Algebra and Discrete Mathematics
Volume 25 (2018). Number 2, pp. 257–268
(c) Journal "Algebra and Discrete Mathematics"

Cross-cap singularities counted with sign

Iwona Krzyżanowska

Communicated by I. Protasov

ABSTRACT. A method for computing the algebraic number of cross-cap singularities for mapping from *m*-dimensional compact manifold with boundary $M \subset \mathbb{R}^m$ into \mathbb{R}^{2m-1} , *m* is odd, is presented. As an application, the intersection number of an immersion $g: S^{m-1}(r) \to \mathbb{R}^{2m-2}$ is described as the algebraic number of cross-caps of a mapping naturally associated with *g*.

Introduction

Mappings from the *m*-dimensional, smooth, orientable manifold M into \mathbb{R}^{2m-1} are natural object of study. In [9], Whitney described typical mappings from M into \mathbb{R}^{2m-1} . Those mappings have only isolated critical points, called cross-caps (or Whintey umbrellas).

According to [1, Theorem 4.6], [11, Lemma 2], a mapping $M \to \mathbb{R}^{2m-1}$ has a cross-cap at $p \in M$, if and only if in the local coordinate system near p this mapping has the form

$$(x_1,\ldots,x_m)\mapsto (x_1^2,x_2,\ldots,x_m,x_1x_2,\ldots,x_1x_m).$$

In [11], for m odd, Whitney presented a method to associate a sign with a cross-cap. Put $\zeta(f)$ to be an algebraic sum of cross-caps of $f: M \to \mathbb{R}^{2m-1}$, where M is m-dimensional compact orientable manifold. Then according to Whitney, [11, Theorem 3], $\zeta(f) = 0$, if M is closed. If M

²⁰¹⁰ MSC: 14P25, 57R45, 57R42, 12Y05.

Key words and phrases: cross-cap, immersion, Stiefel manifold, intersection number, signature.

has a boundary, then following Whitney, [11, Theorem 4], for a homotopy $f_t: M \to \mathbb{R}^{2m-1}$ regular in some open neighbourhood of ∂M , if the only singular points of f_0 and f_1 are cross-caps, then $\zeta(f_0) = \zeta(f_1)$. Moreover arbitrarily close to any mapping $h: M \to \mathbb{R}^{2m-1}$, there is mapping regular near boundary, with only cross-caps as singular points (see [11]). In the case where m even, it is impossible to associate sign with cross-cap in the same way as in the odd case, but if m is even, it is enough to consider number of cross-caps mod 2, to get similar results (see [11]).

In [6], the authors studied a mapping α from a compact and oriented (n-k)-manifold M into the Stiefel manifold $\widetilde{V}_k(\mathbb{R}^n)$, for n-k even. They constructed a mapping $\widetilde{\alpha} : S^{k-1} \times M \to \mathbb{R}^n \setminus \{0\}$ associated with α , and defined $\Lambda(\alpha)$ as half of topological degree of $\widetilde{\alpha}$. In case $M = S^{n-k}$, they showed that $\Lambda(\alpha)$ corresponds with the class of α in $\pi_{n-k}\widetilde{V}_k(\mathbb{R}^n) \simeq \mathbb{Z}$. According to [6], in the case where $M \subset \mathbb{R}^{n-k+1}$ is an algebraic hypersurface and α is polynomial, with some additional assumptions concerning M and α , $\Lambda(\alpha)$ can be presented as a sum of signatures of two quadratic forms defined on $\mathbb{R}[x_1, \ldots, x_{n-k+1}]$. And so, easily computed.

In this paper we prove that in the case where m is odd, for f: $(M, \partial M) \to \mathbb{R}^{2m-1}$, where $M \subset \mathbb{R}^m$, $\zeta(f)$ can be expressed as $\Lambda(\alpha)$, for some α associated with f. And so, with some additional assumptions concerning M and f, $\zeta(f)$ can be easily computed for polynomial mapping f. Moreover we present a method that can be used to check effectively that f has only cross-caps as singular points. In case when m is even, the effective method to compute number of cross-caps modulo 2 is presented in [5].

Take a smooth map $g : \mathbb{R}^m \to \mathbb{R}^{2m-2}$, let us assume that $g|_{S^{m-1}}$ is an immersion. In [10], Whitney introduced the intersection number $I(g|_{S^{m-1}})$ of immersion $g|_{S^{m-1}}$. In this paper we show that $I(g|_{S^{m-1}})$, can be presented as an algebraic sum of cross-caps of the mapping $(\omega, g)|\bar{B}^m$, where ω is sum of squares of coordinates.

Take $f: (\mathbb{R}^m, 0) \to \mathbb{R}^{2m-1}$ with cross-cap at 0. In [3], Ikegami and Saeki defined the sign of a cross-cap singularity for mapping f as the intersection number of immersion $f|_S: S = f^{-1}(S^{2m-2}(\epsilon)) \to S^{2m-2}(\epsilon)$, for ϵ small enough. It is easy to see that this definition complies with Whitney definition from [11]. In [3], the authors showed that for generic map (in sense of [3]) $g: (\mathbb{R}^m, 0) \to \mathbb{R}^{2m-1}$, the number of cross-caps appearing in a C^{∞} stable perturbation of g, counted with signs, is an invariant of the topological \mathcal{A}_+ -equivalence class of g, and is equal to the intersection number of $g|_S: S = g^{-1}(S^{2m-2}(\epsilon)) \to S^{2m-2}(\epsilon)$. Using our methods, this number can be easily computed for polynomial mappings. We use notation $S^n(r)$, $B^n(r)$, $\overline{B}^n(r)$ for sphere, open ball, closed ball (resp.) centred at the origin of radios r and dimension n. If we omit symbol r, we assume that r = 1.

1. Cross-cap singularities

Let M, N be smooth manifolds. Take a smooth mapping $f: M \to N$.

Lemma 1. Let W be a submanifold of N. Take $p \in M$ such that $f(p) \in W$. Let us assume that there is a neighbourhood U of f(p) in N and a smooth mapping $\phi: U \to \mathbb{R}^s$ such that rank $D\phi(f(p)) = k = \operatorname{codim} W$ and $W \cap U = \phi^{-1}(0)$. Then $f \pitchfork W$ at p if and only if rank $D(\phi \circ f)(p) = k$.

Proof. Of course Ker $D\phi(f(p)) = T_{f(p)}W$, and so we get dim $T_{f(p)}N = \dim \operatorname{Ker} D\phi(f(p)) + k$. Then:

$$f \pitchfork W \text{ at } p \Longleftrightarrow T_{f(p)}N = T_{f(p)}W + Df(p)T_pM$$
$$\iff T_{f(p)}N = \operatorname{Ker} D\phi(f(p)) + Df(p)T_pM.$$

The above equality holds if and only if there exist vectors v_1, \ldots, v_k in $Df(p)T_pM$, such that any nontrivial combination of v_1, \ldots, v_k is outside the Ker $D\phi(f(p))$ and so rank $D\phi(f(p)) [v_1 \ldots v_k] = k$. We get that $f \pitchfork W$ at p if and only if rank $D(\phi \circ f)(p) = k$.

By $j^1 f$ we mean the canonical mapping associated with f, from Minto the spaces of 1-jets $J^1(M, N)$. We say that $f: M \to N$ is 1-generic, if $j^1 f \pitchfork S_r$, for $r \ge 0$, where $S_r = \{\sigma \in J^1(M, N) \mid \operatorname{corank} \sigma = r\}$. Put $S_r(f) = \{x \in M \mid \operatorname{corank} Df(p) = r\} = (j^1 f)^{-1}(S_r)$.

Let us assume that M and N are manifolds of dimension m and 2m-1 respectively. In this case (see [1]) codim $S_r = r^2 + r(m-1)$, and so codim $S_1 = m$ and codim $S_r > m$, for $r \ge 2$. So f is 1-generic if and only if $f \Leftrightarrow S_1$ and $S_r(f) = \emptyset$ for $r \ge 2$. The typical singularity for mapping $f: M \to N$ is a cross-cap singularity. Following [9], [11], [1] we present equivalent definitions of a cross-cap.

Definition 1. A point p is a cross-cap of a mapping $f : M \to N$ if the following equivalent conditions are fulfilled:

1) $p \in S_1(f)$ and $j^1 f \pitchfork S_1$ at p;

2) there are coordinate systems near p and f(p), such that

$$\frac{\partial f}{\partial x_1}(p) = 0 \tag{1}$$

and vectors

$$\frac{\partial^2 f}{\partial x_1^2}(p), \frac{\partial f}{\partial x_2}(p), \dots, \frac{\partial f}{\partial x_m}(p), \frac{\partial^2 f}{\partial x_1 \partial x_2}(p), \dots, \frac{\partial^2 f}{\partial x_1 \partial x_m}(p)$$
(2)

are linearly independent;

3) there are coordinate systems near p and f(p) such that the mapping f has the form

$$(x_1,\ldots,x_m)\mapsto (x_1^2,x_2,\ldots,x_m,x_1x_2,\ldots,x_1x_m)$$

According to [9, Section 2], if p is a cross-cap singularity and (1) holds, then vectors (2) are linearly independent.

Take $f = (f_1, \ldots, f_{2m-1}) : \mathbb{R}^m \to \mathbb{R}^{2m-1}$. Put $\mu : \mathbb{R}^m \to \mathbb{R}^s$ such that $\mu(x)$ is given by all the *m*-minors of Df(x). Of course $s = \binom{2m-1}{m}$.

Lemma 2. A point $p \in \mathbb{R}^m$ is a cross-cap singularity of f if and only if rank Df(p) = m - 1 and rank $D\mu(p) = m$.

Proof. A point p is a cross-cap singularity if and only if $p \in S_1(f)$ and $j^1 f \pitchfork S_1$ at p. Note that $p \in S_1(f)$ if and only if rank Df(p) = m - 1.

Of course $J^1(\mathbb{R}^m, \mathbb{R}^{2m-1}) \cong \mathbb{R}^m \times \mathbb{R}^{2m-1} \times M(2m-1, m)$, where M(2m-1, m) is a space of real matrices of dimension $(2m-1) \times m$. Take an open neighbourhood U of $j^1 f(p)$ in $J^1(\mathbb{R}^m, \mathbb{R}^{2m-1})$, and a mapping

$$\phi: U \to \mathbb{R}^s$$

where $\phi(x, y, [a_{ij}])$ is given by all *m*-minors of $[a_{ij}]$. We may assume that

$$\det \frac{\partial(f_1,\ldots,f_{m-1})}{\partial(x_1,\ldots,x_{m-1})}(p) \neq 0.$$

Put $A = [a_{ij}]_{1 \le i,j \le m-1}$ the submatrix of $[a_{ij}]$, then for U small enough, det $A \ne 0$. Let M_i be the determinant of submatrix of $[a_{ij}]$ composed of first m-1 rows and row number (m+i-1), for $i = 1, \ldots, m$. Then

$$M_i = (-1)^{2m-1+i} \det A \cdot a_{m+i-1,m} + b_i,$$

for $i = 1, \ldots, m$ and b_i does not depend on $a_{mm}, \ldots, a_{2m-1,m}$, and so

$$\operatorname{rank} \frac{\partial(M_1, \dots, M_m)}{\partial(a_{m,m}, \dots, a_{2m-1,m})} = m.$$

We get that

 $\operatorname{rank} D\phi(j^1 f(p)) \ge m.$

Let us recall that $\operatorname{codim} S_1 = m$. We can choose U small enough such that

$$\phi^{-1}(0) = U \cap S_1.$$

So we get that rank $D\phi(j^1f(p)) = \operatorname{codim} S_1 = m$. Of course $\phi \circ j^1 f = \mu$ in the small neighbourhood of p. According to Lemma 1, $j^1 f \pitchfork S_1$ at p if and only if rank $D\mu(p) = m$.

2. Algebraic sum of cross-cap singularities

First we want to recall some well-known facts concerning the topological degree. Let $(N, \partial N)$ be *n*-dimensional compact oriented manifold with boundary. For smooth mapping $f : N \to \mathbb{R}^n$ such that $f|_{\partial N} : \partial N \to \mathbb{R}^n \setminus \{0\}$, by deg $f|_{\partial N}$ or deg(f, N, 0) we denote the topological degree of mapping $f/|f| : \partial N \to S^{n-1}$. Note that if $f^{-1}(0)$ is a finite set then

$$\deg f|_{\partial N} = \sum_{p \in f^{-1}(0)} \deg_p f,$$

where $\deg_p f$ stands for the local topological degree of f at p (see [8]).

Let M be a m-dimensional manifold and m be odd. Take a smooth mapping $f: M \to \mathbb{R}^{2m-1}$ and let $p \in M$ be a cross-cap of f. According to [11], p is called positive (negative) if the vectors (2) determine the negative (positive) orientation of \mathbb{R}^{2m-1} . According to [11, Lemma 3], this definition does not depend on choosing the coordinate system on M.

Let us assume, that $f : \mathbb{R}^m \to \mathbb{R}^{2m-1}$ is a smooth mapping such that 0 is a cross-cap of f. Of course it is an isolated critical point of f. Denote by v_i the *i*th column of Df, for $i = 1, \ldots, m$. There exists r > 0 such that $v_1(x), \ldots, v_m(x)$ are linearly independent for $x \in \overline{B}^m(r) \setminus \{0\}$. Following [6] we can define

$$\widetilde{\alpha}(\beta, x) = \beta_1 v_1(x) + \ldots + \beta_m v_m(x)$$

= $Df(x)(\beta) : S^{m-1} \times \overline{B}^m(r) \to \mathbb{R}^{2m-1}$.

Then the topological degree of the mapping

$$\widetilde{\alpha}|_{S^{m-1}\times S^{m-1}(r)}: S^{m-1}\times S^{m-1}(r)\to \mathbb{R}^{2m-1}\setminus\{0\}$$

is well defined. By [6, Proposition 2.4], $\deg(\tilde{\alpha}|_{S^{m-1}\times S^{m-1}(r)})$ is even.

Theorem 1. Let *m* be odd. If 0 is a cross-cap of a mapping $f : \mathbb{R}^m \to \mathbb{R}^{2m-1}$, then it is positive if and only if $\frac{1}{2} \operatorname{deg}(\widetilde{\alpha}|_{S^{m-1} \times S^{m-1}(r)}) = -1$, and so it is negative if and only if $\frac{1}{2} \operatorname{deg}(\widetilde{\alpha}|_{S^{m-1} \times S^{m-1}(r)}) = +1$.

Proof. We can find linear coordinate system $\phi : \mathbb{R}^m \to \mathbb{R}^m$, such that $\phi(0) = 0$ and $f \circ \phi$ fulfills condition (1) at 0. Denote by A the matrix of ϕ . Let w_1, \ldots, w_m denote columns of $D(f \circ \phi)$. Then $w_1(0) = 0$ and since 0 is a cross-cap then vectors

$$\frac{\partial w_1}{\partial x_1}(0), \quad w_2(0), \quad \dots, \quad w_m(0), \quad \frac{\partial w_1}{\partial x_2}(0), \quad \dots, \quad \frac{\partial w_1}{\partial x_m}(0)$$
 (3)

are linearly independent. Put $\tilde{\gamma}(\beta, x) = (\beta_1 w_1(x) + \ldots + \beta_m w_m(x)) :$ $S^{m-1} \times \bar{B}^m(r) \to \mathbb{R}^{2m-1}$. We can assume that r is such that $\tilde{\gamma} \neq 0$ on $S^{m-1} \times \bar{B}^m(r) \setminus \{0\}$. Let us see that

$$\begin{split} \widetilde{\gamma}(\beta, x) &= D(f \circ \phi)(x) \cdot \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \end{bmatrix} = Df(\phi(x)) \cdot A \cdot \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \end{bmatrix} \\ &= Df(\phi(x)) \cdot \begin{bmatrix} \phi_1(\beta) \\ \vdots \\ \phi_m(\beta) \end{bmatrix}. \end{split}$$

So $\tilde{\gamma} = \tilde{\alpha} \circ (\phi \times \phi)$. It is easy to see that $\phi \times \phi$ preserve the orientation of $S^{m-1} \times S^{m-1}(r)$. We can assume that r > 0 is so small, that $\deg(\tilde{\alpha}|_{S^{m-1} \times S^{m-1}(r)}) = \deg(\tilde{\alpha}|_{\phi(S^{m-1}) \times \phi(S^{m-1}(r))})$. So we get that

$$deg(\widetilde{\gamma}|_{S^{m-1}\times S^{m-1}(r)}) = deg(\widetilde{\alpha}|_{\phi(S^{m-1})\times\phi(S^{m-1}(r))}) deg(\phi \times \phi) =$$
$$= deg(\widetilde{\alpha}|_{S^{m-1}\times S^{m-1}(r)}).$$

Since $f \circ \phi$ fulfils (1), vectors w_2, \ldots, w_m are independent on $\overline{B}^m(r)$. Let us see that $\widetilde{\gamma}(\beta, x) = 0$ on $S^{m-1} \times \overline{B}^m(r)$ if and only if x = 0 and $\beta = (\pm 1, 0, \ldots, 0)$. So $\deg(\widetilde{\gamma}|_{S^{m-1} \times S^{m-1}(r)})$ is a sum of local topological degrees of $\widetilde{\gamma}$ at $(1, 0, \ldots, 0; 0, \ldots, 0)$ and at $(-1, 0, \ldots, 0; 0, \ldots, 0)$.

Near the point (1, 0, ..., 0; 0, ..., 0) the well-oriented parametrisation of $S^{m-1} \times \bar{B}^m(r)$ is given by

$$(\beta_2,\ldots,\beta_m;x)=(\sqrt{1-\beta_2^2-\ldots-\beta_m^2},\beta_2,\ldots,\beta_m;x).$$

And then the derivative matrix of $\tilde{\gamma}$ at $(1, 0, \dots, 0; 0, \dots, 0)$ has a form

$$A_1 = \begin{bmatrix} w_2(0) & \dots & w_m(0) & \frac{\partial w_1}{\partial x_1}(0) & \dots & \frac{\partial w_1}{\partial x_m}(0) \end{bmatrix}.$$

Near $(-1, 0, \ldots, 0; 0, \ldots, 0)$ the well-oriented parametrisation of $S^{m-1} \times \overline{B}^m(r)$ is given by

$$(\beta_2,\ldots,\beta_m;x) = (-\sqrt{1-\beta_2^2-\ldots-\beta_m^2},-\beta_2,\ldots,\beta_m;x).$$

And then the derivative matrix of $\tilde{\gamma}$ at $(-1, 0, \dots, 0; 0, \dots, 0)$ has a form

$$A_2 = \begin{bmatrix} -w_2(0) & \dots & w_m(0) & -\frac{\partial w_1}{\partial x_1}(0) & \dots & -\frac{\partial w_1}{\partial x_m}(0) \end{bmatrix}.$$

Let us recall that m is odd. System of vectors (3) is independent, so 0 is a regular value of $\tilde{\gamma}$, and

$$\frac{1}{2}\deg(\widetilde{\gamma}|_{S^{m-1}\times S^{m-1}(r)}) = \frac{1}{2}(\operatorname{sgn}\det A_1 + \operatorname{sgn}\det A_2) = \operatorname{sgn}\det A_1.$$

Moreover 0 is a positive cross-cap if and only if vectors (3) determine negative orientation of a \mathbb{R}^{2m-1} , i. e. if and only if $\frac{1}{2} \operatorname{deg}(\widetilde{\alpha}|_{S^{m-1} \times S^{m-1}(r)}) = -1$.

Let $U \subset \mathbb{R}^m$ be an open bounded set and $f : \overline{U} \to \mathbb{R}^{2m-1}$ be smooth. We say that f is *generic* if only critical points of f are cross-caps and f is regular in the neighborhood of ∂U . Let us denote by $\zeta(f)$ the algebraic sum of cross-caps of f. Then using Theorem 1 we get the following.

Proposition 1. Let $U \subset \mathbb{R}^m$, (*m* is odd), be a bounded *m*-dimensional manifold such that \overline{U} is an *m*-dimensional manifold with a boundary. For $f: \overline{U} \subset \mathbb{R}^m \to \mathbb{R}^{2m-1}$ generic, $\zeta(f) = -\frac{1}{2} \operatorname{deg}(\widetilde{\alpha})$, where $\widetilde{\alpha}(\beta, x) = Df(x)(\beta) : S^{m-1} \times \partial U \to \mathbb{R}^{2m-1} \setminus \{0\}.$

Proposition 2. Let $U \subset \mathbb{R}^m$, (*m* is odd), be a bounded *m*-dimensional manifold such that \overline{U} is an *m*-dimensional manifold with a boundary. Take $h: \overline{U} \subset \mathbb{R}^m \to \mathbb{R}^{2m-1}$ a smooth mapping such that *h* is regular in a neighborhood of ∂U . Then for every generic $f: \overline{U} \subset \mathbb{R}^m \to \mathbb{R}^{2m-1}$ close enough to *h* in C^1 -topology we have, $\zeta(f) = -\frac{1}{2} \operatorname{deg}(\widetilde{\alpha})$, where $\widetilde{\alpha}(\beta, x) = Dh(x)(\beta): S^{m-1} \times \partial U \to \mathbb{R}^{2m-1} \setminus \{0\}.$

3. Examples

To compute some examples we want first to recall the theory presented in [6].

Take $\alpha = (\alpha_1, \ldots, \alpha_k) : \mathbb{R}^{n-k+1} \to M(n,k)$ a polynomial mapping, n-k even, where M(n,k) is a space of real matrices of dimension $n \times k$. By $[a_{ij}(x)]$, $1 \leq i \leq n, 1 \leq j \leq k$, we denote the matrix given by $\alpha(x)$ (i.e. $\alpha_j(x)$ stands in the *j*th column). Then one can define $\tilde{\alpha} : \mathbb{R}^k \times \mathbb{R}^{n-k+1} \to \mathbb{R}^n$ as

$$\widetilde{\alpha}(\beta, x) = \beta_1 \alpha_1(x) + \ldots + \beta_k \alpha_k(x) = [a_{ij}(x)] \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}.$$

Let *I* be the ideal in $\mathbb{R}[x_1, \ldots, x_{n-k+1}]$ generated by all $k \times k$ minors of $[a_{ij}(x)]$, and $V(I) = \{x \in \mathbb{R}^{n-k+1} \mid h(x) = 0 \text{ for all } h \in I\}.$

Take

$$m(x) = \det \begin{bmatrix} a_{12}(x) & \dots & a_{1k}(x) \\ \\ a_{k-1,2}(x) & \dots & a_{k-1,k}(x) \end{bmatrix}.$$

For $k \leq i \leq n$, we define

$$\Delta_{i}(x) = \det \begin{bmatrix} a_{11}(x) & \dots & a_{1k}(x) \\ & \dots & \\ a_{k-1,1}(x) & \dots & a_{k-1,k}(x) \\ a_{i1}(x) & \dots & a_{ik}(x) \end{bmatrix}$$

Put $\mathcal{A} = \mathbb{R}[x_1, \ldots, x_{n-k+1}]/I$. Let us assume that dim $\mathcal{A} < \infty$, so that V(I) is finite. For $h \in \mathcal{A}$, we denote by T(h) the trace of the linear endomorphism $\mathcal{A} \ni a \mapsto h \cdot a \in \mathcal{A}$. Then $T : \mathcal{A} \to \mathbb{R}$ is a linear functional.

Let $u \in \mathbb{R}[x_1, \ldots, x_{n-k+1}]$. Assume that $\overline{U} = \{x \mid u(x) \ge 0\}$ is bounded and $\nabla u(x) \ne 0$ at each $x \in u^{-1}(0) = \partial U$. Then \overline{U} is a compact manifold with boundary, and dim $\overline{U} = n - k + 1$.

Put $\delta = \partial(\Delta_k, \dots, \Delta_n) / \partial(x_1, \dots, x_{n-k+1})$. With u and δ we associate quadratic forms Θ_{δ} , $\Theta_{u \cdot \delta} : \mathcal{A} \to \mathbb{R}$ given by $\Theta_{\delta}(a) = T(\delta \cdot a^2)$ and $\Theta_{u \cdot \delta}(a) = T(u \cdot \delta \cdot a^2)$.

Theorem 2. [6, Theorem 3.3] If n - k is even, $\alpha = (\alpha_1, \ldots, \alpha_k)$: $\mathbb{R}^{n-k+1} \to M(n,k)$ is a polynomial mapping such that dim $\mathcal{A} < \infty$, $I + \langle m \rangle = \mathbb{R}[x_1, \ldots, x_{n-k+1}]$ and quadratic forms $\Theta_{\delta}, \Theta_{u \cdot \delta} : \mathcal{A} \to \mathbb{R}$ are non-degenerate, then the restricted mapping $\alpha|_{\partial U}$ goes into $\widetilde{V}_k(\mathbb{R}^n)$ and

$$\Lambda(\alpha|_{\partial U}) = \frac{1}{2} \operatorname{deg}(\widetilde{\alpha}|_{S^{k-1} \times \partial U}) = \frac{1}{2} (\operatorname{signature} \Theta_{\delta} + \operatorname{signature} \Theta_{u \cdot \delta}),$$

where $\widetilde{\alpha}(\beta, x) = \beta_1 \alpha_1(x) + \ldots + \beta_k \alpha_k(x)$.

Using the theory presented in [6], particularly [6, Theorem 3.3], and computer system SINGULAR ([2]), one can apply the results from Sections 1 and 2 to compute algebraic sum of cross-caps for polynomial mappings.

Example 1. Let us take $f : \mathbb{R}^3 \to \mathbb{R}^5$ given by

$$f(x, y, z) = (12y^2 + z, 6x^2 + y^2 + 6y, 18xy + 13y^2 + 9x, 8x^2z + 10xz^2 + 5x^2 + 3xz, x^2y + 4xyz + yz + 4z^2).$$

Applying Lemma 2 and using SINGULAR one can check that f is 1-generic. Moreover, according to Proposition 1 and [6], one can check that

$$\zeta(f|_{\bar{B}^3(\sqrt{3})}) = 2, \quad \zeta(f|_{\bar{B}^3(10)}) = 1.$$

We can also check that f has 11 cross-caps in \mathbb{R}^3 , 6 of them are positive, 5 negative.

Example 2. Take $f : \mathbb{R}^5 \to \mathbb{R}^9$ given by

$$\begin{split} f(s,t,x,y,z) &= (y,z,t,20x^2 + 17sz + x,13sy + 13sz + 5t,25st + 4x^2 + 28z,\\ &3x^2 + 19yz + 22s,11ts^2 + 8t^2z + xz,27txy + 9sxz + 20st). \end{split}$$

One may check that f is 1-generic, has 3 cross-caps in \mathbb{R}^5 and

$$\zeta(f|_{\bar{B}^3(1/10)}) = 0, \quad \zeta(f|_{\bar{B}^3(2)}) = -1, \quad \zeta(f|_{\bar{B}^3(1000)}) = 1.$$

4. Intersection number of immersions

Take *n*-dimensional, compact, oriented manifold N and immersion $g: N \to \mathbb{R}^{2n}$. As in [10] we say that an immersion $g: N \to \mathbb{R}^{2n}$ has a regular self-intersection at the point g(p) = g(q) if

$$Dg(p)T_pN + Dg(q)T_qN = \mathbb{R}^{2n}.$$

An immersion $g: N \to \mathbb{R}^{2n}$ is called *completely regular* if it has only regular self-intersections and no triple points.

Assume that n is **even**. Let $g: N \to \mathbb{R}^{2n}$ be a completely regular immersion having a regular self-intersection at the point g(p) = g(q). Let $u_1, \ldots, u_n \in T_pN, v_1, \ldots, v_n \in T_qN$ be sets of well-oriented, independent vectors in respective tangent spaces of N. Then the vectors $Dg(p)u_1, \ldots, Dg(p)u_n, Dg(q)v_1, \ldots, Dg(q)v_n$ form a basis in \mathbb{R}^{2n} . As in [10] we will say that the self-intersection at the point g(p) = g(q) is positive or negative according to whether this basis determines the positive or negative orientation of \mathbb{R}^{2n} .

Following [10], the intersection number I(g) of a completely regular immersion g is the algebraic sum of its self-intersections. For any immersion $g: N \to \mathbb{R}^{2n}$ the intersection number I(g) is defined as the intersection number of a completely regular immersion \tilde{g} , regularly homotopic to g(homotopy by immersions). For other equivalent description of I(g) see [7], [4].

As in previous Sections we assume that m is odd. Take a smooth map $g = (g_1, \ldots, g_{2m-2}) : \mathbb{R}^m \to \mathbb{R}^{2m-2}$. Denote by $\omega = x_1^2 + \ldots + x_m^2$. Then $S^{m-1}(r) = \{x \mid \omega(x) = r^2\}$. According to [4, Lemma 18], $g|_{S^{m-1}(r)}$ is an immersion if and only if

$$\operatorname{rank} \begin{bmatrix} 2x_1 & \dots & 2x_m \\ \frac{\partial g_1}{\partial x_1}(x) & \dots & \frac{\partial g_1}{\partial x_m}(x) \\ & \dots & \\ \frac{\partial g_{2m-2}}{\partial x_1}(x) & \dots & \frac{\partial g_{2m-2}}{\partial x_m}(x) \end{bmatrix} = m,$$

for $x \in S^{m-1}(r)$.

Take $0 < r_1 < r_2$, such that $g|_{S^{m-1}(r_1)}$ and $g|_{S^{m-1}(r_2)}$ are immersions. Denote by $P = \{x | r_1^2 \leq w(x) \leq r_2^2\}$. Then P is an m-dimensional oriented manifold with boundary. Then $(\omega, g) : \mathbb{R}^m \to \mathbb{R}^{2m-1}$ is a regular map in the neighbourhood of ∂P . Let us define $\tilde{\alpha} : S^{m-1} \times P \to \mathbb{R}^{2m-1}$ as

$$\widetilde{\alpha}(\beta, x) = \begin{bmatrix} 2x_1 & \dots & 2x_m \\ \frac{\partial g_1}{\partial x_1}(x) & \dots & \frac{\partial g_1}{\partial x_m}(x) \\ & \dots & \\ \frac{\partial g_{2m-2}}{\partial x_1}(x) & \dots & \frac{\partial g_{2m-2}}{\partial x_m}(x) \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_m \end{bmatrix}$$

Proposition 3. Let us assume that $g|_{S^{m-1}(r_1)}$ and $g|_{S^{m-1}(r_2)}$ are immersions, then

$$I(g|_{S^{m-1}(r_2)}) - I(g|_{S^{m-1}(r_1)}) = \zeta((\omega, g)|_P).$$

Proof. Let us recall that m is odd. Then

$$\deg(\widetilde{\alpha}|_{S^{m-1}\times\partial P}) = \deg(\widetilde{\alpha}|_{S^{m-1}\times S^{m-1}(r_2)}) - \deg(\widetilde{\alpha}|_{S^{m-1}\times S^{m-1}(r_1)}).$$

According to [6, Theorem 4.2], we get that

$$\deg(\widetilde{\alpha}|_{S^{m-1}\times S^{m-1}(r_i)}) = I(g|_{S^{m-1}(r_i)}),$$

for i = 1, 2. Then applying Proposition 2 we get that $\zeta((\omega, g)|_P) = -\frac{1}{2} \operatorname{deg}(\widetilde{\alpha}|_{S^{m-1} \times \partial P})$. And so

$$\zeta((\omega,g)|_P) = I(g|_{S^{m-1}(r_2)}) - I(g|_{S^{m-1}(r_1)}).$$

Corollary 1. If $g|_{S^{m-1}(r)}$ is an immersion, then

$$I(g|_{S^{m-1}(r)}) = \zeta((\omega, g)|_{\bar{B}^m(r)}).$$

Remark 1. If the only singular points of $(\omega, g)|_{\bar{B}^m(r)}$ are cross-caps, then the intersection number of an immersion $g|_{S^{m-1}(r)}$ is equal to the algebraic sum of cross-caps of $(\omega, g)|_{\bar{B}^m(r)}$. Also, in generic case, the difference between intersection numbers of immersions $g|_{S^{m-1}(r_1)}$ and $g|_{S^{m-1}(r_2)}$, is equal to the algebraic sum of cross-caps of (ω, g) appearing in P.

Remark 2. If (ω, g) has finite number of singular points, and all of them are cross-caps, then for any R > 0 big enough, $g|_{S^{m-1}(R)}$ is an immersion with the same intersection number equal to the algebraic sum of cross-caps of (ω, g) .

Example 3. Take $g : \mathbb{R}^3 \to \mathbb{R}^4$ given by

$$g = (-3y^{2} + 5yz - x + 2, -4x^{2} + z^{2} + 9y - 6z + 5,$$
$$4x^{2}z - 2x^{2} + 2xy - y - 3, 3y^{2}z + xy - 4yz + 4x - 5y - 5)$$

and $\omega = x^2 + y^2 + z^2$. In the same way as in Section 3, one may check that the only singular points of (ω, g) are cros-s-caps, moreover (ω, g) has 8 cross-caps, 5 of them are positive and 3 negative. According to previous results $g|_{S^2(r)}$ is an immersion for all r > 0, except at most 8 values of r. And if $g|_{S^2(r)}$ is an immersion, then

$$-3 \leqslant I(g|_{S^2(r)}) \leqslant 5.$$

Moreover for R > 0 big enough $g|_{S^2(R)}$ is an immersion with

$$I(g|_{S^2(R)}) = 2.$$

References

- M. Golubitsky, V. Guillemin, Stable mappings and their singularities, 1973 by Springer-Verlag New York.
- [2] G.-M. Greuel, G. Pfister, and H. Schönemann, SINGULAR 3.0.2. A Computer Algebra System for Polynomial Computations.
- [3] K. Ikegami, O. Saeki, Cobordism of Morse maps and its applications to map germs, Math. Proc. Cambridge Philos. Soc. 147, no. 1, 2009, pp. 235–254.
- [4] I. Karolkiewicz, A. Nowel, Z. Szafraniec, An algebraic formula for the intersection number of a polynomial immersion, J. Pure Appl. Algebra vol. 214, no. 3, 2010, pp. 269–280.

- [5] I. Krzyżanowska, A. Nowel, Mappings into the Stiefel manifold and cross-cap singularities, arXiv:1507.04892 [math.AG] (to appear in Houston Journal of Mathematics).
- [6] I. Krzyżanowska, Z. Szafraniec, Polynomial mappings into a Stiefel manifold and immersions, Houston Journal of Mathematics Vol. 40, No. 3, 2014, pp. 987–1006.
- [7] R. Lashof, S. Smale, On the immersion of manifolds in euclidean space., Ann. of Math. 2, 68, 1958, pp.562–583.
- [8] L. Nirenberg, *Topics in nonlinear functional analysis*, Lecture Notes in CIMS at New York Univ., New York 1974,
- [9] H. Whitney, The general type of singularity of a set of 2n 1 smooth function of n variables, Duke Math. J., vol. 10, 1943, pp. 161–172.
- [10] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Annals of Mathematics vol. 45, no. 2, 1944, pp. 220–246.
- [11] H. Whitney, The singularities of a smooth n-manifold in (2n-1)-space, Annals of Mathematics, 2nd Ser., vol. 45, no. 2, 1944, pp. 247–293.

CONTACT INFORMATION

I. Krzyżanowska Institute of Mathematics, University of Gdańsk, 80-952 Gdańsk, Wita Stwosza 57, Poland *E-Mail(s)*: iwona.krzyzanowska@mat.ug.edu.pl

Received by the editors: 22.09.2015 and in final form 02.03.2018.