A way of computing the Hilbert series

Azeem Haider

Communicated by I. P. Shestakov

Abstract. Let $S=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a standard graded K-algebra for any field K. Without using any heavy tools of commutative algebra we compute the Hilbert series of graded S-module S / I, where I is a monomial ideal.

Let $S=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a standard graded K-algebra for a field K. We present a way of computing the Hilbert series of a graded S-module S / I, when I is a monomial ideal of S. There are some known ways of computing the Hilbert series (for example [3]). Unlike any other method we compute Hilbert series of S / I by skipping heavy tools of commutative algebra.

If $I \subset S$ is a monomial ideal which is minimally generated by monomials $\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}, S_{d} / I_{d}$ is the d th graded component of S / I and $H(S / I, d)=\operatorname{dim}_{K} S_{d} / I_{d}$ is the dimension of S_{d} / I_{d} as a K linear space, called the Hilbert function of S / I. The series

$$
H_{S / I}(t)=\sum_{d=0}^{\infty} H(S / I, d) t^{d}
$$

is called the Hilbert Series of S / I. To know more about Hilbert series of general graded modules and related results see [1], [2] or [4].

2010 MSC: Primary 13P10; Secondary 13F20, 68R05, 05E40.
Key words and phrases: monomial ideal, Hilbert series.

For any monomials $u=\prod_{i=0}^{n} x_{i}^{a_{i}}$ and $v=\prod_{i=0}^{n} x_{i}^{b_{i}}$ in S, we define the intersecting multiplication as

$$
\begin{equation*}
u * v=\prod_{i=0}^{n} x_{i}^{\max \left\{a_{i}, b_{i}\right\}} \tag{1}
\end{equation*}
$$

Considering this sort of multiplication allowing us to associate a monomial ideal $I=\left(u_{1}, u_{2}, \ldots, u_{s}\right) \subset S$ to a unique polynomial called intersecting polynomial in the following way

$$
P_{S / I}=\left(1-u_{1}\right) *\left(1-u_{2}\right) * \ldots *\left(1-u_{s}\right)
$$

Simplifying we get

$$
\begin{equation*}
P_{S / I}=1-\sum_{i=1}^{s}\left(u_{i}\right)+\sum_{1 \leqslant i_{1}<i_{2}}^{s}\left(u_{i_{1}} * u_{i_{2}}\right)-\ldots+(-1)^{s}\left(u_{i_{1}} * u_{i_{2}} * \ldots * u_{i_{s}}\right) \tag{2}
\end{equation*}
$$

In the polynomial $P_{S / I}$ we have 2^{s} number of monomial terms with half positive and half negative coefficient. For simplicity, we denote monomials with coefficient +1 by $v_{1}, v_{2}, \ldots, v_{2^{s-1}}$ and monomials with coefficient -1 by $w_{1}, w_{2}, \ldots, w_{2^{s-1}}$. Using these notations we can write (2) as

$$
\begin{equation*}
P_{S / I}=\sum_{i=1}^{2^{s-1}}\left(v_{i}-w_{i}\right) \tag{3}
\end{equation*}
$$

Note that if an ideal $J=(I, u)$, for monomial $u \notin I$, then $P_{S / J}=$ $P_{S / I}-u * P_{S / I}$.

Once we obtained the intersecting polynomial $P_{S / I}$, we can write Hilbert series of S / I as described in the following theorem.
Theorem 1. If $P_{S / I}=\sum_{i=1}^{2^{s-1}}\left(v_{i}-w_{i}\right)$ is the intersecting polynomial of S / I for monomial ideal $I \subset S$, then

$$
H_{S / I}(t)=\frac{\sum_{i=1}^{2^{s-1}}\left(t^{\operatorname{deg}\left(v_{i}\right)}-t^{\operatorname{deg}\left(w_{i}\right)}\right)}{(1-t)^{n}}
$$

Proof. If $I=\left(u_{1}, u_{2}, \ldots, u_{s}\right) \subset S$ is a monomial ideal, then by inclusion exclusion principal we can see that the dimension of d th graded component of I is
$H(I, d)=\sum_{i=1}^{s}\left|u_{i}\right|_{d}-\sum_{1 \leqslant i_{1}<i_{2}}^{s}\left|u_{i_{1}} * u_{i_{2}}\right|_{d}-\ldots+(-1)^{s+1}\left|u_{i_{1}} * u_{i_{2}} * \ldots * u_{i_{s}}\right|_{d}$,
where $|u|_{d}=\binom{n-1+d-\operatorname{deg}(u)}{n-1}$ is the dimension of d th graded component of an ideal generated by a monomial $u \in S$.

Now $H(S / I, d)=H(S, d)-H(I, d)$, for all d and $H(S, d)=|1|_{d}$, hence

$$
\begin{align*}
H(S / I, d)= & |1|_{d}-\sum_{i=1}^{s}\left|u_{i}\right|_{d} \tag{4}\\
& +\sum_{1 \leqslant i_{1}<i_{2}}^{s}\left|u_{i_{1}} * u_{i_{2}}\right|_{d}-\ldots+(-1)^{s}\left|u_{i_{1}} * u_{i_{2}} * \ldots * u_{i_{s}}\right|_{d}
\end{align*}
$$

If we replace each monomial term in the intersecting polynomial defined in (2) by the corresponding d th graded component of ideal generated by that monomial, then we obtain $H(S / I, d)$ as in (4). Hence we can write Hilbert function $H(S / I, d)$ in terms of (3) as

$$
\begin{aligned}
H(S / I, d) & =\sum_{i=1}^{2^{s-1}}\left(\left|v_{i}\right|_{d}-\left|w_{i}\right|_{d}\right) \\
& =\sum_{i=1}^{2^{s-1}}\left(\binom{n-1+d-\operatorname{deg}\left(v_{i}\right)}{n-1}-\binom{n-1+d-\operatorname{deg}\left(w_{i}\right)}{n-1}\right)
\end{aligned}
$$

and the corresponding Hilbert series is

$$
H_{S / I}(t)=\sum_{d=0}^{\infty}\left(\sum_{i=1}^{2^{s-1}}\left(\left|v_{i}\right|_{d}-\left|w_{i}\right|_{d}\right)\right)=\frac{\sum_{i=1}^{2^{s-1}}\left(t^{\operatorname{deg}\left(v_{i}\right)}-t^{\operatorname{deg}\left(w_{i}\right)}\right)}{(1-t)^{n}}
$$

We give an example to illustrate our method.
Example. If $I=\left(x_{1}^{2} x_{3}, x_{1} x_{2} x_{3}^{2}, x_{2}^{2} x_{3}^{3}\right) \subset S=K\left[x_{1}, x_{2}, x_{3}\right]$, then the corresponding intersecting polynomial is

$$
\begin{aligned}
P_{S / I} & =\left(1-x_{1}^{2} x_{3}\right) *\left(1-x_{1} x_{2} x_{3}^{2}\right) *\left(1-x_{2}^{2} x_{3}^{3}\right) \\
& =1-x_{1}^{2} x_{3}-x_{1} x_{2} x_{3}^{2}-x_{2}^{2} x_{3}^{3}+x_{1}^{2} x_{2} x_{3}^{2}+x_{1}^{2} x_{2}^{2} x_{3}^{3}+x_{1} x_{2}^{2} x_{3}^{3}-x_{1}^{2} x_{2}^{2} x_{3}^{3}
\end{aligned}
$$

The monomials with coefficient +1 and -1 in $P_{S / I}$ are

$$
v_{1}=1, \quad v_{2}=x_{1}^{2} x_{2} x_{3}^{2}, \quad v_{3}=x_{1}^{2} x_{2}^{2} x_{3}^{3}, \quad v_{4}=x_{1} x_{2}^{2} x_{3}^{3}
$$

and

$$
w_{1}=x_{1}^{2} x_{3}, \quad w_{2}=x_{1} x_{2} x_{3}^{2}, \quad w_{3}=x_{2}^{2} x_{3}^{3}, \quad w_{4}=x_{1}^{2} x_{2}^{2} x_{3}^{3}
$$

respectively.
Now by using Theorem 1 we can write Hilbert series of S / I, that is;

$$
H_{S / I}(t)=\frac{t^{0}-t^{3}+t^{5}-t^{4}+t^{7}-t^{5}+t^{6}-t^{7}}{(1-t)^{3}}=\frac{1+t+t^{2}-t^{4}-t^{5}}{(1-t)^{2}} .
$$

References

[1] A. Ya. Belov, V. V. Borisenko, V. N. Latyshev, Monomial algebras, Journal of Mathematical Sciences, Vol. 87, Issue 3, November 1997, pp. 3463-3575.
[2] W. Bruns and J. Herzog, Cohen-Macaulay rings, Revised Edition, Cambridge University Press, 1998.
[3] M. Stillman and D. Bayer, Computations of Hilbert functions, J. Symbolic Computations, 14, 1992, pp. 31-50.
[4] V.A. Ufnarovskij, Combinatorial and asymptotic methods in algebra, (Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 57, pp. 5-177, 1990). Translation: Algebra VI. Encycl. Math. Sci. 57, 1995, pp. 1-196.

Contact information

A. Haider
Department of Mathematics, Jazan University, Jazan, Saudi Arabia
E-Mail(s): aahaider@jazanu.edu.sa

Received by the editors: 09.03.2016
and in final form 23.03.2017.

