Cross-cap singularities counted with sign

Iwona Krzyżanowska

Communicated by I. Protasov

Abstract. A method for computing the algebraic number of cross-cap singularities for mapping from m-dimensional compact manifold with boundary $M \subset \mathbb{R}^{m}$ into $\mathbb{R}^{2 m-1}, m$ is odd, is presented. As an application, the intersection number of an immersion $g: S^{m-1}(r) \rightarrow \mathbb{R}^{2 m-2}$ is described as the algebraic number of cross-caps of a mapping naturally associated with g.

Introduction

Mappings from the m-dimensional, smooth, orientable manifold M into $\mathbb{R}^{2 m-1}$ are natural object of study. In [9], Whitney described typical mappings from M into $\mathbb{R}^{2 m-1}$. Those mappings have only isolated critical points, called cross-caps (or Whintey umbrellas).

According to [1, Theorem 4.6], [11, Lemma 2], a mapping $M \rightarrow \mathbb{R}^{2 m-1}$ has a cross-cap at $p \in M$, if and only if in the local coordinate system near p this mapping has the form

$$
\left(x_{1}, \ldots, x_{m}\right) \mapsto\left(x_{1}^{2}, x_{2}, \ldots, x_{m}, x_{1} x_{2}, \ldots, x_{1} x_{m}\right)
$$

In [11], for m odd, Whitney presented a method to associate a sign with a cross-cap. Put $\zeta(f)$ to be an algebraic sum of cross-caps of $f: M \rightarrow$ $\mathbb{R}^{2 m-1}$, where M is m-dimensional compact orientable manifold. Then according to Whitney, [11, Theorem 3], $\zeta(f)=0$, if M is closed. If M

[^0]has a boundary, then following Whitney, [11, Theorem 4], for a homotopy $f_{t}: M \rightarrow \mathbb{R}^{2 m-1}$ regular in some open neighbourhood of ∂M, if the only singular points of f_{0} and f_{1} are cross-caps, then $\zeta\left(f_{0}\right)=\zeta\left(f_{1}\right)$. Moreover arbitrarily close to any mapping $h: M \rightarrow \mathbb{R}^{2 m-1}$, there is mapping regular near boundary, with only cross-caps as singular points (see [11]). In the case where m even, it is impossible to associate sign with cross-cap in the same way as in the odd case, but if m is even, it is enough to consider number of cross-caps mod 2 , to get similar results (see [11]).

In [6], the authors studied a mapping α from a compact and oriented $(n-k)$-manifold M into the Stiefel manifold $\widetilde{V}_{k}\left(\mathbb{R}^{n}\right)$, for $n-k$ even. They constructed a mapping $\widetilde{\alpha}: S^{k-1} \times M \rightarrow \mathbb{R}^{n} \backslash\{0\}$ associated with α, and defined $\Lambda(\alpha)$ as half of topological degree of $\widetilde{\alpha}$. In case $M=S^{n-k}$, they showed that $\Lambda(\alpha)$ corresponds with the class of α in $\pi_{n-k} \widetilde{V}_{k}\left(\mathbb{R}^{n}\right) \simeq \mathbb{Z}$. According to [6], in the case where $M \subset \mathbb{R}^{n-k+1}$ is an algebraic hypersurface and α is polynomial, with some additional assumptions concerning M and $\alpha, \Lambda(\alpha)$ can be presented as a sum of signatures of two quadratic forms defined on $\mathbb{R}\left[x_{1}, \ldots, x_{n-k+1}\right]$. And so, easily computed.

In this paper we prove that in the case where m is odd, for f : $(M, \partial M) \rightarrow \mathbb{R}^{2 m-1}$, where $M \subset \mathbb{R}^{m}, \zeta(f)$ can be expressed as $\Lambda(\alpha)$, for some α associated with f. And so, with some additional assumptions concerning M and $f, \zeta(f)$ can be easily computed for polynomial mapping f. Moreover we present a method that can be used to check effectively that f has only cross-caps as singular points. In case when m is even, the effective method to compute number of cross-caps modulo 2 is presented in [5].

Take a smooth map $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{2 m-2}$, let us assume that $\left.g\right|_{S^{m-1}}$ is an immersion. In [10], Whitney introduced the intersection number $I\left(\left.g\right|_{S^{m-1}}\right)$ of immersion $\left.g\right|_{S^{m-1}}$. In this paper we show that $I\left(\left.g\right|_{S^{m-1}}\right)$, can be presented as an algebraic sum of cross-caps of the mapping $(\omega, g) \mid \bar{B}^{m}$, where ω is sum of squares of coordinates.

Take $f:\left(\mathbb{R}^{m}, 0\right) \rightarrow \mathbb{R}^{2 m-1}$ with cross-cap at 0 . In [3], Ikegami and Saeki defined the sign of a cross-cap singularity for mapping f as the intersection number of immersion $\left.f\right|_{S}: S=f^{-1}\left(S^{2 m-2}(\epsilon)\right) \rightarrow S^{2 m-2}(\epsilon)$, for ϵ small enough. It is easy to see that this definition complies with Whitney definition from [11]. In [3], the authors showed that for generic map (in sense of $[3]) g:\left(\mathbb{R}^{m}, 0\right) \rightarrow \mathbb{R}^{2 m-1}$, the number of cross-caps appearing in a C^{∞} stable perturbation of g, counted with signs, is an invariant of the topological \mathcal{A}_{+}-equivalence class of g, and is equal to the intersection number of $\left.g\right|_{S}: S=g^{-1}\left(S^{2 m-2}(\epsilon)\right) \rightarrow S^{2 m-2}(\epsilon)$. Using our methods, this number can be easily computed for polynomial mappings.

We use notation $S^{n}(r), B^{n}(r), \bar{B}^{n}(r)$ for sphere, open ball, closed ball (resp.) centred at the origin of radios r and dimension n. If we omit symbol r, we assume that $r=1$.

1. Cross-cap singularities

Let M, N be smooth manifolds. Take a smooth mapping $f: M \rightarrow N$.
Lemma 1. Let W be a submanifold of N. Take $p \in M$ such that $f(p) \in$ W. Let us assume that there is a neighbourhood U of $f(p)$ in N and a smooth mapping $\phi: U \rightarrow \mathbb{R}^{s}$ such that rank $D \phi(f(p))=k=\operatorname{codim} W$ and $W \cap U=\phi^{-1}(0)$. Then $f \pitchfork W$ at p if and only if $\operatorname{rank} D(\phi \circ f)(p)=k$.

Proof. Of course $\operatorname{Ker} D \phi(f(p))=T_{f(p)} W$, and so we get $\operatorname{dim} T_{f(p)} N=$ $\operatorname{dim} \operatorname{Ker} D \phi(f(p))+k$. Then:

$$
\begin{aligned}
f \pitchfork W \text { at } p & \Longleftrightarrow T_{f(p)} N=T_{f(p)} W+D f(p) T_{p} M \\
& \Longleftrightarrow T_{f(p)} N=\operatorname{Ker} D \phi(f(p))+D f(p) T_{p} M
\end{aligned}
$$

The above equality holds if and only if there exist vectors v_{1}, \ldots, v_{k} in $D f(p) T_{p} M$, such that any nontrivial combination of v_{1}, \ldots, v_{k} is outside the $\operatorname{Ker} D \phi(f(p))$ and so $\operatorname{rank} D \phi(f(p))\left[v_{1} \ldots v_{k}\right]=k$. We get that $f \pitchfork W$ at p if and only if $\operatorname{rank} D(\phi \circ f)(p)=k$.

By $j^{1} f$ we mean the canonical mapping associated with f, from M into the spaces of 1-jets $J^{1}(M, N)$. We say that $f: M \rightarrow N$ is 1 -generic, if $j^{1} f \pitchfork S_{r}$, for $r \geqslant 0$, where $S_{r}=\left\{\sigma \in J^{1}(M, N) \mid \operatorname{corank} \sigma=r\right\}$. Put $S_{r}(f)=\{x \in M \mid$ corank $D f(p)=r\}=\left(j^{1} f\right)^{-1}\left(S_{r}\right)$.

Let us assume that M and N are manifolds of dimension m and $2 m-1$ respectively. In this case (see [1]) codim $S_{r}=r^{2}+r(m-1)$, and so $\operatorname{codim} S_{1}=m$ and $\operatorname{codim} S_{r}>m$, for $r \geqslant 2$. So f is 1-generic if and only if $f \pitchfork S_{1}$ and $S_{r}(f)=\varnothing$ for $r \geqslant 2$. The typical singularity for mapping $f: M \rightarrow N$ is a cross-cap singularity. Following [9], [11], [1] we present equivalent definitions of a cross-cap.

Definition 1. A point p is a cross-cap of a mapping $f: M \rightarrow N$ if the following equivalent conditions are fulfilled:

1) $p \in S_{1}(f)$ and $j^{1} f \pitchfork S_{1}$ at p;
2) there are coordinate systems near p and $f(p)$, such that

$$
\begin{equation*}
\frac{\partial f}{\partial x_{1}}(p)=0 \tag{1}
\end{equation*}
$$

and vectors

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(p), \frac{\partial f}{\partial x_{2}}(p), \ldots, \frac{\partial f}{\partial x_{m}}(p), \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(p), \ldots, \frac{\partial^{2} f}{\partial x_{1} \partial x_{m}}(p) \tag{2}
\end{equation*}
$$

are linearly independent;
3) there are coordinate systems near p and $f(p)$ such that the mapping f has the form

$$
\left(x_{1}, \ldots, x_{m}\right) \mapsto\left(x_{1}^{2}, x_{2}, \ldots, x_{m}, x_{1} x_{2}, \ldots, x_{1} x_{m}\right)
$$

According to [9, Section 2], if p is a cross-cap singularity and (1) holds, then vectors (2) are linearly independent.

Take $f=\left(f_{1}, \ldots, f_{2 m-1}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}^{2 m-1}$. Put $\mu: \mathbb{R}^{m} \rightarrow \mathbb{R}^{s}$ such that $\mu(x)$ is given by all the m-minors of $D f(x)$. Of course $s=\binom{2 m-1}{m}$.

Lemma 2. A point $p \in \mathbb{R}^{m}$ is a cross-cap singularity of f if and only if $\operatorname{rank} D f(p)=m-1$ and $\operatorname{rank} D \mu(p)=m$.

Proof. A point p is a cross-cap singularity if and only if $p \in S_{1}(f)$ and $j^{1} f \pitchfork S_{1}$ at p. Note that $p \in S_{1}(f)$ if and only if $\operatorname{rank} D f(p)=m-1$.

Of course $J^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{2 m-1}\right) \cong \mathbb{R}^{m} \times \mathbb{R}^{2 m-1} \times M(2 m-1, m)$, where $M(2 m-1, m)$ is a space of real matrices of dimension $(2 m-1) \times m$. Take an open neighbourhood U of $j^{1} f(p)$ in $J^{1}\left(\mathbb{R}^{m}, \mathbb{R}^{2 m-1}\right)$, and a mapping

$$
\phi: U \rightarrow \mathbb{R}^{s}
$$

where $\phi\left(x, y,\left[a_{i j}\right]\right)$ is given by all m-minors of $\left[a_{i j}\right]$. We may assume that

$$
\operatorname{det} \frac{\partial\left(f_{1}, \ldots, f_{m-1}\right)}{\partial\left(x_{1}, \ldots, x_{m-1}\right)}(p) \neq 0
$$

Put $A=\left[a_{i j}\right]_{1 \leqslant i, j \leqslant m-1}$ the submatrix of $\left[a_{i j}\right]$, then for U small enough, $\operatorname{det} A \neq 0$. Let M_{i} be the determinant of submatrix of $\left[a_{i j}\right]$ composed of first $m-1$ rows and row number $(m+i-1)$, for $i=1, \ldots, m$. Then

$$
M_{i}=(-1)^{2 m-1+i} \operatorname{det} A \cdot a_{m+i-1, m}+b_{i}
$$

for $i=1, \ldots, m$ and b_{i} does not depend on $a_{m m}, \ldots, a_{2 m-1, m}$, and so

$$
\operatorname{rank} \frac{\partial\left(M_{1}, \ldots, M_{m}\right)}{\partial\left(a_{m, m}, \ldots, a_{2 m-1, m}\right)}=m
$$

We get that

$$
\operatorname{rank} D \phi\left(j^{1} f(p)\right) \geqslant m
$$

Let us recall that codim $S_{1}=m$. We can choose U small enough such that

$$
\phi^{-1}(0)=U \cap S_{1} .
$$

So we get that $\operatorname{rank} D \phi\left(j^{1} f(p)\right)=\operatorname{codim} S_{1}=m$. Of course $\phi \circ j^{1} f=\mu$ in the small neighbourhood of p. According to Lemma $1, j^{1} f \pitchfork S_{1}$ at p if and only if $\operatorname{rank} D \mu(p)=m$.

2. Algebraic sum of cross-cap singularities

First we want to recall some well-known facts concerning the topological degree. Let $(N, \partial N)$ be n-dimensional compact oriented manifold with boundary. For smooth mapping $f: N \rightarrow \mathbb{R}^{n}$ such that $\left.f\right|_{\partial N}: \partial N \rightarrow$ $\mathbb{R}^{n} \backslash\{0\}$, by $\left.\operatorname{deg} f\right|_{\partial N}$ or $\operatorname{deg}(f, N, 0)$ we denote the topological degree of mapping $f /|f|: \partial N \rightarrow S^{n-1}$. Note that if $f^{-1}(0)$ is a finite set then

$$
\left.\operatorname{deg} f\right|_{\partial N}=\sum_{p \in f^{-1}(0)} \operatorname{deg}_{p} f
$$

where $\operatorname{deg}_{p} f$ stands for the local topological degree of f at p (see [8]).
Let M be a m-dimensional manifold and m be odd. Take a smooth mapping $f: M \rightarrow \mathbb{R}^{2 m-1}$ and let $p \in M$ be a cross-cap of f. According to [11], p is called positive (negative) if the vectors (2) determine the negative (positive) orientation of $\mathbb{R}^{2 m-1}$. According to [11, Lemma 3], this definition does not depend on choosing the coordinate system on M.

Let us assume, that $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{2 m-1}$ is a smooth mapping such that 0 is a cross-cap of f. Of course it is an isolated critical point of f. Denote by v_{i} the i th column of $D f$, for $i=1, \ldots, m$. There exists $r>0$ such that $v_{1}(x), \ldots, v_{m}(x)$ are linearly independent for $x \in \bar{B}^{m}(r) \backslash\{0\}$. Following [6] we can define

$$
\begin{aligned}
\widetilde{\alpha}(\beta, x) & =\beta_{1} v_{1}(x)+\ldots+\beta_{m} v_{m}(x) \\
& =D f(x)(\beta): S^{m-1} \times \bar{B}^{m}(r) \rightarrow \mathbb{R}^{2 m-1} .
\end{aligned}
$$

Then the topological degree of the mapping

$$
\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}(r)}: S^{m-1} \times S^{m-1}(r) \rightarrow \mathbb{R}^{2 m-1} \backslash\{0\}
$$

is well defined. By $\left[6, \operatorname{Proposition~2.4],~} \operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}(r)}\right)\right.$ is even.

Theorem 1. Let m be odd. If 0 is a cross-cap of a mapping $f: \mathbb{R}^{m} \rightarrow$ $\mathbb{R}^{2 m-1}$, then it is positive if and only if $\frac{1}{2} \operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}(r)}\right)=-1$, and so it is negative if and only if $\frac{1}{2} \operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}(r)}\right)=+1$.

Proof. We can find linear coordinate system $\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, such that $\phi(0)=0$ and $f \circ \phi$ fulfills condition (1) at 0 . Denote by A the matrix of ϕ. Let w_{1}, \ldots, w_{m} denote columns of $D(f \circ \phi)$. Then $w_{1}(0)=0$ and since 0 is a cross-cap then vectors

$$
\begin{equation*}
\frac{\partial w_{1}}{\partial x_{1}}(0), \quad w_{2}(0), \quad \ldots, \quad w_{m}(0), \quad \frac{\partial w_{1}}{\partial x_{2}}(0), \quad \ldots, \quad \frac{\partial w_{1}}{\partial x_{m}}(0) \tag{3}
\end{equation*}
$$

are linearly independent. Put $\widetilde{\gamma}(\beta, x)=\left(\beta_{1} w_{1}(x)+\ldots+\beta_{m} w_{m}(x)\right)$: $S^{m-1} \times \bar{B}^{m}(r) \rightarrow \mathbb{R}^{2 m-1}$. We can assume that r is such that $\widetilde{\gamma} \neq 0$ on $S^{m-1} \times \bar{B}^{m}(r) \backslash\{0\}$. Let us see that

$$
\begin{aligned}
\widetilde{\gamma}(\beta, x) & =D(f \circ \phi)(x) \cdot\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right]=D f(\phi(x)) \cdot A \cdot\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right] \\
& =D f(\phi(x)) \cdot\left[\begin{array}{c}
\phi_{1}(\beta) \\
\vdots \\
\phi_{m}(\beta)
\end{array}\right] .
\end{aligned}
$$

So $\widetilde{\gamma}=\widetilde{\alpha} \circ(\phi \times \phi)$. It is easy to see that $\phi \times \phi$ preserve the orientation of $S^{m-1} \times S^{m-1}(r)$. We can assume that $r>0$ is so small, that $\operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}(r)}\right)=\operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{\phi\left(S^{m-1}\right) \times \phi\left(S^{m-1}(r)\right)}\right)$. So we get that

$$
\begin{aligned}
\operatorname{deg}\left(\left.\widetilde{\gamma}\right|_{S^{m-1} \times S^{m-1}(r)}\right) & =\operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{\phi\left(S^{m-1}\right) \times \phi\left(S^{m-1}(r)\right)}\right) \operatorname{deg}(\phi \times \phi)= \\
& =\operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}(r)}\right)
\end{aligned}
$$

Since $f \circ \phi$ fulfils (1), vectors w_{2}, \ldots, w_{m} are independent on $\bar{B}^{m}(r)$. Let us see that $\widetilde{\gamma}(\beta, x)=0$ on $S^{m-1} \times \bar{B}^{m}(r)$ if and only if $x=0$ and $\beta=(\pm 1,0, \ldots, 0)$. So $\operatorname{deg}\left(\left.\widetilde{\gamma}\right|_{S^{m-1} \times S^{m-1}(r)}\right)$ is a sum of local topological degrees of $\widetilde{\gamma}$ at $(1,0, \ldots, 0 ; 0, \ldots, 0)$ and at $(-1,0, \ldots, 0 ; 0, \ldots, 0)$.

Near the point $(1,0, \ldots, 0 ; 0, \ldots, 0)$ the well-oriented parametrisation of $S^{m-1} \times \bar{B}^{m}(r)$ is given by

$$
\left(\beta_{2}, \ldots, \beta_{m} ; x\right)=\left(\sqrt{1-\beta_{2}^{2}-\ldots-\beta_{m}^{2}}, \beta_{2}, \ldots, \beta_{m} ; x\right)
$$

And then the derivative matrix of $\widetilde{\gamma}$ at $(1,0, \ldots, 0 ; 0, \ldots, 0)$ has a form

$$
A_{1}=\left[\begin{array}{llllll}
w_{2}(0) & \ldots & w_{m}(0) & \frac{\partial w_{1}}{\partial x_{1}}(0) & \ldots & \frac{\partial w_{1}}{\partial x_{m}}(0)
\end{array}\right]
$$

Near $(-1,0, \ldots, 0 ; 0, \ldots, 0)$ the well-oriented parametrisation of $S^{m-1} \times$ $\bar{B}^{m}(r)$ is given by

$$
\left(\beta_{2}, \ldots, \beta_{m} ; x\right)=\left(-\sqrt{1-\beta_{2}^{2}-\ldots-\beta_{m}^{2}},-\beta_{2}, \ldots, \beta_{m} ; x\right)
$$

And then the derivative matrix of $\widetilde{\gamma}$ at $(-1,0, \ldots, 0 ; 0, \ldots, 0)$ has a form

$$
A_{2}=\left[\begin{array}{llllll}
-w_{2}(0) & \ldots & w_{m}(0) & -\frac{\partial w_{1}}{\partial x_{1}}(0) & \ldots & -\frac{\partial w_{1}}{\partial x_{m}}(0)
\end{array}\right] .
$$

Let us recall that m is odd. System of vectors (3) is independent, so 0 is a regular value of $\widetilde{\gamma}$, and

$$
\frac{1}{2} \operatorname{deg}\left(\left.\widetilde{\gamma}\right|_{S^{m-1} \times S^{m-1}(r)}\right)=\frac{1}{2}\left(\operatorname{sgn} \operatorname{det} A_{1}+\operatorname{sgn} \operatorname{det} A_{2}\right)=\operatorname{sgn} \operatorname{det} A_{1}
$$

Moreover 0 is a positive cross-cap if and only if vectors (3) determine negative orientation of a $\mathbb{R}^{2 m-1}$, i. e. if and only if $\frac{1}{2} \operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}(r)}\right)=$ -1 .

Let $U \subset \mathbb{R}^{m}$ be an open bounded set and $f: \bar{U} \rightarrow \mathbb{R}^{2 m-1}$ be smooth. We say that f is generic if only critical points of f are cross-caps and f is regular in the neighborhood of ∂U. Let us denote by $\zeta(f)$ the algebraic sum of cross-caps of f. Then using Theorem 1 we get the following.

Proposition 1. Let $U \subset \mathbb{R}^{m}$, (m is odd), be a bounded m-dimensional manifold such that \bar{U} is an m-dimensional manifold with a boundary. For $f: \bar{U} \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{2 m-1}$ generic, $\zeta(f)=-\frac{1}{2} \operatorname{deg}(\widetilde{\alpha})$, where $\widetilde{\alpha}(\beta, x)=$ $D f(x)(\beta): S^{m-1} \times \partial U \rightarrow \mathbb{R}^{2 m-1} \backslash\{0\}$.

Proposition 2. Let $U \subset \mathbb{R}^{m}$, (m is odd), be a bounded m-dimensional manifold such that \bar{U} is an m-dimensional manifold with a boundary. Take $h: \bar{U} \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{2 m-1}$ a smooth mapping such that h is regular in a neighborhood of ∂U. Then for every generic $f: \bar{U} \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{2 m-1}$ close enough to h in C^{1}-topology we have, $\zeta(f)=-\frac{1}{2} \operatorname{deg}(\widetilde{\alpha})$, where $\widetilde{\alpha}(\beta, x)=$ $D h(x)(\beta): S^{m-1} \times \partial U \rightarrow \mathbb{R}^{2 m-1} \backslash\{0\}$.

3. Examples

To compute some examples we want first to recall the theory presented in [6].

Take $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right): \mathbb{R}^{n-k+1} \rightarrow M(n, k)$ a polynomial mapping, $n-k$ even, where $M(n, k)$ is a space of real matrices of dimension $n \times k$.

By $\left[a_{i j}(x)\right], 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant k$, we denote the matrix given by $\alpha(x)$ (i.e. $\alpha_{j}(x)$ stands in the j th column $)$. Then one can define $\widetilde{\alpha}: \mathbb{R}^{k} \times \mathbb{R}^{n-k+1} \rightarrow$ \mathbb{R}^{n} as

$$
\widetilde{\alpha}(\beta, x)=\beta_{1} \alpha_{1}(x)+\ldots+\beta_{k} \alpha_{k}(x)=\left[a_{i j}(x)\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right] .
$$

Let I be the ideal in $\mathbb{R}\left[x_{1}, \ldots, x_{n-k+1}\right]$ generated by all $k \times k$ minors of $\left[a_{i j}(x)\right]$, and $V(I)=\left\{x \in \mathbb{R}^{n-k+1} \mid h(x)=0\right.$ for all $\left.h \in I\right\}$.

Take

$$
m(x)=\operatorname{det}\left[\begin{array}{ccc}
a_{12}(x) & \ldots & a_{1 k}(x) \\
& & \\
a_{k-1,2}(x) & \ldots & a_{k-1, k}(x)
\end{array}\right]
$$

For $k \leqslant i \leqslant n$, we define

$$
\Delta_{i}(x)=\operatorname{det}\left[\begin{array}{ccc}
a_{11}(x) & \ldots & a_{1 k}(x) \\
& \ldots & \\
a_{k-1,1}(x) & \ldots & a_{k-1, k}(x) \\
a_{i 1}(x) & \ldots & a_{i k}(x)
\end{array}\right]
$$

Put $\mathcal{A}=\mathbb{R}\left[x_{1}, \ldots, x_{n-k+1}\right] / I$. Let us assume that $\operatorname{dim} \mathcal{A}<\infty$, so that $V(I)$ is finite. For $h \in \mathcal{A}$, we denote by $T(h)$ the trace of the linear endomorphism $\mathcal{A} \ni a \mapsto h \cdot a \in \mathcal{A}$. Then $T: \mathcal{A} \rightarrow \mathbb{R}$ is a linear functional.

Let $u \in \mathbb{R}\left[x_{1}, \ldots, x_{n-k+1}\right]$. Assume that $\bar{U}=\{x \mid u(x) \geqslant 0\}$ is bounded and $\nabla u(x) \neq 0$ at each $x \in u^{-1}(0)=\partial U$. Then \bar{U} is a compact manifold with boundary, and $\operatorname{dim} \bar{U}=n-k+1$.

Put $\delta=\partial\left(\Delta_{k}, \ldots, \Delta_{n}\right) / \partial\left(x_{1}, \ldots, x_{n-k+1}\right)$. With u and δ we associate quadratic forms $\Theta_{\delta}, \Theta_{u \cdot \delta}: \mathcal{A} \rightarrow \mathbb{R}$ given by $\Theta_{\delta}(a)=T\left(\delta \cdot a^{2}\right)$ and $\Theta_{u \cdot \delta}(a)=T\left(u \cdot \delta \cdot a^{2}\right)$.

Theorem 2. [6, Theorem 3.3] If $n-k$ is even, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$: $\mathbb{R}^{n-k+1} \rightarrow M(n, k)$ is a polynomial mapping such that $\operatorname{dim} \mathcal{A}<\infty$, $I+\langle m\rangle=\mathbb{R}\left[x_{1}, \ldots, x_{n-k+1}\right]$ and quadratic forms $\Theta_{\delta}, \Theta_{u \cdot \delta}: \mathcal{A} \rightarrow \mathbb{R}$ are non-degenerate, then the restricted mapping $\left.\alpha\right|_{\partial U}$ goes into $\widetilde{V}_{k}\left(\mathbb{R}^{n}\right)$ and

$$
\Lambda\left(\left.\alpha\right|_{\partial U}\right)=\frac{1}{2} \operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{k-1} \times \partial U}\right)=\frac{1}{2}\left(\text { signature } \Theta_{\delta}+\text { signature } \Theta_{u \cdot \delta}\right)
$$

where $\widetilde{\alpha}(\beta, x)=\beta_{1} \alpha_{1}(x)+\ldots+\beta_{k} \alpha_{k}(x)$.
Using the theory presented in [6], particularly [6, Theorem 3.3], and computer system Sing ULAR ([2]), one can apply the results from Sections 1 and 2 to compute algebraic sum of cross-caps for polynomial mappings.

Example 1. Let us take $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ given by

$$
\begin{gathered}
f(x, y, z)=\left(12 y^{2}+z, 6 x^{2}+y^{2}+6 y, 18 x y+13 y^{2}+9 x\right. \\
\left.8 x^{2} z+10 x z^{2}+5 x^{2}+3 x z, x^{2} y+4 x y z+y z+4 z^{2}\right)
\end{gathered}
$$

Applying Lemma 2 and using Singular one can check that f is 1-generic. Moreover, according to Proposition 1 and [6], one can check that

$$
\zeta\left(\left.f\right|_{\bar{B}^{3}(\sqrt{3})}\right)=2, \quad \zeta\left(\left.f\right|_{\bar{B}^{3}(10)}\right)=1
$$

We can also check that f has 11 cross-caps in $\mathbb{R}^{3}, 6$ of them are positive, 5 negative.

Example 2. Take $f: \mathbb{R}^{5} \rightarrow \mathbb{R}^{9}$ given by

$$
\begin{gathered}
f(s, t, x, y, z)=\left(y, z, t, 20 x^{2}+17 s z+x, 13 s y+13 s z+5 t, 25 s t+4 x^{2}+28 z,\right. \\
\left.3 x^{2}+19 y z+22 s, 11 t s^{2}+8 t^{2} z+x z, 27 t x y+9 s x z+20 s t\right) .
\end{gathered}
$$

One may check that f is 1 -generic, has 3 cross-caps in \mathbb{R}^{5} and

$$
\zeta\left(\left.f\right|_{\bar{B}^{3}(1 / 10)}\right)=0, \quad \zeta\left(\left.f\right|_{\bar{B}^{3}(2)}\right)=-1, \quad \zeta\left(\left.f\right|_{\bar{B}^{3}(1000)}\right)=1 .
$$

4. Intersection number of immersions

Take n-dimensional, compact, oriented manifold N and immersion $g: N \rightarrow \mathbb{R}^{2 n}$. As in [10] we say that an immersion $g: N \rightarrow \mathbb{R}^{2 n}$ has a regular self-intersection at the point $g(p)=g(q)$ if

$$
D g(p) T_{p} N+D g(q) T_{q} N=\mathbb{R}^{2 n}
$$

An immersion $g: N \rightarrow \mathbb{R}^{2 n}$ is called completely regular if it has only regular self-intersections and no triple points.

Assume that n is even. Let $g: N \rightarrow \mathbb{R}^{2 n}$ be a completely regular immersion having a regular self-intersection at the point $g(p)=g(q)$. Let $u_{1}, \ldots, u_{n} \in T_{p} N, v_{1}, \ldots, v_{n} \in T_{q} N$ be sets of well-oriented, independent vectors in respective tangent spaces of N. Then the vectors $D g(p) u_{1}, \ldots, D g(p) u_{n}, D g(q) v_{1}, \ldots, D g(q) v_{n}$ form a basis in $\mathbb{R}^{2 n}$. As in [10] we will say that the self-intersection at the point $g(p)=g(q)$ is positive or negative according to whether this basis determines the positive or negative orientation of $\mathbb{R}^{2 n}$.

Following [10], the intersection number $I(g)$ of a completely regular immersion g is the algebraic sum of its self-intersections. For any immersion
$g: N \rightarrow \mathbb{R}^{2 n}$ the intersection number $I(g)$ is defined as the intersection number of a completely regular immersion \tilde{g}, regularly homotopic to g (homotopy by immersions). For other equivalent description of $I(g)$ see [7], [4].

As in previous Sections we assume that m is odd. Take a smooth map $g=\left(g_{1}, \ldots, g_{2 m-2}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}^{2 m-2}$. Denote by $\omega=x_{1}^{2}+\ldots+x_{m}^{2}$. Then $S^{m-1}(r)=\left\{x \mid \omega(x)=r^{2}\right\}$. According to [4, Lemma 18], $\left.g\right|_{S^{m-1}(r)}$ is an immersion if and only if

$$
\operatorname{rank}\left[\begin{array}{ccc}
2 x_{1} & \cdots & 2 x_{m} \\
\frac{\partial g_{1}}{\partial x_{1}}(x) & \cdots & \frac{\partial g_{1}}{\partial x_{m}}(x) \\
& \cdots & \\
\frac{\partial g_{2 m-2}}{\partial x_{1}}(x) & \ldots & \frac{\partial g_{2 m-2}}{\partial x_{m}}(x)
\end{array}\right]=m
$$

for $x \in S^{m-1}(r)$.
Take $0<r_{1}<r_{2}$, such that $\left.g\right|_{S^{m-1}\left(r_{1}\right)}$ and $\left.g\right|_{S^{m-1}\left(r_{2}\right)}$ are immersions. Denote by $P=\left\{x \mid r_{1}^{2} \leqslant w(x) \leqslant r_{2}^{2}\right\}$. Then P is an m-dimensional oriented manifold with boundary. Then $(\omega, g): \mathbb{R}^{m} \rightarrow \mathbb{R}^{2 m-1}$ is a regular map in the neighbourhood of ∂P. Let us define $\widetilde{\alpha}: S^{m-1} \times P \rightarrow \mathbb{R}^{2 m-1}$ as

$$
\widetilde{\alpha}(\beta, x)=\left[\begin{array}{ccc}
2 x_{1} & \cdots & 2 x_{m} \\
\frac{\partial g_{1}}{\partial x_{1}}(x) & \cdots & \frac{\partial g_{1}}{\partial x_{m}}(x) \\
& \cdots & \\
\frac{\partial g_{2 m-2}}{\partial x_{1}}(x) & \ldots & \frac{\partial g_{2 m-2}}{\partial x_{m}}(x)
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right]
$$

Proposition 3. Let us assume that $\left.g\right|_{S^{m-1}\left(r_{1}\right)}$ and $\left.g\right|_{S^{m-1}\left(r_{2}\right)}$ are immersions, then

$$
I\left(\left.g\right|_{S^{m-1}\left(r_{2}\right)}\right)-I\left(\left.g\right|_{S^{m-1}\left(r_{1}\right)}\right)=\zeta\left(\left.(\omega, g)\right|_{P}\right)
$$

Proof. Let us recall that m is odd. Then

$$
\operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times \partial P}\right)=\operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}\left(r_{2}\right)}\right)-\operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}\left(r_{1}\right)}\right)
$$

According to [6, Theorem 4.2], we get that

$$
\operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times S^{m-1}\left(r_{i}\right)}\right)=I\left(\left.g\right|_{S^{m-1}\left(r_{i}\right)}\right),
$$

for $i=1,2$. Then applying Proposition 2 we get that $\zeta\left(\left.(\omega, g)\right|_{P}\right)=$ $-\frac{1}{2} \operatorname{deg}\left(\left.\widetilde{\alpha}\right|_{S^{m-1} \times \partial P}\right)$. And so

$$
\zeta\left(\left.(\omega, g)\right|_{P}\right)=I\left(\left.g\right|_{S^{m-1}\left(r_{2}\right)}\right)-I\left(\left.g\right|_{S^{m-1}\left(r_{1}\right)}\right)
$$

Corollary 1. If $\left.g\right|_{S^{m-1}(r)}$ is an immersion, then

$$
I\left(\left.g\right|_{S^{m-1}(r)}\right)=\zeta\left(\left.(\omega, g)\right|_{\bar{B}^{m}(r)}\right)
$$

Remark 1. If the only singular points of $\left.(\omega, g)\right|_{\bar{B}^{m}(r)}$ are cross-caps, then the intersection number of an immersion $\left.g\right|_{S^{m-1}(r)}$ is equal to the algebraic sum of cross-caps of $\left.(\omega, g)\right|_{\bar{B}^{m}(r)}$. Also, in generic case, the difference between intersection numbers of immersions $\left.g\right|_{S^{m-1}\left(r_{1}\right)}$ and $\left.g\right|_{S^{m-1}\left(r_{2}\right)}$, is equal to the algebraic sum of cross-caps of (ω, g) appearing in P.

Remark 2. If (ω, g) has finite number of singular points, and all of them are cross-caps, then for any $R>0$ big enough, $\left.g\right|_{S^{m-1}(R)}$ is an immersion with the same intersection number equal to the algebraic sum of cross-caps of (ω, g).

Example 3. Take $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by

$$
\begin{gathered}
g=\left(-3 y^{2}+5 y z-x+2,-4 x^{2}+z^{2}+9 y-6 z+5,\right. \\
\left.4 x^{2} z-2 x^{2}+2 x y-y-3,3 y^{2} z+x y-4 y z+4 x-5 y-5\right),
\end{gathered}
$$

and $\omega=x^{2}+y^{2}+z^{2}$. In the same way as in Section 3, one may check that the only singular points of (ω, g) are cros-s-caps, moreover (ω, g) has 8 cross-caps, 5 of them are positive and 3 negative. According to previous results $\left.g\right|_{S^{2}(r)}$ is an immersion for all $r>0$, except at most 8 values of r. And if $\left.g\right|_{S^{2}(r)}$ is an immersion, then

$$
-3 \leqslant I\left(\left.g\right|_{S^{2}(r)}\right) \leqslant 5
$$

Moreover for $R>0$ big enough $\left.g\right|_{S^{2}(R)}$ is an immersion with

$$
I\left(\left.g\right|_{S^{2}(R)}\right)=2
$$

References

[1] M. Golubitsky, V. Guillemin, Stable mappings and their singularities, 1973 by Springer-Verlag New York.
[2] G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 3.0.2. A Computer Algebra System for Polynomial Computations.
[3] K. Ikegami, O. Saeki, Cobordism of Morse maps and its applications to map germs, Math. Proc. Cambridge Philos. Soc. 147, no. 1, 2009, pp. 235-254.
[4] I. Karolkiewicz, A. Nowel, Z. Szafraniec, An algebraic formula for the intersection number of a polynomial immersion, J. Pure Appl. Algebra vol. 214, no. 3, 2010, pp. 269-280.
[5] I. Krzyżanowska, A. Nowel, Mappings into the Stiefel manifold and cross-cap singularities, arXiv:1507.04892 [math.AG] (to appear in Houston Journal of Mathematics).
[6] I. Krzyżanowska, Z. Szafraniec, Polynomial mappings into a Stiefel manifold and immersions, Houston Journal of Mathematics Vol. 40, No. 3, 2014, pp. 987-1006.
[7] R. Lashof, S. Smale, On the immersion of manifolds in euclidean space., Ann. of Math. 2, 68, 1958, pp.562-583.
[8] L. Nirenberg, Topics in nonlinear functional analysis, Lecture Notes in CIMS at New York Univ., New York 1974,
[9] H. Whitney, The general type of singularity of a set of $2 n-1$ smooth function of n variables, Duke Math. J., vol. 10, 1943, pp. 161-172.
[10] H. Whitney, The self-intersections of a smooth n-manifold in $2 n$-space, Annals of Mathematics vol. 45, no. 2, 1944, pp. 220-246.
[11] H. Whitney, The singularities of a smooth n-manifold in ($2 n-1$)-space, Annals of Mathematics, 2nd Ser., vol. 45, no. 2, 1944, pp. 247-293.

Contact information

I. Krzyżanowska Institute of Mathematics, University of Gdańsk, 80-952 Gdańsk, Wita Stwosza 57, Poland E-Mail(s): iwona.krzyzanowska@mat.ug.edu.pl

Received by the editors: 22.09.2015
and in final form 02.03.2018.

[^0]: 2010 MSC: 14P25, 57R45, 57R42, 12 Y 05.
 Key words and phrases: cross-cap, immersion, Stiefel manifold, intersection number, signature.

