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Abstract. A graph X is said to be G-semisymmetric if it

is regular and there exists a subgroup G of A := Aut(X) acting

transitively on its edge set but not on its vertex set. In the case

of G = A, we call X a semisymmetric graph. Finding elementary

abelian covering projections can be grasped combinatorially via a

linear representation of automorphisms acting on the first homology

group of the graph. The method essentially reduces to finding

invariant subspaces of matrix groups over prime fields. In this

study, by applying concept linear algebra, we classify the connected

semisymmetric zp-covers of the C20 graph.

Introduction

In this study, all graphs considered are assumed to be undirected,
finite, simple, and connected, unless stated otherwise. For a graph X,
V (X), E(X), Arc(X), and Aut(X) denote its vertex set, edge set, arc
set, and full automorphism group, respectively. Let G be a subgroup of
Aut(X). For u, v ∈ V (X), uv denotes the edge incident to u and v in X,
and NX(u) denotes the neighborhood of u in X, that is, the set of vertices
adjacent to u in X.

A graph X̃ is called a covering of a graph X with projection p : X̃ →
X if there is a surjection p : V (X̃) → V (X) such that p|N

X̃
(ṽ) : N X̃

(ṽ) →

NX(v) is a bijection for any vertex v ∈ V (X) and ṽ ∈ p−1(v).
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A permutation group G on a set Ω is said to be semiregular if the
stabilizer Gv of v in G is trivial for each v ∈ Ω, and is regular if G is
transitive, and semiregular.

Let K be a subgroup of Aut(X) such that K is intransitive on V (X).
The quotient graph X/K induced by K is defined as the graph such that
the set Ω of K-orbits in V (X) is the vertex set of X/K and B, C ∈ Ω
are adjacent if and only if there exist a u ∈ B and v ∈ C such that {u, v}
∈ E(X).

A covering X̃ of X with a projection p is said to be regular (or N -
covering) if there is a semiregular subgroup N of the automorphism group
Aut(X̃) such that graph X is isomorphic to the quotient graph X̃/N ,
say by h, and the quotient map X̃ → X̃/N is the composition ph of p
and h (in this paper, all functions are composed from left to right). If
N is a cyclic or an elementary Abelian, then, X̃ is called a cyclic or an
elementary Abelian covering of X, and if X̃ is connected, N becomes the
covering transformation group.

An s-arc in a graph X is an ordered (s+ 1)-tuple (v0, v1, . . . , vs) of
vertices of X such that vi−1 is adjacent to vi for 1 6 i 6 s, and vi−1 6=
vi+1 for 1 6 i < s; in other words, a directed walk of length s that never
includes a backtracking. For a graph X and a subgroup G of Aut(X), X
is said to be G-vertex-transitive, G-edge-transitive, or G-s-arc-transitive
if G is transitive on the sets of vertices, edges, or s-arcs of X, respectively,
and G-s-regular if G acts regularly on the set of s-arcs of X. Similarly,
a regular graph is G-semisymmetric if it is G-edge-transitive but not G-
vertex-transitive. A graph X is said to be vertex-transitive, edge-transitive,
s-arc-transitive, or s-regular if X is Aut(X)-vertex-transitive, Aut(X)-
edge-transitive, Aut(X)-s-arc-transitive, or Aut(X)-s-regular, respectively.
In particular, 1-arc-transitive means arc-transitive or symmetric. It can
be shown that a G-edge-transitive but not G-vertex-transitive graph is
necessarily bipartite, where the two partite parts of the graph are orbits of
G. Moreover, if X is regular these two partite sets have equal cardinality.

Covering techniques have long been known as a powerful tool in
topology, and graph theory. Regular covering of a graph is currently an
active topic in algebraic graph theory. The class of semisymmetric graphs
was first introduced by Folkman [7], where several infinite families of such
graphs were constructed, and eight open problems were posed that spurred
the interest in this topic, Subsequently, Bouwer [2, 3], Klin [12], Iofinova
and Ivanov [10], Ivanov [11], Du and Xu [5], and others did significant
work on semisymmetric graphs. They presented new constructions of such
graphs by combinatorial, and group-theoretical methods. The answers
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to most of Folkman’s open problems are now known. A census of all
semisymmetric cubic graphs up to 768 vertices has been obtained by
Conder et al. [4].

A good result on the automorphism groups of cubic semisymmetric
graphs of twice odd order was presented by Parker [20]. Marušič [19]
constructed the first infinite family of cubic semisymmetric graphs as one
of the first applications of covering techniques.

Note that a semisymmetric graph cannot be a covering of the complete
graph K4 of the order 4 because K4 is not bipartite. A simple observation
then, shows that there are no connected cubic semisymmetric graphs of
order 4p, 4p2, or 4p3. Lu et al. [13] classified connected cubic semisymmetric
graphs of order 6p2. Malnič et al.[18] classified cubic semisymmetric graphs
of order 2p3 for a prime p, while Folkman [7] proved that there are no cubic
semisymmetric graphs of order 2p or 2p2. Some general methods of an
elementary Abelian coverings were developed in [15,16]. The elementary
Abelian coverings of the three-dimensional hypercube Q3 were classified in
[6]. The semisymmetric elementary abelian covers of the Möbius-Kantor
graph were considered by Malnič et al in [17]. Furthermore, Wang and
Chen [25] classified semisymmetric cyclic or elementary abelian covers
of the complete bipartite graph K3,3, when the fibre-preserving group is
edge- but not vertex-transitive. Talebi investigated semisymmetric and
s-regular graphs by employing the covering technique, group-theoretical
construction and concept linear algebra [9, 23,24].

In this paper, by applying concept linear algebra, we classify the
connected semisymmetric zp-covers of the C20 graph.

1. Preliminaries related to covering, Voltage graphs,

lifting problems and the first homology group

Let X be a graph and K be a finite group. By a−1 we mean the reverse
arc to an arc a. A voltage assignment (or K-voltage assignment) of X is a
function ξ : A(X) → K with the property that ξ(a−1) = ξ(a)−1 for each
arc a ∈ A(X). The values of ξ are called voltages, and K is the voltage
group. The graph X ×ξ K (Cov(X, ξ)) derived from a voltage assignment
ξ : A(X) → K has vertex set V (X)×K and edge set E(X)×K, so that an
edge (e, g) of X × K joins a vertex (u, g) to (v, ξ(a)g) for a = (u, v) ∈ A(X)
and g ∈ K, where e = {u, v}. [22] The voltage assignment ξ on arcs
extends to a voltage assignment on walks in a natural way, that is, the
voltage on a walk W, say with consecutive incident arcs a1, a2, . . . , an, is
ξ(a1)ξ(a2) . . . ξ(an).
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Clearly, the derived graph X ×ξ K is a covering of X with the first co-
ordinate projection p : X×ξK → X, which is called the natural projection.
By defining (u, g′)g = (u, g′g) for any g ∈ K and (u, g′) ∈ V (X ×ξ K),
K becomes a subgroup of Aut(X ×ξ K) which acts semiregularly on
V (X ×ξ K). Therefore, X ×ξ K can be viewed as a K-covering. For each
u ∈ V (X) and {u, v} ∈ E(X), the vertex set {(u, g)|g ∈ K} is the fibre
of u and the edge set {(u, g)(v, ξ(a)g)| ∈ K} is the fibre of {u, v}, where
a = (u, v). Conversely, each regular covering X̃ of X with a covering
transformation group K can be derived from a K-voltage assignment.
Given a spanning tree T of the graph X, a voltage assignment ξ is said
to be T -reduced if the voltages on the tree arcs are the identity. Gross
and Tucker [8] showed that every regular covering X̃ of a graph X can
be derived from a T -reduced voltage assignment X̃ with respect to an
arbitrary fixed spanning tree T of X.

Let X̃ be a K-covering of X with a projection p. If α ∈ Aut(X) and
α̃ ∈ Aut(X̃) satisfy α̃p = pα, we call α̃ a lift of α, and α the projection of
α̃. Concepts such as a lift of a subgroup of Aut(X) and the projection of a
subgroup of X̃ are self-explanatory [15]. The lifts and projections of such
subgroups are of course subgroups in Aut(X̃) and Aut(X), respectively.
In particular, if the covering graph X̃ is connected, then the covering
transformation group K is the lift of the trivial group, that is,

K = {α̃ ∈ Aut(X̃) : p = α̃p}.

Let T be a spanning tree of a graph X. A closed walk W that contains
only one cotree arc is called a fundamental closed walk. Similarly, a cycle
W that contains only one cotree arc is called a fundamental cycle. Observe
that a voltage assignment on arcs extends to a voltage assignment on
walks in a natural way. Given α ∈ Aut(X), we define a function ᾱ from
the set of voltages on fundamental closed walks based at a fixed vertex
v ∈ V (X) to the voltage group K by

(ξ(C))ᾱ = ξ(Cα),

where C ranges over all fundamental closed walks at v, and ξ(C) and
ξ(Cα) are the voltages on C and Cα, respectively. Note that if K is abelian,
ᾱ does not depend on the choice of the base vertex, and the fundamental
closed walks at v can be substituted by the fundamental cycles generated
by the cotree arcs of X.

Two coverings X̃1 and X̃2 of X with projection p1 and p2, respectively,
are said to be isomorphic if there exist an automorphism α ∈ Aut(X) and
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an isomorphism α̃ :X̃1 → X̃2 such that α̃p2 = p1α. In particular, if α is
the identity automorphism of X, then we say X̃1 and X̃2 are equivalent.

For a graph X, D(X) is a set of darts, which is required to be disjoint
from V (X), I is a mapping of D(X) onto V (X), called the incidence
function, and λ is an involutory permutation of D(X), called the dart-
reversing involution. For convenience or if λ is not explicitly specified we
sometimes write x−1 instead of λx. Intuitively, the mapping I assigns to
each dart its initial vertex, and the permutation λ interchanges a dart
and its reverse. The terminal vertex of a dart x is the initial vertex of
λx. The set of all darts initiated at a given vertex u is denoted by Du,
called the neighborhood of u. The cardinality |Du| of Du is the valency of
the vertex u. The orbits of λ are called edges; thus each dart determines
uniquely its underlying edge. An edge is called a semiedge if λx = x, a
loop if λx 6= x and Iλx = Ix, and it is called a link otherwise. A walk
of length n > 1 is a sequence of n darts W = x1x2 . . . xn such that, for
each index 1 6 k 6 n − 1, the terminal vertex of xk coincides with the
initial vertex of xk+1. Moreover, we define each vertex to be a trivial walk
of length 0. The initial vertex of W is the initial vertex of x1, and the
terminal vertex of W is the terminal vertex of xn. The walk is closed if
the initial and the terminal vertex coincide. In this case we say that the
walk is based at that vertex. If W has initial vertex u and terminal vertex
v, then we usually write W : u → v. Let W1 and W2 be two walks such
that the terminal vertex of W1 coincides with the initial vertex of W2. We
define the product W1W2 as the juxtaposition of the two sequences. A
walk W is reduced if it contains no subsequence of the form xx−1.

By π(X) we denote the fundamental groupoid of a graph X, that is,
the set of all reduced walks equipped with the product W1W2. The group
π(X,u) is called the fundamental group of X at u. The fundamental
group is not a free group in general. Consequently, the first homology
group H1(X), obtained by abelianizing π(X,u), is not necessarily a free
Z-module. Namely, let re + rs be the minimal number of generators of
π(X,u), where rs is the number of semiedges and re is the number of cotree
loops and links relative to some spanning tree. Then H1(X) ∼= Zre × Zrs

2 .
[16] The first homology group H1(X,Zp) ∼= H1(X)/pH1(X) with Zp as
the coefficient ring can be considered as a vector space over the field Zp.
Observe that

H1(X,Zp) ∼=

{
Zre+rs
p p = 2

Zre
p p > 3.
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Let us call a covering projection p : X → X vertex-transitive (edge-
transitive), if a vertex-transitive (edge-transitive) subgroup of Aut(X) lifts
along p. If p is edge- but not vertex-transitive, then p is called semisymmet-
ric. Observe that the derived graph of a semisymmetric covering projection
is a good candidate for a semisymmetric graph.

Assume that a connected graph X and a subgroup G 6 Aut(X) are
given. Choose a spanning tree T of X and a set of arcs {x1, . . . , xr} ⊆ A(X)
containing exactly one arc from each edge in E(X \ T ). Let BT be the
corresponding basis of the first homology group H1(X,Zp) determined by
{x1, . . . , xr}. Further, denote by G∗h = {α∗h|α ∈ G} 6 GL(H1(X,Zp))
the induced action of G on H1(X,Zp), and let MG 6 Zr×r

p be the matrix

representation of G∗h with respect to the basis BT . By M t
G we denote the

dual group consisting of all transposes of matrices in MG.
The following proposition is necessary to classify semisymmetric zp-

covers of the C20 graph. This proposition is a special case of [16, Proposi-
tion 6.3, Corollary 6.5].

Proposition 1. Let T be a spanning tree of a connected graph X and let

the set {x1, x2, . . . , xr} ⊆ A(X) contain exactly one arc from each cotree

edge. Let ξ : A(X) → Zd×1
p be a voltage assignment on X which is trivial

on T , and let Z(ξ) = [ξ(x1), ξ(x2), . . . , ξ(xr)]
t. Then the following holds.

(a) A group G 6 Aut(X) lifts along pξ : Cov(X, ξ) → X if and only if

the induced subspace 〈Z(ξ)〉 is an M t
G-invariant d-dimensional subspace.

(b) If ξ
′

: A(X) → Zd×1
p is another voltage assignment satisfying (a),

then Cov(X, ξ
′

) is equivalent to Cov(X, ξ) if and only if 〈Z(ξ)〉 = 〈Z(ξ
′

)〉,
as subspaces. Moreover, Cov(X, ξ

′

) is isomorphic to Cov(X, ξ) if and only

if there exists an automorphism α ∈ Aut(X) such that the matrix M t
α

maps 〈Z(ξ
′

)〉 onto 〈Z(ξ)〉.

To find all semisymmetric G-admissible Zp-covering projections of C20,
we have to find, by Proposition 1, all invariant 1-dimensional subspaces of
the transpose of the matrix MG.

2. Finding invariant subspaces

The problem of finding all elementary abelian regular covering pro-
jections of a given connected graph, admissible for a given group of auto-
morphisms, is reduced to finding all invariant subspaces of an associated
(finite) matrix group over a prime field. In this context we recall Masche’s
theorem which states that if the characteristic Char F of the field does
not divide the order of the group, then the representation is completely
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reducible. In this case one essentially needs to find just the minimal com-
mon invariant subspaces of the generators of the group in question, for
the non-minimal subspaces can be expressed as direct sums of some of
the minimal ones. (Still, this may involve knowing all invariant subspaces
of the generators, in view of the fact that a minimal invariant subspace
for the whole group need not be minimal for neither of the individual
generators—although invariant subspaces of a generator are direct sums
of the minimal ones for that generator. Additional information about the
relations between generators coming from the presentation of the group
is beneficial; this is the point where ad hoc techniques are most helpful.)
The remaining cases where Char F divides the order of the given group
could be, technically, more difficult to analyze.

Let A ∈ Fn,n be an n × n invertible matrix over a field F , acting
as a linear transformation x → Ax on the column vector space Fn,1.
Let A(x) = f1(x)

n1f2(x)
n2 . . . fk(x)

nk be the characteristic polynomial
and mA(x) = f1(x)

s1f2(x)
s2 . . . fk(x)

sk the minimal polynomial of A
where fj(x), j = 1, . . . , k, are pairwise distinct irreducible factors over
F . Then Fn,1 can be written as a direct sum of the A-invariant sub-
spaces Fn,1 = Ker f1(A)

s1 ⊕ Ker f2(A)
s2 ⊕ · · · ⊕ Ker fk(A)

sk : Moreover,
all A-invariant subspaces can be found by first considering the invari-
ant subspaces of Ker fj(A)

sj , j = 1, . . . , k, and then taking direct sums
of some of these. In particular, the minimal ones are just the minimal
A-invariant subspaces of Ker fj(A)sj , j = 1, . . . , k. Now the subspace
Ker fj(A)

sj has dimension djnj , where dj = degfj(x) is the degree of
the polynomial fj(x). Its minimal A-invariant subspaces are cyclic of
the form < v,Av, . . . , Adj−1v >, where v ∈ Ker fj(A), and each such
defines an increasing sequence of length at most sj of nested invariant
subspaces (at least one is precisely of length sj ). If nj > sj , then a variety
of pairwise disjoint minimal cyclic subspaces exist in Ker fj(A)

sj , and
a unique one if nj = sj . In particular, if nj = sj = 1, then Ker fj(A)
itself is the only A-invariant subspace contained in Ker fj(A) and hence
minimal. Consequently, if A(x) = mA(x) with all nj = sj = 1, then
Ker fj(A), j = 1, . . . , k, are the only minimal A-invariant subspaces, and
all others are direct sums of these [17].

3. C20 graph

In the mathematical field of graph theory, the C20 graph [21] is a
symmetric bipartite tetravalent graph with 20 vertices and 40 edges

V (X) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
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and

E(X) = {{1, 2}, {1, 10}, {1, 11}, {1, 17}, {2, 3}, {2, 12}, {2, 18},

{3, 4}, {3, 13}, {3, 19}, {4, 5}, {4, 14}, {4, 20}, {5, 6},

{5, 11}, {5, 15}, {6, 7}, {6, 12}, {6, 16}, {7, 8}, {7, 13},

{19, 20}, {7, 17}, {8, 9}, {8, 14}, {8, 18}, {9, 10}, {9, 15},

{9, 19}, {10, 16}, {10, 20}, {17, 18}, {11, 12}, {11, 20},

{12, 13}, {13, 14}, {14, 15}, {15, 16}, {16, 17}, {18, 19}}.

We choose

α = (2, 10)(3, 9)(4, 8)(5, 7)(11, 17)(12, 16)(13, 15)(18, 20),

β = (2, 17, 10, 11)(3, 7, 9, 5)(4, 13, 8, 15)(6, 19)(12, 18, 16, 20),

γ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)(11, 12, 13, 14, 15, 16, 17, 18, 19, 20).

as automorphisms of C20 graph. Then Aut(C20) = 〈α, β, γ〉. The auto-
morphism group of the C20 graph is a group of order 80. It acts transitively
on the vertices, on the edges, and on the arcs of the graph. Therefore the
C20 graph is a symmetric graph. It has automorphisms that take any
vertex to any other vertex and any edge to any other edge. By [1], the
automorphism group of the C20 graph has one semisymmetric subgroup
G := 〈(βγ)2, β〉

Figure 1. C20 graph.
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We choose a spanning tree T of C20 graph consisting of the edges

{1, 2}, {1, 10}, {1, 11}, {1, 17},

{2, 3}, {2, 12}, {2, 18}, {4, 3},

{3, 13}, {3, 19}, {4, 5}, {4, 14},

{4, 20}, {5, 6}, {5, 15}, {6, 7},

{16, 6}, {7, 8}, {8, 9}.

By choosing T , we can define a T -reduced voltage assignment. We show
the cotree arcs by setting

x0 = (19, 20), x1 = (18, 19), x2 = (17, 18),

x3 = (16, 17), x4 = (15, 16), x5 = (14, 15),

x6 = (13, 14), x7 = (12, 13), x8 = (11, 12),

x9 = (9, 10), x10 = (5, 11), x11 = (6, 12),

x12 = (7, 13), x13 = (8, 14), x14 = (9, 19),

x15 = (10, 19), x16 = (10, 20), x17 = (11, 20),

x18 = (8, 18), x19 = (7, 17), x20 = (9, 15).

4. Semisymmetric zp-covers of the C20 graph

Semisymmetric graphs (regular edge- but not vertex-transitive graphs),
have recently received a wide attention. Regular covers, and elementary
abelian in particular, have proved to be very useful in this context. In this
section, we compute all those (connected) semisymmetric p-elementary
abelian regular covering projections p : X → C20.

Now, we express the following lemma.

Lemma 1. Let B and C be the transposes of the matrices which represent

the linear transformations β∗h, and γ∗h relative to BT = {Cxi
|0 6 i 6 20};

the standard ordered basis of H1(C20, Zp) associated with the spanning

tree T and the arcs xi(i = 0, . . . , 20), respectively. Then
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B =




0 0 0 0 0 0 0 1 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 −1 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 −1 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0
0 −1 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 −1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 −1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1




C =




0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0




.
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Proof. The rows of these matrices are obtained by letting the automor-
phisms β, γ act on BT . For example, the permutation γ maps the cycle

[19, 20, 4, 3, 19]

corresponding to x0, to the cycle

[20, 11, 5, 4, 20].

Since the latter is the sum of the base cycles corresponding to x−1
10

and x−1
17 , the first row of C is

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0).

By similar computations we can get the matrices B and C.

By [1] we have the following lemma.

Lemma 2. The minimal polynomials of B and H = (B ·C)2 are mB(x) =
(x− 1)(x+ 1)(x2 + 1), and mH(x) = x2 − 1, respectively.

Suppose that p be a prime. A polynomial x2+1 has distinct solutions in
Zp if and only if p ≡ 1 mod 4. In order to find 〈B,H〉-invariant subspaces
over Zp, it is useful to consider B and H as matrices over the splitting
field Zp(i) where i is a zero of the polynomial x2+1. By a straightforward
calculation, lemma 5.1 and lemma 5.2, we have

ker(B − I) = 〈u0, u1, u2, u3〉,

ker(B + I) = 〈u4, u5, u6, u7, u8〉,

ker(B + iI) = 〈u9, u10, u11, u12, u13, u14〉,

ker(B − iI) = 〈u15, u16, u17, u18, u19, u20〉,

where

u0 = [1,−1, 0, 0,−1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,−1, 0,−1]t,

u1 = [0, 0, 1, 0,−1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1,−1, 1,−1]t,

u2 = [0, 0, 0, 1, 1, 0, 0,−1,−1,−1,−1, 0, 0, 0, 0, 0,−1, 0, 1,−1, 1]t,

u3 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,−1]t,

u4 = [1,−1, 0, 0, 1, 0, 0,−1, 0, 0, 0,−1, 1, 0, 1, 0, 0, 0,−1, 0, 0]t,

u5 = [0, 0, 1, 0, 1, 0, 0,−1, 0, 0, 0, 0,
1

2
, 0, 0,−1, 0, 1,−1, 0,

1

2
]t,

u6 = [0, 0, 0, 1, 1, 0, 0,−1,−1, 0, 0, 0,
1

2
, 0, 0, 0, 1, 0,−1, 0,

1

2
]t,
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u7 = [0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 0,−
1

2
, 1, 0, 0, 0, 0, 0, 0,−

1

2
]t,

u8 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0,
1

2
, 0, 0, 0, 0, 0, 0,−1,−

1

2
]t,

u9 = [1, 1, 0, 0, i, 0, 0, i, 0, 0, 0, i, 0, 0,−i, 0, 0, 0, 1, 0, i]t,

u10 = [0, 0, 1, 0,−i, 0, 0,−i, 0, 0, 0, 0, 0, 0, i, i, 0,−1,−1, 0,−i]t,

u11 = [0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,−1, 0,−i, 0,−i, 0, 1]t,

u12 = [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, i, 1, 0, 0, 0, 0, 0,−1]t,

u13 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, i, 0, 0, 0,−1, 0, 0, 0, 0,−i, 0]t,

u14 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,−i− 1, 0, 0, 0, 0, 0, 1]t,

u15 = [1, 1, 0, 0,−i, 0, 0,−i, 0, 0, 0,−i, 0, 0, i, 0, 0, 0, 1, 0,−i]t,

u16 = [0, 0, 1, 0, i, 0, 0, i, 0, 0, 0, 0, 0, 0,−i,−i, 0,−1,−1, 0, i]t,

u17 = [0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,−1, 0, i, 0, i, 0, 1]t,

u18 = [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,−i, 1, 0, 0, 0, 0, 0,−1]t,

u19 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−i, 0, 0, 0,−1, 0, 0, 0, 0, i, 0]t,

u20 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, i− 1, 0, 0, 0, 0, 0, 1]t

and

ker(H + I) = 〈v0, v1, v2, v3, v4, v5, v6, v7, v8, v9〉,

ker(H − I) = 〈v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20〉,

where

v0 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0,−1,−1,−1, 0]t,

v1 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0,−1, 1, 1, 0, 0]t,

v2 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 1,−1, 1,−1,−1, 1, 0]t,

v3 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1,−1, 1, 1, 0, 0]t,

v4 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,−1,−1,−1, 1]t,

v5 = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,−1,−1, 0, 1,−1, 1, 1, 1, 1,−2]t,

v6 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,−1,−1,−1, 1]t,

v7 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1, 1,−1, 1, 1, 1, 0]t,

v8 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,−1,−1, 0, 1,−1, 1,−1, 0, 0, 0]t,

v9 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,−1, 1,−1, 0,−1,−1, 1]t,

v10 = [1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 1, 0,−1, 0, 0, 0, 0]t,

v11 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 1,−1, 1, 0, 0]t,
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v12 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]t,

v13 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,−1, 1,−1, 0, 0]t,

v14 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 1, 0, 0, 0, 1]t,

v15 = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]t,

v16 = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1,−1, 0, 0, 0,−1]t,

v17 = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1,−1, 1,−1, 1,−1, 0]t,

v18 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0]t,

v19 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 1, 0, 0, 1]t,

v20 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 1, 1,−1, 1,−1, 1, 0]t.

Now, we have over the field Zp(i)

Ker(B − I) ∩ ker(H − I) = 0,

Ker(B − I) ∩ ker(H + I) = 0,

Ker(B + iI) ∩ ker(H + I) = 〈K0〉,

Ker(B − iI) ∩ ker(H + I) = 〈K1〉,

Ker(B + iI) ∩ ker(H − I) = 〈K2〉,

Ker(B − iI) ∩ ker(H − I) = 〈K3〉,

Ker(B + I) ∩ ker(H − I) = 〈K4〉,

and

Ker(B + I) ∩ ker(H + I) = 0,

where 〈K0〉, 〈K1〉, 〈K2〉, 〈K3〉 and 〈K4〉 are invariant 1-dimensional sub-
spaces (see Table 1).

If p = 2, then minimal polynomials are mB(x) = (x−1)4, and mH(x) =
(x − 1)2. By the same argument as above, we may prove that 〈K5〉 is
invariant 1-dimensional subspace (see Table 1).

If p ≡ 3 mod 4, then minimal polynomials are mB(x) = (x− 1)(x+
1)(x2+1), and mH(x) = (x−1)(x+1). There is a 1-dimensional subspace
〈K4〉.

Due to the above description, we have the following result.

Theorem 1. Let p be a prime. Let X be a semisymmetric Zp-cover

of the C20 graph, along which the group G lifts. Then, the connected

semisymmetric elementary abelian regular Zp-covers of C20 graph are

given in the following table:
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inv.sub ξ(x0) ξ(x1) ξ(x2) ξ(x3) ξ(x4) ξ(x5) condition

〈K0〉 (1) (1) (1) (1) (1) (1) p ≡ 1 mod 4
〈K1〉 (1) (1) (1) (1) (1) (1) p ≡ 1 mod 4
〈K2〉 (1) (1) (1) (1) (1) (1) p ≡ 1 mod 4
〈K3〉 (1) (1) (1) (1) (1) (1) p ≡ 1 mod 4
〈K4〉 (1) (−1) (1) (−1) (1) (−1) p ≡ 1 or 3 mod 4
〈K5〉 (1) (1) (1) (1) (1) (1) p = 2

inv.sub ξ(x6) ξ(x7) ξ(x8) ξ(x9) ξ(x10) condition

〈K0〉 (1) (1) (1) (1) (i) p ≡ 1 mod 4
〈K1〉 (1) (1) (1) (1) (−i) p ≡ 1 mod 4
〈K2〉 (1) (1) (1) (−1) (−i) p ≡ 1 mod 4
〈K3〉 (1) (1) (1) (−1) (i) p ≡ 1 mod 4
〈K4〉 (1) (−1) (1) (−1) (1) p ≡ 1 or 3 mod 4
〈K5〉 (1) (1) (1) (1) (1) p = 2

inv.sub ξ(x11) ξ(x12) ξ(x13) ξ(x14) ξ(x15) condition

〈K0〉 (i) (i) (i) (−i) (i) p ≡ 1 mod 4
〈K1〉 (−i) (−i) (−i) (i) (−i) p ≡ 1 mod 4
〈K2〉 (i) (−i) (i) (i) (i) p ≡ 1 mod 4
〈K3〉 (i) (−i) (i) (i) (i) p ≡ 1 mod 4
〈K4〉 (−1) (1) (−1) (1) (−1) p ≡ 1 or 3 mod 4
〈K5〉 (1) (1) (1) (1) (1) p = 2

inv.sub ξ(x16) ξ(x17) ξ(x18) ξ(x19) ξ(x20) condition

〈K0〉 (−i) (−1) (−i) (−i) (i) p ≡ 1 mod 4
〈K1〉 (i) (−1) (i) (i) (−i) p ≡ 1 mod 4
〈K2〉 (−i) (−1) (−i) (i) (−i) p ≡ 1 mod 4
〈K3〉 (−i) (−1) (i) (−i) (i) p ≡ 1 mod 4
〈K4〉 (−1) (1) (−1) (1) (1) p ≡ 1 or 3 mod 4
〈K5〉 (1) (1) (1) (1) (1) p = 2

Table 1. Semisymmetric elementary abelian regular Zp-covers of the C20
graph.

5. Conclusion

Covering techniques have long been known as a powerful tool in
topology, and graph theory. Regular covering of a graph is currently an
active topic in algebraic graph theory. In this study, by applying concept
linear algebra, we classify the connected semisymmetric elementary abelian
Zp-covers of the C20 graph.
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