Construction of self-dual binary $\left[2^{2 k}, 2^{2 k-1}, 2^{k}\right]$-codes

Carolin Hannusch* and Piroska Lakatos

Communicated by V. I. Sushchansky

Abstract

The binary Reed-Muller code $\operatorname{RM}(m-k, m)$ corresponds to the k-th power of the radical of $G F(2)[G]$, where G is an elementary abelian group of order 2^{m} (see [2]). Self-dual RMcodes (i.e. some powers of the radical of the previously mentioned group algebra) exist only for odd m.

The group algebra approach enables us to find a self-dual code for even $m=2 k$ in the radical of the previously mentioned group algebra with similarly good parameters as the self-dual RM codes.

In the group algebra $$
G F(2)[G] \cong G F(2)\left[x_{1}, x_{2}, \ldots, x_{m}\right] /\left(x_{1}^{2}-1, x_{2}^{2}-1, \ldots x_{m}^{2}-1\right)
$$ we construct self-dual binary $C=\left[2^{2 k}, 2^{2 k-1}, 2^{k}\right]$ codes with property $$
\operatorname{RM}(k-1,2 k) \subset C \subset \mathrm{RM}(k, 2 k)
$$ for an arbitrary integer k. In some cases these codes can be obtained as the direct product of two copies of $\mathrm{RM}(k-1, k)$-codes. For $k \geqslant 2$ the codes constructed are doubly even and for $k=2$ we get two non-isomorphic [16, 8, 4]codes. If $k>2$ we have some self-dual codes with good parameters which have not been described yet.

[^0]
Introduction and Notation

Let K be a finite field of characteristic p and let V be a vector space over K, and C be a subspace of V. Then C is called a linear code. Let $x, y \in C$, then the Hamming weight of x is the number of its non-zero coordinates and the Hamming distance of x and y is the weight of $x-y$. The Hamming distance (or weight) of a linear code C is the minimum of all Hamming distances of its codewords.

In the study of binary codes $C \subseteq V$ it is convenient that the space V has an additional algebraic structure. For example, if V is a group algebra $K[G]$, where G is a finite abelian p-group and C is an ideal of such a group algebra, then C is called an abelian group code.

The Hamming distance of a linear code determines the ability of error-correcting property of the code. The authors in [6] proved that for any $1 \leqslant d \leqslant\left[\frac{m+1}{2}\right]$ there exists an Abelian 2-group G_{d} that a power of the radical is a self-dual code with parameters $\left(2^{m}, 2^{m-1}, 2^{d}\right)$. These codes are ideals in the group algebra $G F(2)\left[G_{d}\right]$ and they are "monomial codes" in the sense of [5] as defined below.

Throughout, p will denote a prime and K a field of p elements. Let $G=\left\langle g_{1}\right\rangle \times \cdots \times\left\langle g_{m}\right\rangle \cong C_{p}^{m}$ be an elementary abelian p-group of order p^{m} i.e. $K[G]$ is a modular group algebra, then the group algebra $K[G]$ and K^{n} are isomorphic as vector spaces by the mapping

$$
\varphi: K[G] \mapsto K^{n}, \text { where } \varphi\left(\sum_{i=1}^{n} a_{i} g_{i}\right) \mapsto\left(a_{1}, a_{2}, \ldots, a_{n}\right):=\mathbf{c} \in C
$$

Reed-Muller (RM) binary codes were introduced in [12] as binary functions. These codes are frequently used in applications and have good error correcting properties. Now we are looking for self-dual codes in the radical of $K[G]$ with similarly good parameters as the RM codes.
If K is a field of characteristic 2 Berman [2] and in the general case Charpin [3] proved that all Generalized Reed-Muller (GRM) codes coincide with powers of the radical of the modular group algebra of $K[G]$, where G is an elementary abelian p-group. This group algebra is clearly isomorphic with the quotient algebra

$$
G F(p)\left[x_{1}, x_{2}, \ldots x_{m}\right] /\left(x_{1}^{p}-1, \ldots x_{m}^{p}-1\right)
$$

Self-dual RM-codes (i.e. some power of the radical of the group algebra $G F(2)[G])$ exist only for odd m. They are $\left(2^{m}, 2^{m-1}, 2^{\frac{m+1}{2}}\right)$-codes.

For any basis $\left\{g_{1}, g_{2}, \ldots g_{m}\right\}$ of such a group G consider the algebra isomorphism μ mapping $g_{j} \mapsto x_{j} \quad(1 \leqslant j \leqslant m)$, and therefore we have the algebra isomorphism

$$
\mathcal{A}_{p, m} \cong G F(p)\left[x_{1}, x_{2}, \ldots, x_{m}\right] /\left(x_{1}^{p}-1, x_{2}^{p}-1, \ldots x_{m}^{p}-1\right)
$$

where $G F(p)\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ denotes the algebra of polynomials in m variables with coefficients in $G F(p)$.

It is known ([7]) that the set of monomial functions $\left(k_{i} \in \mathbb{N} \cup 0\right)$

$$
\left\{\prod_{i=1}^{m}\left(x_{i}-1\right)^{k_{i}} \text { where } 0 \leqslant k_{i}<p\right\}
$$

form a linear basis of the radical $\mathcal{J}_{p, m}$. Clearly the nilpotency index of $\mathcal{J}_{p, m}$ (i.e. the smallest positive integer t, such that $\mathcal{J}_{p, m}^{t}=0$) is equal to $t=m(p-1)+1$.

Introducing the notation

$$
X_{i}=x_{i}-1, \quad(1 \leqslant i \leqslant m)
$$

(which will be used from now on) we have the following isomorphism

$$
\begin{equation*}
\mathcal{J}_{p, m} \simeq G F(p)\left[X_{1}, X_{2}, \ldots, X_{m}\right] /\left(X_{1}^{p}, X_{2}^{p}, \ldots X_{m}^{p}\right) \tag{1}
\end{equation*}
$$

The k-th power of the radical consists of reduced m-variable (nonconstant) polynomials of degree at least k, where $0 \leqslant k \leqslant t-1$, where $t=m(p-1)+1$.

$$
\begin{equation*}
\mathcal{J}_{p, m}^{k}=\operatorname{GRM}(t-1-k, m)=\left\langle\prod_{i=1}^{m}\left(X_{i}\right)^{k_{i}} \mid \sum_{i=1}^{m} k_{i} \geqslant k\left(0 \leqslant k_{i}<p\right)\right\rangle \tag{2}
\end{equation*}
$$

Such a basis was exploited by Jennings [7].
By (2) the quotient space $\mathcal{J}_{p, m}^{k} / \mathcal{J}_{p, m}^{k+1}$ has a basis

$$
\begin{equation*}
\left\{\prod_{i=1}^{m} X_{i}^{k_{i}}+\mathcal{J}_{p, m}^{k+1}, \text { where } 0 \leqslant k_{i}<p \text { and } \sum_{i=1}^{m} k_{i}=k\right\} . \tag{3}
\end{equation*}
$$

Remark 1. It is known [15] that the dual code C^{\perp} of an ideal C in $\mathcal{A}_{p, m}$ coincides with the annihilator of C^{*}, where C^{*} is the image of C by the involution $*$ defined on $\mathcal{A}_{p, m}$ by

$$
*: g \mapsto g^{-1} \text { for all } g \in G \text { from } \mathcal{A}_{p, m} \text { to itself. }
$$

The annihilator of $\mathcal{J}_{p, m}^{k}$ is obviously $\mathcal{J}_{p, m}^{m(p-1)+1-k}$. Thus the dual codes of GRM-codes are GRM-codes and

$$
\operatorname{GRM}(k, m)^{\perp}=\operatorname{GRM}(m(p-1)-k-1, m)
$$

It follows that for $m=2 k+1$ and $p=2$ the code $\operatorname{GRM}(k, m)$ is self-dual.

1. Construction of binary self-dual codes

Let us consider the group algebra

$$
\mathcal{A}_{2, m}=G F(2)\left[x_{1}, \ldots x_{m}\right] /\left(x_{1}^{2}-1, x_{2}^{2}-1, \ldots x_{m}^{2}-1\right) \simeq G F(2)\left[C_{2}^{m}\right]
$$

as a vector space with basis

$$
\begin{equation*}
x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{m}^{a_{m}}, a_{i} \in\{0,1\} \tag{4}
\end{equation*}
$$

It is known ([7]) that the radical $\mathcal{J}_{2, m}$ of this group algebra is generated by the monomials $X_{i}=x_{i}-1=x_{i}+1$.

Definition 1 ([5]). The code C in $\mathcal{J}_{2, m}$ (see (1)) is said to be a monomial code if it is an ideal in $\mathcal{A}_{2, m}$ generated by some monomials of the form

$$
\begin{equation*}
X_{1}^{k_{1}} X_{2}^{k_{2}} \ldots X_{m}^{k_{m}}, \text { where } 0 \leqslant k_{i} \leqslant 1 \tag{5}
\end{equation*}
$$

The codes we intend to study are monomial codes.
For $p=2$ using the usual polynomial product in the Boolean monomial $X_{1}^{k_{1}} X_{2}^{k_{2}} \ldots X_{m}^{k_{m}}\left(k_{i} \in\{0,1\}\right)$ we have

$$
X_{1}^{k_{1}} X_{2}^{k_{2}} \ldots X_{m}^{k_{m}}=\left(x_{1}+1\right)^{k_{1}}\left(x_{2}+1\right)^{k_{2}} \ldots\left(x_{m}+1\right)^{k_{m}}
$$

and the Hamming weight in the basis (4) of this monomial equals $\prod_{i=1}^{m}\left(1+k_{i}\right)$.
Example. Let G be an elementary abelian group of order $2^{m}, m \geqslant 2$. Define the codes C_{j} as ideals in $K[G]$ generated by $X_{j}=x_{j}-1$. These codes are binary self-dual $\left[2^{m}, 2^{m-1}, 2\right]$ codes and they are self-dual since $C_{j}=C_{j}^{\perp}=\left\langle X_{j}\right\rangle$. Further, this code is a direct sum of $[2,1,2]$-codes. The dimension of the code C_{j} is 2^{m-1}, the same as the dimension of the radical of the group algebra $G F(2)[H]$, where H is an elementary abelian 2 -group of rank $m-1$. The minimal distance of C_{j} is $d=2$. This follows from the fact that the element $X_{j}=x_{j}+1$ is included in the basis of C_{j}. Thus, C_{j} is a self-dual $\left[2^{m}, 2^{m-1}, 2\right]$-code.

By Remark 1 one can see that a power of the radical of a modular group algebra is self-dual if and only if the nilpotency index of the radical is even. In our case (when G is elementary abelian of order p^{m}) the nilpotency index is even if and only if $p=2$ and m is odd.

If m is odd, the binary RM-codes with parameters $\left[2^{m}, 2^{m-1}, 2^{\frac{m+1}{2}}\right]$ are self-dual and they are the $\frac{m+1}{2}$-th powers of the radical $\mathcal{A}_{2, m}$.

For $m=2 k$ where k is an arbitrary integer, we have a new method to construct a doubly-even class of binary self-dual C codes with parameters $\left[2^{m}, 2^{m-1}, 2^{k}\right]$. For this code C we have $\operatorname{RM}(k-1,2 k) \subset C \subset \operatorname{RM}(k, 2 k)$. In the case of $m=4$, we get two known extremal [16, 8,4$]$ codes (listed in [14]) and for $m>4$ these codes are not extremal. A doubly-even (i.e. its minimum distance is divisible by 4) self-dual code is called extremal, if we have for its minimum distance $d=4\left[\frac{n}{24}\right]+4$, where n denotes the code length (see Definition 39 and Lemma 40 in [8]).
To abbreviate the description of our codes, we shall refer to the monomial $X_{1}^{k_{1}} \ldots X_{m}^{k_{m}}$ as the m-tuple $\left(k_{1}, k_{2}, \ldots, k_{m}\right) \in\{0,1, \ldots, p-1\}^{m}$ of exponents.

Using Plotkin's construction of RM-codes (see Theorem 2 [13], Ch. 13, §3) we obtain the following property of RM-codes.

Lemma 1. If m is even and $m=2 k$, then $\operatorname{RM}(k-1, m)=\mathcal{J}_{2, m}^{k+1}$ contains a proper subspace which is isomorphic to $\operatorname{RM}(k-1, m-1)$.

Proof. Recall, that the set of monomials in the basis (2) of $\mathcal{J}_{2, m}^{k+1}$ is invariant under the permutations of the variables X_{i}, i.e. the set of binary m-tuples $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ assigned to the basis (2) is invariant under the permutation of all elements of the symmetric group S_{m}. Take the basis elements with $k_{m}=1$. Then the monomials $X_{1}^{k_{1}} \ldots X_{m}^{k_{m}}$ of degree m can be projected by $\pi:\left(k_{1}, k_{2}, \ldots, k_{m-1}, 1\right) \mapsto\left(k_{1}, k_{2}, \ldots, k_{m-1}\right)$. In this way we get a basis of $\mathcal{J}_{2, m-1}^{k} \cong \operatorname{RM}(k-1, m-1)$.

For $m=2 k$ denote the set of all k-subsets of $\{1,2, \ldots, 2 k\}$ by X. The elements of X can be described by binary sequences $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ consisting of k ' 0 '-s and $k^{\text {' }} 1$ '-s in any order. Clearly, the cardinality of the set X is $\binom{2 k}{k}$.

We say that the subset Y of binary m-tuples in X is complement free if $y \in Y$ implies $\mathbf{1}-y \notin Y$, where $\mathbf{1}=(1,1, \ldots, 1)$. Denote the set of monomials corresponding to the set of exponents in X by \mathcal{X}. Denote the set with maximum number of pairwise orthogonal monomials in \mathcal{X} by \mathcal{Y} and their corresponding exponents in X by Y.

Example. For $m=6$ the quotient space $\mathcal{J}_{2, m}^{3} / \mathcal{J}_{2, m}^{4}$ has a basis with $\binom{6}{3}=20$ elements, where the binary 6 -tuples corresponding to the coset
representative monomials (the set X) are listed in pairs of complements:

$$
\begin{array}{cc}
(1,1,1,0,0,0) & (0,0,0,1,1,1) \\
(1,1,0,1,0,0) & (0,0,1,0,1,1) \\
(1,1,0,0,1,0) & (0,0,1,1,0,1) \\
(1,1,0,0,0,1) & (0,0,1,1,1,0) \\
(1,0,1,1,0,0) & (0,1,0,0,1,1) \\
(1,0,1,0,1,0) & (0,1,0,1,0,1) \\
(1,0,1,0,0,1) & (0,1,0,1,1,0) \\
(1,0,0,1,1,0) & (0,1,1,0,0,1) \\
(1,0,0,1,0,1) & (0,1,1,0,1,0) \\
(1,0,0,0,1,1) & (0,1,1,1,0,0)
\end{array}
$$

and we have $2^{\frac{1}{2}\binom{6}{3}}=2^{10}$ complement-free sets. For example the following complement free sets Y and \mathcal{Y} of 10 elements:

$$
\begin{array}{cc}
Y & \mathcal{Y} \\
\hline(1,1,1,0,0,0), & X_{1} X_{2} X_{3} \\
(0,0,1,0,1,1), & X_{3} X_{5} X_{6} \\
(1,1,0,0,1,0), & X_{1} X_{2} X_{5} \\
(0,0,1,1,1,0), & X_{3} X_{4} X_{5} \\
(1,0,1,1,0,0), & X_{1} X_{3} X_{4} \\
(0,1,0,1,0,1), & X_{2} X_{4} X_{6} \\
(0,1,0,1,1,0), & X_{2} X_{4} X_{5} \\
(0,1,1,0,0,1), & X_{2} X_{3} X_{6} \\
(1,0,0,1,0,1), & X_{1} X_{4} X_{6} \\
(1,0,0,0,1,1), & X_{1} X_{5} X_{6}
\end{array}
$$

Theorem 1. Let C be a binary code with $\operatorname{RM}(k-1,2 k) \subset C \subset \operatorname{RM}(k, 2 k)$ with the following basis of the factorspace $C / \mathrm{RM}(k-1,2 k)$

$$
\begin{equation*}
\left\{\prod_{i=1}^{m} X_{i}^{k_{i}}+\operatorname{RM}(k-1,2 k), \text { where } k_{i} \in\{0,1\} \text { and } \sum_{i=1}^{m} k_{i}=k\right\} \tag{6}
\end{equation*}
$$

where the set of the exponents $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ is a maximal (with cardinality $2^{\frac{1}{2}\binom{2 k}{k}}$) complement free subset of X. Then C forms $a\left[2^{2 k}, 2^{2 k-1}, 2^{k}\right]$ self-dual doubly-even code.

Proof. Let G be an elementary abelian group of order 2^{m}, where $m=$ $2 k, k \geqslant 2$. By the group algebra representation of RM-codes and the definition of C we have the relation $\mathcal{J}_{2, m}^{k+1} \subset C \subset \mathcal{J}_{2, m}^{k}$.

For $m=2 k$ the set \mathcal{X} is the set of coset representatives of the quotient space $\mathcal{J}_{2, m}^{k} / \mathcal{J}_{2, m}^{k+1}$, i.e. the set of monomials satisfying (6).

Clearly, two monomials $X_{1}^{k_{1}} X_{2}^{k_{2}} \ldots X_{m}^{k_{m}}$ and $X_{1}^{l_{1}} X_{2}^{l_{2}} \ldots X_{m}^{l_{m}}$ are orthogonal, i.e. their product is zero, if for some $i: 1 \leqslant i \leqslant m$ we have $k_{i}=l_{i}$.

Thus, the elements in the radical corresponding to these monomials are orthogonal if their exponent m-tuples belong to a complement free set.

The m-tuples $\left(k_{1}, k_{2} \ldots k_{m}\right)$ have to be complement free in Y, otherwise the corresponding monomials in \mathcal{Y} are not orthogonal. Clearly Y is a complement free subset of X (given by (4)) with cardinality $\frac{1}{2}\binom{2 k}{k}=$ $\binom{2 k-1}{k-1}$.

By definition, $C=\left\langle\mathcal{J}_{2, m}^{k+1} \cup \mathcal{Y}\right\rangle$ is a subspace of the radical $\mathcal{J}_{2, m}$ of the group algebra $\mathcal{A}_{2, m}$ generated by the union of $\mathcal{J}_{2, m}^{k+1}$ and \mathcal{Y}. For the dimension of C we have

$$
\operatorname{dim}(C)=\operatorname{dim}(\operatorname{RM}(k-1, m))+\frac{1}{2}\binom{2 k}{k}=1+\sum_{i=1}^{k-1}\binom{2 k}{i}+\frac{1}{2}\binom{2 k}{k}=2^{2 k-1}
$$

It follows that C is self-dual. Since a binary self-dual code contains a word of weight 2 if and only if the generator matrix has two equal columns, we have our self-dual code to be doubly-even.

Each monomial in \mathcal{Y} has the same weight 2^{k}, that is the minimal distance of C. Using the identities for the monomials involved in the basis of our codes

$$
x_{i}\left(x_{j}+1\right)=\left(x_{i}+1\right)\left(x_{j}+1\right)+\left(x_{j}+1\right) \text { and }\left(x_{i}+1\right)^{2}=0
$$

we easily obtain that C (which is subspace of $\mathcal{J}_{2, m}$) is an ideal in the group algebra $G F(2)[G]$.

Theorem 2. Let Y and \mathcal{Y} be sets defined above and let C be the code defined in Theorem 1. Suppose that $k_{i}=0$ for some $i: 1 \leqslant i \leqslant m$ in each element of the subset Y, (i.e. the variable X_{i} is missing in each monomial of $\mathcal{Y})$. Then we have the isomorphism

$$
C \simeq \operatorname{RM}(k-1,2 k-1) \oplus \operatorname{RM}(k-1,2 k-1) .
$$

Proof. The elements of \mathcal{Y} are of the form

$$
X_{1}^{k_{1}} \ldots X_{m}^{k_{m}}=\left(x_{1}+1\right)^{k_{1}}\left(x_{2}+1\right)^{k_{2}} \ldots\left(x_{m}+1\right)^{k_{m}}, \text { where } \sum_{i=1}^{m} k_{i}=k
$$

and their weight is 2^{k}. Project the set of monomials with $k_{i}=0$ in $C=\left\langle\mathcal{J}_{2, m}^{k+1} \cup \mathcal{Y}\right\rangle$ onto the monomials $X_{1}^{k_{1}}, \ldots, X_{i-1}^{k_{i-1}}, X_{i+1}^{k_{i+1}}, \ldots, X_{m}^{k_{m}}$. The image C_{1} of this projection is a self-dual $\operatorname{RM}(k-1,2 k-1)$-code with parameters $\left[2^{2 k-1}, 2^{2 k-2}, 2^{k}\right]$.

By Lemma 1 the elements of the basis of $J_{2, m}^{k+1}$ with $k_{i}=1$ generate a subspace C_{2} which is isomorphic to $\operatorname{RM}(k-1,2 k-1)$. The intersection of C_{1} and C_{2} is empty. Therefore $C \simeq C_{1} \oplus C_{2}$ and the statement follows.

Remark 2. In particular, by Theorem 1 we get [16, 8, 4] self-dual codes for $m=4$. These codes are extremal doubly-even codes. Using the SAGE computer algebra software we may check easily the classification of binary self-dual codes listed in [14].

There are two cases:

1) If $k_{i}=0$ for some $i: 1 \leqslant i \leqslant m$ in each element of the set Y, then we get the direct sum $E_{8} \oplus E_{8}$, where E_{8} is the extended Hamming code.
2) otherwise we get an indecomposable $[16,8,4]$ code (which is denoted by E_{16} in [14]).
These codes are formally self-dual. Both classes have the following weight function:

$$
z^{16}+28 z^{12}+198 z^{8}+28 z^{4}+1
$$

Remark 3. It is known that for each odd $m>1$ there exists a self-dual affine-invariant code of length 2^{m} over $G F(2)$, which is not a self-dual RM-code [4].
The factor space $\mathcal{J}_{p, m}^{k} / \mathcal{J}_{p, m}^{k+1}$ is an irreducible $\operatorname{AGL}(m, G F(p))$ module. Thus the code C is not affine invariant (see [1] Theorem 4.17) as the powers of the radical of $\mathcal{A}_{p, m}$ are. The code C cannot be an extended cyclic code by Corollary 1 in [4].

Remark 4. Using the inclusion-exclusion principle a formula can be given for the dimension of the $R M(k+1, m)$-code (see for example in [1] Theorem 5.5). If $p=2$ and $0 \leqslant k \leqslant m$, then we have

$$
\operatorname{dim} C=\frac{1}{2}\binom{2 k}{k}+\sum_{i=k+1}^{m} \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}\binom{2 k-2 j+i-1}{i-2 j}=\sum_{i=k+1}^{m}\binom{2 k}{i}+\frac{1}{2}\binom{2 k}{k},
$$

where $i-2 j \geqslant 0$.
The codes constructed in the current paper are worth to be studied further. Already for $k=2$ we get two non-isomorphic codes with the same parameters. It would be interesting to determine all classes of codes
up to isomorphism for each arbitrary integer k and to determine their automorphism group. The code C in Theorem 1 is not affine-invariant and first computations show that the automorphism group of C with $k_{i}=0$ differs from the automorphism group of C with $k_{i}=1$ for some $1 \leqslant i \leqslant m$.

We can formulate the following open questions about the code C of Theorem 1:

1) Does there exist a classification for all complement-free sets for arbitrary even m ?
2) How many non-equivalent (in any sense) self-dual binary codes exist for fixed m and p ?
3) Compare the automorphism groups of the codes C defined in Theorem 1 with the automorphism group of RM-codes.
4) Find decoding algorithms for C.

References

[1] Assmus, E.F. Key, J.K., Polynomial codes and finite geometries, Chapter in Handbook of Coding Theory, edited by V. Pless and W. C. Huffman, Elsevier, 1995.
[2] Berman, S.D., On the theory of group code, Kibernetika, 3(1) (1967), 31-39.
[3] Charpin, P., Codes cycliques étendus et idA@aux principaux d'une alge'bre modulaire, C.R. Acad. Sci. Paris, 295(1) (1982), 313-315.
[4] Charpin, P, Levy-Dit-Vehel, F., On Self-Dual Affine-lnvariant Codes Journal Combiunatorial Theory, Series A 67 (1994), 223-244.
[5] Drensky, V., Lakatos, P., Monomial ideals, group algebras and error correcting codes, Lecture Notes in Computer Science, Springer Verlag, 357 (1989), 181-188.
[6] Hannusch, C., Lakatos, P., Construction of self-dual radical 2-codes of given distance, Discrete Math., Algorithms and Applications, 4(4) (2012).
[7] Jennings, S. A., The structure of the group ring of a p-group over modular fields, Trans. Amer. Math. Soc. 50 (1941), 175-185.
[8] Joyner, D., Kim, J.-L., Selected unsolved problems in Coding Theory, Birkha̋user, 2011.
[9] Kasami, T. , Lin, S, Peterson, W.W., New generalisations of the Reed-Muller codes, IEEE Trans. Inform. Theory II-14 (1968) 189-199.
[10] Kelarev, A. V.; Yearwood, J. L.; Vamplew, P. W., A polynomial ring construction for the classification of data, Bull. Aust. Math. Soc. 79 , 2 (2009) 213-225.
[11] Landrock, P., Manz, O., Classical codes as ideals in group algebras, Designs, Codes and Cryptography, 2(3) (1992), 273-285.
[12] Muller, D. E., Application of boolean algebra to switching circuit design and to error detection, IRE Transactions on Electronic Computers, 3:6-12 (1954).
[13] MacWilliams, F.J., Sloane, N.J.A., The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1983.
[14] Pless, V., A classification of self-orthogonal codes over GF(2), Discrete Mathematics 3 (1972), 209-246.
[15] MacWilliams, F.J., Codes and Ideals in group algebras, Univ. of North Carolina Press, 1969.

Contact information

C. Hannusch, Institute of Mathematics, University of Debrecen, 4010
P. Lakatos Debrecen, pf.12, Hungary

E-Mail(s): carolin.hannusch@science.unideb.hu,
lakatosp@science.unideb.hu
Web-page(s): www.mat.unideb.hu
Received by the editors: 21.09.2015
and in final form 16.12.2015.

[^0]: *Research of the first author was partially supported by funding of EU's FP7/20072013 grant No. 318202.

 2010 MSC: 94B05, 11T71, 20C05.
 Key words and phrases: Reed-Muller code, Generalized Reed-Muller code, radical, self-dual code, group algebra, Jacobson radical.

