partial y}+\psi \frac{\partial}{\partial z}$ is potential since the equality $\varphi_{z}^{\prime}=\psi_{y}^{\prime}$ holds. Therefore there exists a polynomial $t(x, y, z)$ such that $t_{y}^{\prime}=\varphi, t_{z}^{\prime}=\psi$ (the polynomial t can be obtained by formal integrating the polynomials ψ and φ on variables y and z respectively).

$$
t(x, y, z)=\int_{0,0,0}^{M(x, y, z)} \varphi(x, y, z) d y+\psi(x, y, z) d z
$$

Thus $t_{y}^{\prime}=-r(x, y, z), t_{z}^{\prime}=q_{2}(x, y, z)$. Let us consider the jacobian derivation $D_{(t, x)}$. It is obvious that

$$
D_{(t, x)}=t_{z}^{\prime} \frac{\partial}{\partial y}-t_{y}^{\prime} \frac{\partial}{\partial z}=q_{2}(x, y, z) \frac{\partial}{\partial y}+r(x, y, z) \frac{\partial}{\partial z}=D_{2}
$$

So we have $D=D_{1}+D_{2}$, where D_{1}, D_{2} are jacobian derivations.
Proposition 1. The derivation $D=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}-2 z \frac{\partial}{\partial z}$ of the polynomial ring $\mathbb{K}[x, y, z]$ is divergence-free but not a jacobian derivation.

Proof. By Theorem 10.1.1 from [3], it holds $\operatorname{Ker} D \neq \mathbb{K}$. Take any polynomial $f \in \operatorname{Ker} D$ and write it as a sum $f=f_{0}+f_{1}+\ldots+f_{n}$ of homogeneous components. Since the derivation D is homogeneous, all the polynomials f_{i} are also in $\operatorname{Ker} D$. Therefore we can assume without loss of generality that f is a homogenous polynomial of degree k. The equality $D(f)=0$ means that $x f_{x}^{\prime}+y f_{y}^{\prime}-2 z f_{z}^{\prime}=0$ and therefore it holds

$$
\begin{equation*}
k f-3 z f_{z}^{\prime}=0 \tag{6}
\end{equation*}
$$

(here $x f_{x}^{\prime}+y f_{y}^{\prime}+z f_{z}^{\prime}=k f$ since $\operatorname{deg} f=k$). Consider the polynomial f as a polynomial of z with coefficients in $\mathbb{K}[y, z]$ and write

$$
f=\varphi_{0}+\varphi_{1} z+\ldots+\varphi_{m} z^{m}, \varphi_{i} \in \mathbb{K}[x, y], m=\operatorname{deg}_{z} f
$$

Then $3 z f_{z}^{\prime}=3 z \varphi_{1}+6 z^{2} \varphi_{2}+\ldots+3 m \varphi_{m} z^{m}$ and using (6) we get

$$
\begin{equation*}
\varphi_{0}=0, z \varphi_{1}(k-3)=0, z^{2} \varphi_{2}(k-6)=0, \ldots, z^{m} \varphi_{m}(k-3 m)=0 \tag{7}
\end{equation*}
$$

Since $\varphi_{m} \neq 0$ (because of equality $m=\operatorname{deg}_{z} f$) we have $k=3 m$ and

$$
\varphi_{1}=0, \ldots, \varphi_{m-1}=0
$$

The latter means that $f=z^{m} \varphi_{m}$, where $k=3 m$. The equality $\operatorname{deg} f=k$ implies $\operatorname{deg} \varphi_{m}=2 m$ and therefore $\varphi_{m}=\varphi_{m}(x, y)$ is a homogeneous
polynomial of degree $2 m$. Denote for convenience $\psi_{2 m}=\varphi_{m}$. Then $f=z^{m} \cdot \psi_{2 m}$ is a homogeneous polynomial of degree $3 m$.

Conversely, if $f=z^{m} \cdot \psi_{2 m}$ is a homogeneous polynomial of degree $3 m$, where $\psi_{2 m}=\psi_{2 m}(x, y)$, then $3 z f_{z}^{\prime}=3 m f^{\prime}$. Setting $k=3 m$ we get $z h_{z}^{\prime}=3 k f$, i.e. the polynomial f satisfies the equality (6). Then

$$
x f_{x}^{\prime}+y f_{y}^{\prime}-2 z f_{z}^{\prime}=0
$$

and therefore $f \in \operatorname{Ker} D$. Thus $\operatorname{Ker} D$ is a linear combination of homogeneous polynomials of the form $z^{m} \psi_{2 m}$, where $\psi_{2 m}$ is a homogeneous polynomial of degree $2 m$ in variables x, y.

Now suppose $D=D_{(a, b)}$ for some $a, b \in \mathbb{K}[x, y, z]$. Then $a, b \in \operatorname{Ker} D$ and omitting the constant terms in the polynomials a and b we get $a=\alpha_{1} z \varphi_{2}+\alpha_{2} z^{2} \varphi_{4}+\ldots+\alpha_{m} z^{m} \varphi_{2 m}, b=\beta_{1} z \psi_{2}+\beta_{2} z^{2} \psi_{4}+\ldots+\beta_{s} z^{s} \psi_{2 s}$ for some $\varphi_{i}, \psi_{j} \in \mathbb{K}[x, y], \alpha_{i}, \beta_{j} \in \mathbb{K}, \alpha_{m} \neq 0, \beta_{s} \neq 0$. Then

$$
D(x)=D_{(a, b)}(x)=a_{y}^{\prime} b_{y}^{\prime}-a_{z}^{\prime} b_{y}^{\prime}
$$

On the other hand, $D(x)=x$ and therefore $a_{y}^{\prime} b_{y}^{\prime}-a_{z}^{\prime} b_{y}^{\prime}=x$. The polynomials a_{y}^{\prime} and b_{y}^{\prime} are divided by z, so the polynomial x is also divided by z. The obtained contradiction shows that D is not a jacobian derivation. The proof is complete.

References

[1] V.V. Bavula, The groups of automorphisms of the Lie algebras of polynomial vector fields with zero or constant divergence, Comm. in Algebra, (2016), doi.org/10.1080/009278872.2016.1175596.
[2] G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of Math. Sciences, 136, 2006.
[3] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994.
[4] A. P. Petravchuk, V. V. Stepukh, On bases of Lie algebras of derivations, Bull. Taras Shevchenko Nat. Univ. of Kyiv, Ser. Fiz.-Mat., (2015), 8, no.1, 63-71.
[5] Petravchuk A.P., Iena O.G., On centralizers of elements in the Lie algebra of the special Cremona group $\mathrm{SA}_{2}(k)$, J. Lie Theory. (2006) v. 16, no.3, 61-567.

Contact information

E. Chapovsky,

O. Shevchyk

Department of Algebra and Mathematical Logic,
Faculty of Mechanics and Mathematics, Kyiv
Taras Shevchenko University, 64, Volodymyrska street, 01033 Kyiv, Ukraine
E-Mail(s): oshev4ik@gmail.com
Received by the editors: 05.12.2016
and in final form 07.12.2016.

[^0]: 2010 MSC: Primary 13N15; Secondary 13A99, 17B66.
 Key words and phrases: polynomial ring, derivation, divergence, jacobian derivation, transcendence basis.

