On divergence and sums of derivations

E. Chapovsky and O. Shevchyk

Communicated by A. P. Petravchuk

ABSTRACT. Let K be an algebraically closed field of characteristic zero and A a field of algebraic functions in n variables over K. (i.e. A is a finite dimensional algebraic extension of the field $\mathbb{K}(x_1, \ldots, x_n)$). If D is a K-derivation of A, then its divergence divD is an important geometric characteristic of D (D can be considered as a vector field with coefficients in A). A relation between expressions of divD in different transcendence bases of A is pointed out. It is also proved that every divergence-free derivation D on the polynomial ring $\mathbb{K}[x, y, z]$ is a sum of at most two jacobian derivation.

Introduction

Let \mathbb{K} be a field of characteristic zero and A a field of algebraic functions in n variables over \mathbb{K} , i.e. A is a finite dimensional algebraic extension of the field $\mathbb{K}(x_1, \ldots, x_n)$. If D is a \mathbb{K} -derivation of A, then the divergence divD of the derivation D is a very important geometric characteristic of D (D can be considered as a vector field with coefficients in A). In the first part of the paper, a relation between expressions of divD in different transcendence bases is pointed out (Theorem 1). This theorem generalizes a result of the paper [4]. Naturally, the divergence of a derivation does not change if we pass from one coordinate system in a polynomial ring to another coordinate system. In particular, the set

²⁰¹⁰ MSC: Primary 13N15; Secondary 13A99, 17B66.

Key words and phrases: polynomial ring, derivation, divergence, jacobian derivation, transcendence basis.

of all divergence-free derivations of the polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$ is invariant under action of automorphisms of this ring. Such derivations form a very important subalgebra L_0 of the Lie algebra $Der_{\mathbb{K}}(\mathbb{K}[x_1, \ldots, x_n])$ of all \mathbb{K} -derivations on $\mathbb{K}[x_1, \ldots, x_n]$. The Lie algebra L_0 was studied by many authors (see, for example, [1], [5], [4]). Note that the algebra L_0 contains all the jacobian derivations of $\mathbb{K}[x_1, \ldots, x_n]$ which are the simplest divergence-free derivations. So, it is interesting to know relations between divergence-free derivation and jacobian derivations. It is proved that every divergence-free derivations (Theorem 2). Note that every divergence-free derivation of the ring $\mathbb{K}[x, y, z]$ is a jacobian derivation. A divergence-free derivation of the polynomial ring $\mathbb{K}[x, y, z]$ is pointed out that is not a jacobian one (Proposition 1).

We use standard notation. The ground field \mathbb{K} is of characteristic zero, $\mathbb{K}(x_1,\ldots,x_n)$ is the field of rational functions. We denote by A a field of algebraic functions in n variables over the field \mathbb{K} . Let $\{y_1,\ldots,y_n\}$ be a transcendence basis of A (over \mathbb{K}). Then every derivation $\frac{\partial}{\partial y_i}$ of the subfield $\mathbb{K}(y_1,\ldots,y_n) \subseteq A$ can be uniquely extended to a derivation of the field A. We denote this extension for convenience by the same notation $\frac{\partial}{\partial y_i}$. Denote by Y the set $\{\frac{\partial}{\partial y_1},\ldots,\frac{\partial}{\partial y_n}\}$ of \mathbb{K} -derivations of A. If a_1,\ldots,a_{n-1} are elements of A, then the jacobian derivation $D_{a_1,\ldots,a_{n-1}}$ is defined by the rule: $D_{(a_1,\ldots,a_{n-1})}(h) = \det J(a_1,\ldots,a_{n-1},h)$, where $J(a_1,\ldots,a_{n-1},h)$ is the Jacobi matrix of the functions $a_1,\ldots,a_{n-1},h \in A$. The divergence divD of a derivation $D \in \operatorname{Der}_{\mathbb{K}}(A)$, $D = \sum p_i \frac{\partial}{\partial x_i}$ is defined by the rule: divD $= \sum_{i=1}^n \frac{\partial p_i}{\partial x_i}$.

1. On behavior of divergence under change of a transcendence basis

Let $A \supseteq \mathbb{K}(x_1, \ldots, x_n)$ be a field of algebraic functions. It is known that the Lie algebra $\operatorname{Der}_{\mathbb{K}}(A)$ of all \mathbb{K} -derivations of A is vector space over A of dimension n (but not a Lie algebra over A). The set $X = \{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\}$ of partial differentiations is a basis of $\operatorname{Der}_{\mathbb{K}}(A)$ over A. Thus every element $D \in \operatorname{Der}_{\mathbb{K}} R$ can be uniquely written in the form

$$D = \sum_{i=1}^{n} p_i \frac{\partial}{\partial x_i}, \ p_1, \dots, p_n \in A.$$
(1)

Let $y_1, \ldots, y_n \in A$ be a transcendence basis of the field A over the field \mathbb{K} . Then $Y = \{\frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n}\}$ is also a basis of the linear space

 $\operatorname{Der}_{\mathbb{K}}(A)$ over the field A. Therefore for a given derivation $D \in \operatorname{Der}_{\mathbb{K}}(A)$ there exist elements $q_1, \ldots, q_n \in A$ such that

$$D = \sum_{i=1}^{n} q_i \frac{\partial}{\partial y_i}, \ q_1, \dots, q_n \in A.$$
(2)

Denote the divergence of the derivation D in the transcendence bases x_1, \ldots, x_n and y_1, \ldots, y_n respectively by

$$\operatorname{div}_X D = \sum_{i=1}^n \frac{\partial p_i}{\partial x_i}, \quad \operatorname{div}_Y D = \sum_{i=1}^n \frac{\partial q_i}{\partial y_i}.$$

Theorem 1. Let $D \in Der_{\mathbb{K}}(A)$. Then

$$\operatorname{div}_X D = \operatorname{div}_Y D + \frac{D(\Delta)}{\Delta}, \quad where \ \Delta = \operatorname{det}\left(\frac{\partial y_i}{\partial x_j}\right)_{i,j=1}^n$$

Proof. Since $\frac{\partial y_i}{\partial y_j} = \delta_{ij}$ we have by (2) the following equalities

$$q_i = D(y_i) = \sum_{j=1}^n p_j \frac{\partial y_i}{\partial x_j}, \quad i = 1, \dots, n.$$
(3)

The derivations $\frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n}$ form a basis of the vector space $\operatorname{Der}_{\mathbb{K}}(A)$, so we can write

$$\frac{\partial}{\partial x_j} = \sum_{i=1}^n r_i^j \frac{\partial}{\partial y_i}, \quad j = 1, \dots, n.$$
(4)

for some $r_i^j \in A$, i, j = 1, ..., n. These elements can be found from (4):

$$r_i^j = \frac{\partial y_i}{\partial x_j}, \quad i, j = 1, \dots, n$$

Thus we have

$$\frac{\partial}{\partial x_j} = \sum_{i=1}^n \frac{\partial y_i}{\partial x_j} \frac{\partial}{\partial y_i}, \quad j = 1, \dots, n.$$

Analogously we get

$$\frac{\partial}{\partial y_i} = \sum_{j=1}^n \frac{\partial x_j}{\partial y_i} \frac{\partial}{\partial x_j}, \qquad i = 1, \dots, n.$$

Using the relation (3) we obtain

$$\operatorname{div}_{Y} D = \sum_{i=1}^{n} \frac{\partial q_{i}}{\partial y_{i}} = \sum_{i=1}^{n} \frac{\partial}{\partial y_{i}} \left(\sum_{j=1}^{n} p_{j} \frac{\partial y_{i}}{\partial x_{j}} \right)$$
$$= \sum_{i,j=1}^{n} \frac{\partial p_{j}}{\partial y_{i}} \frac{\partial y_{i}}{\partial x_{j}} + \sum_{i,j=1}^{n} p_{j} \frac{\partial}{\partial y_{i}} \left(\frac{\partial y_{i}}{\partial x_{j}} \right).$$
(5)

The first summand in the right side of (5) can be written (using (3)) in the form

$$\sum_{i,j=1}^{n} \frac{\partial p_j}{\partial y_i} \frac{\partial y_i}{\partial x_j} = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \frac{\partial y_i}{\partial x_j} \frac{\partial}{\partial y_i} \right) (p_j) = \sum_{j=1}^{n} \frac{\partial}{\partial x_j} (p_j) = \operatorname{div}_X D.$$

Write the second summand in the right side of (5) (using (4) and the equality $\left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right] = 0$) in the form

$$\sum_{i,j=1}^{n} p_j \frac{\partial}{\partial y_i} \left(\frac{\partial y_i}{\partial x_j} \right) = \sum_{i,j,k=1}^{n} p_j \frac{\partial x_k}{\partial y_i} \frac{\partial}{\partial x_j} \left(\frac{\partial y_i}{\partial x_k} \right)$$
$$= \sum_{i,k=1}^{n} \frac{\partial x_k}{\partial y_i} \left(\sum_{j=1}^{n} p_j \frac{\partial}{\partial x_j} \right) \left(\frac{\partial y_i}{\partial x_k} \right) = \sum_{i,k=1}^{n} \frac{\partial x_k}{\partial y_i} D\left(\frac{\partial y_i}{\partial x_k} \right)$$

The matrix $\left(\frac{\partial x_k}{\partial y_i}\right)_{k,i=1}^n$ is inverse to the matrix $\left(\frac{\partial y_k}{\partial x_i}\right)_{k,i=1}^n$, so we have

$$\frac{\partial x_k}{\partial y_i} = \frac{A_k^i}{\Delta}, \qquad i, j = 1, \dots, n,$$

where A_i^k is the cofactor of the element $\frac{\partial y_k}{\partial x_i}$ in the determinant $\Delta = \det\left(\frac{\partial y_k}{\partial x_i}\right)_{k,i=1}^n$. Thus

$$\sum_{i,k=1}^{n} \frac{\partial x_k}{\partial y_i} D\left(\frac{\partial y_i}{\partial x_k}\right) = \frac{1}{\Delta} \sum_{i,k=1}^{n} A_k^i D\left(\frac{\partial y_i}{\partial x_k}\right)$$
$$= \frac{1}{\Delta} \sum_{k=1}^{n} \begin{vmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & D\left(\frac{\partial y_1}{\partial x_k}\right) & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \cdots & D\left(\frac{\partial y_n}{\partial x_k}\right) & \cdots & \frac{\partial y_n}{\partial x_n} = \end{vmatrix} = \frac{D(\Delta)}{\Delta}.$$

The proof is complete.

2. Divergence-free and jacobian derivations

Some known results about divergence-free derivations are collected in the next Lemma (see, for example, [2]) or [3]):

Lemma 1. 1) If D is a jacobian derivation of the ring $\mathbb{K}[x_1, \ldots, x_n]$, then divD = 0;

2) Every divergence-free derivation of the polynomial ring $\mathbb{K}[x, y]$ is a jacobian derivation;

3) If D_1, D_2 are divergence-free derivations of the ring $\mathbb{K}[x_1, \ldots, x_n]$, then so are $D_1 + D_2$ and $[D_1, D_2]$.

Theorem 2. Let D be a \mathbb{K} -derivation of the polynomial ring $\mathbb{K}[x, y, z]$ with divD = 0. Then there exist jacobian derivations D_1 and D_2 of the ring $\mathbb{K}[x, y, z]$ such that $D = D_1 + D_2$.

Proof. Write D in the form

$$D = p(x, y, z)\frac{\partial}{\partial x} + q(x, y, z)\frac{\partial}{\partial y} + r(x, y, z)\frac{\partial}{\partial z},$$

where $p, q, r \in \mathbb{K}[x, y, z]$. Then by the conditions of the theorem, $p'_x + q'_y + r'_z = \operatorname{divD} = 0$. First find a jacobian derivation D_1 of the ring $\mathbb{K}[x, y, z]$ of the form

$$D_1 = p(x, y, z)\frac{\partial}{\partial x} + q_1(x, y, z)\frac{\partial}{\partial y}$$

for some $q_1 \in \mathbb{K}[x, y, z]$. Denote by s = s(x, y, z) a polynomial in $\mathbb{K}[x, y, z]$ such that $s'_y = p$, i.e. $s = \int p(x, y, z) dy$ (it is obvious that such a polynomial does exist). Denote by $D_1 = D_{(s,z)}$ the jacobian derivation determined by the polynomials $s, z \in \mathbb{K}[x, y, z]$. It is easy to see that

$$D_1 = p(x, y, z) \frac{\partial}{\partial x} - s'_x(x, y, z) \frac{\partial}{\partial y}.$$

Set $D_2 = D - D_1$. Let us show that D_2 is a jacobian derivation of the ring $\mathbb{K}[x, y, z]$. It is obvious that

$$D_2 = q_2(x, y, z) \frac{\partial}{\partial y} + r(x, y, z) \frac{\partial}{\partial z}$$
, where $q_2 = q - s'_x$.

Consider $q_2(x, y, z)$ and r(x, y, z) as polynomials of variables y, z with coefficients in the ring $\mathbb{K}[x]$. Since $\operatorname{div} D_2 = \operatorname{div} D - \operatorname{div} D_1 = 0$ we have $\frac{\partial q_2}{\partial y} + \frac{\partial r}{\partial z} = 0$. Denote for convenience $\varphi = -r, \psi = q_2$. Then the vector field

 $\varphi \frac{\partial}{\partial y} + \psi \frac{\partial}{\partial z}$ is potential since the equality $\varphi'_z = \psi'_y$ holds. Therefore there exists a polynomial t(x, y, z) such that $t'_y = \varphi$, $t'_z = \psi$ (the polynomial t can be obtained by formal integrating the polynomials ψ and φ on variables y and z respectively).

$$t(x,y,z) = \int_{0,0,0}^{M(x,y,z)} \varphi(x,y,z) dy + \psi(x,y,z) dz.$$

Thus $t'_y = -r(x, y, z), t'_z = q_2(x, y, z)$. Let us consider the jacobian derivation $D_{(t,x)}$. It is obvious that

$$D_{(t,x)} = t'_z \frac{\partial}{\partial y} - t'_y \frac{\partial}{\partial z} = q_2(x,y,z) \frac{\partial}{\partial y} + r(x,y,z) \frac{\partial}{\partial z} = D_2$$

So we have $D = D_1 + D_2$, where D_1 , D_2 are jacobian derivations. \Box

Proposition 1. The derivation $D = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} - 2z \frac{\partial}{\partial z}$ of the polynomial ring $\mathbb{K}[x, y, z]$ is divergence-free but not a jacobian derivation.

Proof. By Theorem 10.1.1 from [3], it holds $\operatorname{Ker} D \neq \mathbb{K}$. Take any polynomial $f \in \operatorname{Ker} D$ and write it as a sum $f = f_0 + f_1 + \ldots + f_n$ of homogeneous components. Since the derivation D is homogeneous, all the polynomials f_i are also in $\operatorname{Ker} D$. Therefore we can assume without loss of generality that f is a homogeneous polynomial of degree k. The equality D(f) = 0 means that $xf'_x + yf'_y - 2zf'_z = 0$ and therefore it holds

$$kf - 3zf'_z = 0 \tag{6}$$

(here $xf'_x + yf'_y + zf'_z = kf$ since deg f = k). Consider the polynomial f as a polynomial of z with coefficients in $\mathbb{K}[y, z]$ and write

$$f = \varphi_0 + \varphi_1 z + \ldots + \varphi_m z^m, \ \varphi_i \in \mathbb{K}[x, y], m = \deg_z f.$$

Then $3zf'_{z} = 3z\varphi_{1} + 6z^{2}\varphi_{2} + \ldots + 3m\varphi_{m}z^{m}$ and using (6) we get

$$\varphi_0 = 0, \ z\varphi_1(k-3) = 0, \ z^2\varphi_2(k-6) = 0, \dots, z^m\varphi_m(k-3m) = 0.$$
 (7)

Since $\varphi_m \neq 0$ (because of equality $m = \deg_z f$) we have k = 3m and

$$\varphi_1 = 0, \ldots, \varphi_{m-1} = 0.$$

The latter means that $f = z^m \varphi_m$, where k = 3m. The equality deg f = k implies deg $\varphi_m = 2m$ and therefore $\varphi_m = \varphi_m(x, y)$ is a homogeneous

polynomial of degree 2m. Denote for convenience $\psi_{2m} = \varphi_m$. Then $f = z^m \cdot \psi_{2m}$ is a homogeneous polynomial of degree 3m.

Conversely, if $f = z^m \cdot \psi_{2m}$ is a homogeneous polynomial of degree 3m, where $\psi_{2m} = \psi_{2m}(x, y)$, then $3zf'_z = 3mf'$. Setting k = 3m we get $zh'_z = 3kf$, i.e. the polynomial f satisfies the equality (6). Then

$$xf_x' + yf_y' - 2zf_z' = 0$$

and therefore $f \in \text{Ker}D$. Thus KerD is a linear combination of homogeneous polynomials of the form $z^m \psi_{2m}$, where ψ_{2m} is a homogeneous polynomial of degree 2m in variables x, y.

Now suppose $D = D_{(a,b)}$ for some $a, b \in \mathbb{K}[x, y, z]$. Then $a, b \in \text{Ker}D$ and omitting the constant terms in the polynomials a and b we get

$$a = \alpha_1 z \varphi_2 + \alpha_2 z^2 \varphi_4 + \ldots + \alpha_m z^m \varphi_{2m}, \ b = \beta_1 z \psi_2 + \beta_2 z^2 \psi_4 + \ldots + \beta_s z^s \psi_{2s}$$

for some $\varphi_i, \psi_j \in \mathbb{K}[x, y], \ \alpha_i, \beta_j \in \mathbb{K}, \ \alpha_m \neq 0, \ \beta_s \neq 0.$ Then

$$D(x) = D_{(a,b)}(x) = a'_{y}b'_{y} - a'_{z}b'_{y}.$$

On the other hand, D(x) = x and therefore $a'_y b'_y - a'_z b'_y = x$. The polynomials a'_y and b'_y are divided by z, so the polynomial x is also divided by z. The obtained contradiction shows that D is not a jacobian derivation. The proof is complete.

References

- V.V. Bavula, The groups of automorphisms of the Lie algebras of polynomial vector fields with zero or constant divergence, Comm. in Algebra, (2016), doi.org/10.1080/009278872.2016.1175596.
- [2] G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of Math. Sciences, 136, 2006.
- [3] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994.
- [4] A. P. Petravchuk, V. V. Stepukh, On bases of Lie algebras of derivations, Bull. Taras Shevchenko Nat. Univ. of Kyiv, Ser. Fiz.-Mat., (2015), 8, no.1, 63-71.
- [5] Petravchuk A.P., Iena O.G., On centralizers of elements in the Lie algebra of the special Cremona group SA₂(k), J. Lie Theory. (2006) v. 16, no.3, 61–567.

CONTACT INFORMATION

E. Chapovsky,	Department of Algebra and Mathematical Logic,
O. Shevchyk	Faculty of Mechanics and Mathematics, Kyiv
	Taras Shevchenko University, 64, Volodymyrska
	street, 01033 Kyiv, Ukraine
	E-Mail(s): oshev4ik@gmail.com

Received by the editors: 05.12.2016 and in final form 07.12.2016.