DOI:10.12958/adm1737

Coarse structures on groups defined by conjugations

I. Protasov and K. Protasova

ABSTRACT. For a group G, we denote by $\overset{\leftrightarrow}{G}$ the coarse space on G endowed with the coarse structure with the base $\{\{(x,y)\in G\times G:y\in x^F\}:F\in [G]^{<\omega}\}, x^F=\{z^{-1}xz:z\in F\}$. Our goal is to explore interplays between algebraic properties of G and asymptotic properties of G. In particular, we show that $asdim \overset{\leftrightarrow}{G}=0$ if and only if G/Z_G is locally finite, Z_G is the center of G. For an infinite group G, the coarse space of subgroups of G is discrete if and only if G is a Dedekind group.

1. Introduction

Given a set X, a family $\mathcal E$ of subsets of $X\times X$ is called a *coarse* structure on X if

- each $E \in \mathcal{E}$ contains the diagonal Δ_X , $\Delta_X = \{(x, x) \in X : x \in X\}$;
- if $E, E' \in \mathcal{E}$ then $E \circ E' \in \mathcal{E}$ and $E^{-1} \in \mathcal{E}$, where $E \circ E' = \{(x, y) : \exists z ((x, z) \in E, (z, y) \in E')\}, E^{-1} = \{(y, x) : (x, y) \in E\};$
- if $E \in \mathcal{E}$ and $\triangle_X \subseteq E' \subseteq E$ then $E' \in \mathcal{E}$;

A subfamily $\mathcal{E}' \subseteq \mathcal{E}$ is called a *base* for \mathcal{E} if, for every $E \in \mathcal{E}$, there exists $E' \in \mathcal{E}'$ such that $E \subseteq E'$. For $x \in X$, $A \subseteq X$ and $E \in \mathcal{E}$, we denote

$$E[x] = \{ y \in X : (x, y) \in E \}, \ E[A] = \bigcup_{a \in A} E[a], \ E_A[x] = E[x] \cap A$$

and say that E[x] and E[A] are balls of radius E around x and A.

2020 MSC: 20E45, 54D80.

Key words and phrases: coarse structure defined by conjugations, cellularity, FC-group, ultrafilter.

The pair (X, \mathcal{E}) is called a *coarse space* [13] or a ballean [10], [12].

A coarse space (X, \mathcal{E}) is called *finitary*, if for each $E \in \mathcal{E}$, there exists a natural number n such that |E[x]| < n for each $x \in X$.

Let G be a group of permutations of a set X. We denote by X_G the set X endowed with the coarse structure with the base

$$\{\{(x,gx):g\in F\}:F\in [G]^{<\omega},\ id\in F\}.$$

By [7, Theorem 1], for every finitary coarse structure (X, \mathcal{E}) , there exists a group G of permutations of X such that $(X, \mathcal{E}) = X_G$. For more general results and applications see [8] and the survey [9].

Let (X, \mathcal{E}) be a coarse space. We define an equivalence \sim on X by $x \sim y$ if and only if there exists $E \in \mathcal{E}$ such that $y \in E[x]$, so X is a disjoint union of connected components. If there is only one connected component then (X, \mathcal{E}) is called connected.

Now let G be a group. For $x, g \in G$ and $F \subseteq G$, we denote $x^g = g^{-1}xg$, $x^F = \{x^g : g \in F\}, F^g = \{y^g : g \in F\}.$

We denote by $\overset{\leftrightarrow}{G}$ the coarse structure on G endowed with the coarse structure with the base $\{\{(x,y)\in G\times G:y\in x^F\}:F\in [G]^{<\omega}\}$. Evidently, each connected component A of $\overset{\leftrightarrow}{G}$ is of the form $a^G,\ a\in A$.

We endow G with the discrete topology and identify the Stone-Čech compactification βG of G with the set of all ultrafilters on G. For $A \subseteq G$, \bar{A} denotes the set $\{p \in \beta G : A \in p\}$ and the family $\{\bar{A} : A \subseteq G\}$ forms a base for open sets of βG . The family of all free ultrafilters on G is denoted by G^* . By the universal property of βG , every mapping $f: G \to K$, K is a compact Hausdorff space, can be extended to the continuous mapping $f^{\beta}: \beta G \to K$.

The action G on G by conjugations extends to the action G on βG : if $g \in G$, $p \in \beta G$ then $p^g = \{g^{-1}Pg : P \in g\}$. We use this dynamical approach to the conjugacy in groups initiated in [11].

In section 2 and 3, we characterize groups G such that the coarse space $\overset{\leftrightarrow}{G}$ is discrete, n-discrete and cellular. In section 4, we show that every finitary coarse space admits an asymorphic embedding to $\overset{\leftrightarrow}{G}$ for an appropriate choice of a group G. In section 5, we characterize groups with discrete space of subgroups. We conclude with section 6 on the direct union of connected components of $\overset{\leftrightarrow}{G}$.

2. Discreteness

Let (X, \mathcal{E}) be a coarse space. We say that a subset B of X is bounded if there exist a finite subset F of X and $E \in \mathcal{E}$ such that $B \subseteq E[F]$ and note that the family of all bounded subset of X is a bornology, i.e. an ideal in the Boolean algebra of subsets of X containing all finite subsets.

We say that a subset A of X is

- discrete if, for every $E \in \mathcal{E}$, there exists a bounded subset B of X such that $E_A[a] = \{a\}$ for each $a \in A \setminus B$;
- n-discrete, $n \in \mathbb{N}$ if, for every $E \in \mathcal{E}$, there exists a bounded subset B of X such that $|E_A[a]| \leq n$ for each $a \in A \setminus B$.

Theorem 1. For an infinite group G, the following conditions are equivalent

- (i) G is Abelian;
- (ii) $p^G = \{p\}$ for each $p \in G^*$;
- (iii) $\overset{\leftrightarrow}{G}$ is discrete.

Proof. The equivalence (i) \Leftrightarrow (ii) is proved in [11, Proposition 1.1], (i) \Rightarrow (iii) is evident.

(iii) \Rightarrow (ii). We assume that $p^x \neq p$ for some $p \in G^*$, $x \in G$ and pick $P \in p$ such that $P^x \cap P = \emptyset$. Let B be a finite subset of X. We take $a \in P \setminus B$ and note that $a^x \neq a$ so G is not discrete.

Theorem 2. For a group G, the following conditions are equivalent

- (i) p^G is finite for each $p \in G^*$;
- (ii) there exists a natural number n such that $|p^G| \leq n$ for each $p \in G^*$;
- (iii) there exists a natural number m such that $|a^G| \leq m$ for each $a \in G^*$;
 - (iv) the commutant [G, G] of G is finite.

Proof. See Theorem 3.1 in [11].

Theorem 3. Given a group G, the coarse space $\overset{\leftrightarrow}{G}$ is n-discrete for some $n \in \mathbb{N}$ if and only if [G, G] is finite.

Proof. We assume that $\overset{\leftrightarrow}{G}$ is *n*-discrete and show that [G,G] is finite. To apply Theorem 2, it suffices to prove that $|p^G| \leq n$ for each $p \in G^*$.

We assume the contrary: there exists $p \in G^*$ and $g_1, \ldots, g_{n+1} \in G$ such that the ultrafilters $p^{g_1}, \ldots, p^{g_{n+1}}$ are distinct. We choose $P \in p$ such that the subsets $P^{g_1}, \ldots, P^{g_{n+1}}$ are pairwise disjoint. Given an arbitrary

bounded subset B of G, we pick $a \in P \setminus B$. Then $a^{g_1}, \ldots, a^{g_{n+1}}$ are distinct so G is not n-discrete.

On the other hand, if [G,G] is finite then there exists $m \in \mathbb{N}$ such that $|a^G| \leq m$ for each $a \in G$, see Theorem 2(iii).

We recall that G is an FC-group if the set a^G is finite for each $a \in G$. Clearly, G is an FC-group if and only if each connected component of G is bounded.

We note that each connected component of $\overset{\leftrightarrow}{G}$ is discrete if and only if every element $g \in G$ centralizes all but finitely many elements of each conjugacy class.

In the initial version of this paper, we asked whether G is an FC-group provided that each connected component of $\overset{\leftrightarrow}{G}$ is discrete? G. Bergman answered this question negatively.

Theorem 4. There exists a group G such that every element of G centralizes all but finitely many element of each conjugacy class and g^G is infinite for each nonindentily element $g \in G$.

Proof. We follow the original Bergman's exposition.

Claim 1. Suppose X is a metric space such that, for every $x \in X$ and constant C > 0, the number of elements of X within distance $\leq C$ of x is finite. Suppose also that X has a group G of distance-preserving permutations each of which moves only finitely many elements. Then every $g \in G$ centralizes all but finitely many elements of each conjugacy class h^G .

Given $g,h \in G \setminus \{e\}$, let us choose C > 0 such that the finite subset of X consisting of the elements moved by g and the elements moved by h has all elements within distance $\leq C$ each other. Since elements of G are distance-preserving, for every conjugate h^f , $f \in G$, the elements moved by h^f are also within distance $\leq C$ of each other. Hence, if any of the elements moved by h^f has distance > 2C from each element moved by g, then the set of elements moved by h^f must be disjoint from the set moved by g, so h^f and g commute. So, if h^f and g do not commute, the elements moved by g. But the number of elements lying within that distance of g if finite, so there are only finitely many posibilities for the permutation h^f .

Claim 2. For X and G as in Claim 1, if X is infinite and G is transitive on X, then every nonidentify element $g \in G$ has infinite conjugacy class g^G .

Given finitely many conjugates g_1, \ldots, g_n of g, we shall find another. Let Y by the finite subset of X consisting of all elements moved by any g_1, \ldots, g_n , and again choose C > 0 such that the distances between the element of Y are all $\leq C$. Since X is infinite, the hypothesis of Claim 1 imply that distances among points of X are unbounded, so as G is transitive on X, we can find $h \in G$ carries a point moved by g to a point at distance > 2C from point of Y. Hence, the set of point moved by g^h , namely, the translate by h of the set moved by g, is not contained in Y, so $g^h \notin \{g_1, \ldots, g_n\}$. So, the conjugacy class of g is indeed infinite.

It remains to give an example of X and G with above properties.

Let X be the set of all sequences $(a_1, a_2, ...)$ of 0's and 1's such that almost all the a_i are 0. Metrize X by letting $d((a_1, a_2, ...), (b_1, b_2, ...))$ be the greatest n such that $a_n \neq b_n$, or 0 if $(a_1, a_2, ...) = (b_1, b_2, ...)$. That there are only finitely many elements distances C of any element of X is clear.

Let G be the group of all distance-preserving permutations of X which move only finitely many elements. We shall show that G is transitive by constructing, for any $(a_1, a_2, \dots) \in X$ an element $g \in G$ which carries $(0, 0, \dots)$ to (a_1, a_2, \dots) . Choose n such that $a_i = 0$ for all i > n. Let g carries each element (b_1, b_2, \dots) which likewise has $b_i = 0$ for all i > n to $(b_1 + a_1, b_2 + a_2, \dots)$, while fixing all other elements (b_1, b_2, \dots) . The verification of $g \in G$, and that g carries $(0, 0, \dots)$ to (a_1, a_2, \dots) are straightforward.

G. Bergman noticed that the group G constructed in the proof of Theorem 4 can be described as the direct limit $G_0 \longrightarrow G_1 \longrightarrow \cdots \longrightarrow G_n \longrightarrow \cdots$, where G_0 is trivial and $G_{n+1} = (G_n \times G_n) \setminus \mathbb{Z}_2$, with \mathbb{Z}_2 acting on $G_n \times G_n$ by interchanging the two coordinates, and with G_n embedded in G_{n+1} by sending g to ((g, e), e).

We show that the answer to our question is affirmative provided that G is finitely generated. Let F be a finite subset of G such that $F = F^{-1}$, $e \in F$, e is the identity of G and F generates G. We assume that each connected component of G is discrete, take an arbitrary element $g \in G$ and show that g^G is finite. We act on g by conjugations from $g \in F$, write each g as a word in g of minimal length, delete duplicates (i.e. words which define the same elements) and get a subset g. Then we repeat this procedure for each element $g \in G$ and get a subset g and g as a subset g and g and get a subset g and g

F is finite, by the assumption there exists $n \in \mathbb{N}$ such that $A_{n+1} = A_n$. This means that $g^G = A_n$.

3. Cellularity

A coarse space (X, \mathcal{E}) is called *cellular* if \mathcal{E} has a base consisting of equivalence relations. By [12, Theorem 3.1.3], (X, \mathcal{E}) is cellular if and only if $asdim\ (X, \mathcal{E}) = 0$.

Applying Theorem 3.1.2 from [12] we get

(1) \overrightarrow{G} is cellular if and only if, for every finitely generated subgroup H of G, there exists a finite subset F of G such that $g^H \subseteq g^F$ for each $g \in G$.

We recall that a group G is *locally normal* if each finite subset of G is contained in some finite normal subgroup and use the following characterization [2]

(2) G is an FC-group if and only if G/Z_G is locally normal and each element of G is contained in finitely generated normal subgroup, Z_G is the center of G.

A group G is called *locally finite* if each finite subset of G generates a finite subgroup.

Theorem 5. For a group G, $\overset{\leftrightarrow}{G}$ is cellular if and only if G/Z_G is locally finite.

Proof. We suppose that $\overset{\leftrightarrow}{G}$ is cellular and show

(3) for every element $a \in G$ of infinite order there exists $n \in \mathbb{N}$ such that $a^n \in Z_G$.

We denote by A the subgroup of G generated by a and use (1) to choose a finite subset F of G such that $g^A \subseteq g^F$ for each $g \in G$. Let |F| = n. Since $|g^A| \leq n$, $a^k g = ga^k$ for some $k \leq m$. We put n = m!.

By (1), every finitely generated subgroup H of G is an FC-group. By (3), $H/(H \cap Z_G)$ is a torsion group. Applying (2), we conclude that $H/(H \cap Z_G)$ is finite. Hence, G/Z_G is locally finite.

Now let G/Z_G is locally finite. We take an arbitrary finitely generated subgroup H of G, choose a set h_1, \ldots, h_n of representatives of right cosets of H by $H \cap Z_G$, put $F = \{h_1, \ldots, h_n\}$ and note that $g^H = g^F$ for each $g \in G$. Applying (1), we conclude that G is cellular.

Remark 1. Every finitely generated subgroup of a group G is an FC-group if and only if q^H is finite for each $g \in G$ and every finitely generated

subgroup H. If G/Z_G is locally finite then every finitely generated subgroup H of G is an FC-group. We show that the converse statement does not hold. Let $H = \bigoplus_{i < \omega} H_i$ be the direct sum of ω copies of \mathbb{Z}_2 . We partition ω into consecutive intervals $\{W_i : i < \omega\}$ of length $|W_i| = i + 1$. Then we take an automorphism a of H acting on each $\bigoplus\{H_m : m \in W_i\}$ as the cyclic permutations of coordinates, denote by A the cyclic group generated by A and consider the semidirect product $G = H \setminus A$. Then every finitely generated subgroup of G is an FC-group but $a^n \notin Z_G$ for each $n \in \mathbb{N}$ so G/Z_G is not locally finite.

4. Asymorphic embeddings

Let (X, \mathcal{E}) , (X', \mathcal{E}') be coarse spaces. A mapping $f: X \longrightarrow X'$ is called macro-uniform if, for every $E \in \mathcal{E}$, there exists $E' \in \mathcal{E}'$ such that $f(E[x]) \subseteq E'[f(x)]$ for each $x \in X$. We say that an injective mapping $f: X \longrightarrow X'$ is an $asymorphic\ embedding$ if $f: X \longrightarrow X'$ and $f^{-1}: f(X) \longrightarrow X$ are macro-uniform.

Theorem 6. Every finitary coarse space (X, \mathcal{E}) admits an asymorphic embedding to G for an appropriate choice of a group G.

Proof. We represent (X, \mathcal{E}) as the coarse space X_H for some group H of permutations of X, see [7, Theorem 1]. We consider $\{0,1\}^X$ as a group with point-wise addition $mod\ 2$. For $h \in H$ and $\chi \in \{0,1\}^X$, we put $\chi_h(y) = \chi(h^{-1}y)$. Then we define a semidirect product $G = \{0,1\}^X \setminus H$ by

$$(\chi, h)(\chi', h') = (\chi + \chi'_h, hh')$$

and note that the mapping $f: X \longrightarrow \{0,1\}^X$, f(x) is the characteristic function of $\{x\}$ is an asymorphic embedding of (X, \mathcal{E}) into G.

If a subset A of a coarse space (X, \mathcal{E}) is the union of n discrete subsets then A is n-discrete.

Theorem 7. Let G be a countable group. Then every n-discrete subset A of $\overset{\leftrightarrow}{G}$ can be partitioned into n discrete subsets.

Proof. Use arguments proving this statement in the case of a connected coarse space with a linearly ordered base [6, Theorem 1.2].

Theorem 8. There exists a group G such that $\overset{\leftrightarrow}{G}$ has 2-discrete subset which cannot be finitely partitioned into discrete subsets.

Proof. By Theorem 6.3 from [3], there exists 2-discrete finitary coarse space on ω which cannot be finitely partitioned into discrete subspaces. Apply Theorem 6.

5. The space of subgroups

For a group G we denote by $\mathcal{S}(\overset{\leftrightarrow}{G})$ the set $\mathcal{S}(G)$ of all subgroups of G endowed with the coarse structure with the base

$$\{\{(X,Y)\in\mathcal{S}(G)\times\mathcal{S}(G):Y\in X^F\}:F\in[G]^{<\omega}\},$$

$$X^F=\{g^{-1}Xg:g\in F\}.$$

We recall that G is a *Dedekind group* if each subgroup of G is normal. A non-abelian Dedekind group is called Hamiltonian. By [1],

(4) G is Hamiltonian if and only if G is isomorphic to $Q_8 \times P$, where Q_8 is the quaternion group, P is an Abelian group without of elements of order 4.

Theorem 9. For an infinite group G, $\mathcal{S}(\overset{\leftrightarrow}{G})$ is discrete if and only if G is a Dedekind group.

Proof. If each subgroup of G is normal then, evidently, $\mathcal{S}(G)$ is discrete.

We assume that $\mathcal{S}(\overset{\leftrightarrow}{G})$ is discrete and consider two cases.

Case 1: G has an element of infinite order. First, we show that every infinite cyclic subgroup of G is invariant. We suppose the contrary and choose an infinite cyclic subgroup A, $A = \langle a \rangle$ and $z \in G$ such that $z^{-1}az \notin A$. Since S (G) is discrete, there exists $m \in \mathbb{N}$ such that $z^{-1}\langle a^n \rangle z = \langle a^n \rangle$ for each n > m. By the same reason, there exists $k \in \mathbb{N}$ such that $z^{-1}\langle aa^n \rangle z = \langle aa^n \rangle$ for each n > k. We take an arbitrary n such that n > m, n > k. Then $z^{-1}a^{n+1}z = (z^{-1}az)(z^{-1}a^nz) \in \langle a^{n+1} \rangle$, $z^{-1}a^nz \in \langle a^n \rangle$, so $z^{-1}a^nz \in A$, contradicting the choice of A and z.

Second, we take an arbitrary element $a \in G$ of infinite order and show that $a \in Z_G$. Assuming the contrary, we get $z \in G$ such that $z^{-1}az \neq a$. By above paragraph $z^{-1}az = a^{-1}$, so $z^{-2}az^2 = a$ and $(a^nz)(a^nz) = a^nz^2z^{-1}a^nz = a^nz^2a^{-n} = z^2$ for each $n \in \mathbb{N}$. Since $\mathcal{S}(G)$ is discrete, there exists $m \in \mathbb{N}$ such that

$$z^{-1}(\langle a^n z \rangle \langle z^2 \rangle)z = \langle a^n z \rangle \langle z^2 \rangle$$

for each n > m. Hence,

$$z^{-1}(a^n z)z = a^{-n}z \in \langle a^n z \rangle \langle z^2 \rangle$$

and $a^{2n} \in \langle z \rangle$, contradicting $z^{-1}a^{2n}z = a^{-2n}$.

If b is an element of finite order and a is an element of infinite order then ab has an infinite order because $a \in Z_G$, so $ab \in Z_G$, $b \in Z_G$, and G is Abelian.

Case 2: Every element of G has a finite order. We prove that G is a Dedekind group provided that the following condition holds

(5) for every finite subset K of G containing the identity e, there exists $a \in G$, $a \neq e$ such that $K \cap \langle a \rangle = \{e\}$.

We suppose the contrary and choose $b \in G$, $z \in G$ such that $z^{-1}bz \notin \langle b \rangle$. Since $\mathcal{S}(\overset{\leftrightarrow}{G})$ is discrete, by (5), there exists $a \in G$, $a \neq e$ such that

$$z^{-1}bz\langle b\rangle \cap \langle a\rangle = \{e\}, \ z^{-1}\langle a\rangle z = \langle a\rangle,$$

$$b^{-1}\langle a\rangle b = \langle a\rangle, \ z^{-1}\langle b\rangle\langle a\rangle z = \langle b\rangle\langle a\rangle.$$

Then $z^{-1}baz = (z^{-1}bz)(z^{-1}az) \in \langle b \rangle \langle a \rangle$, $z^{-1}bz \in \langle b \rangle \langle a \rangle$ and $z^{-1}bz \in \langle b \rangle$, contradicting the choice of b and z.

We denote by $\pi(G)$ the set of all prime divisors of orders of elements of G and put $X_n = \{g \in G : g^n = e\}$. If G is not a Dedekind group, by (5), $\pi(G)$ is finite and X_p is finite for each $p \in \pi(G)$. We prove that G is layer-finite: X_n is finite for each $n \in \mathbb{N}$. It suffices to verify that X_{p^n} is finite for all $p \in \pi(G)$, $n \in \mathbb{N}$. We suppose that X_{p^m} is finite but $X_{p^{m+1}}$ is infinite. Then there exists a sequence $(a_n)_{n \in \omega}$ in G and $a \in G$ such that $|a_n| = p^{m+1}$, $|a| = p^m$ and $\langle a_n \rangle \cap \langle a_k \rangle = \langle a \rangle$ for all distinct $n, k \in \mathbb{N}$. We denote by H the subgroup of G generated by the set $\{a_n : n \in \omega\}$ and put $M = H/\langle a \rangle$. Since S(M) is discrete, applying (5) and (4) to M, we conclude that M has an infinite Abelian subgroup of exponent p. By the $Gr\ddot{u}$ n's lemma (see [5], p. 398), H has an infinite Abelian subgroup of exponent p, so X_p is infinite and we get a contradiction.

Thus, our assumption that G is not a Dedekind group gives G is layer-finite and $\pi(G)$ is finite. Since G is infinite, by the Chernikov's theorem [4], G has a central quasi-cyclic p-group A, $A = \bigcup_{n \in \omega} \langle a_n \rangle$, $a_{n+1}^p = a_n$. We take $c, z \in G$ such that $z^{-1}cz \neq \langle c \rangle$, $|c| = q^m$, $q \in \pi(G)$. Since S (G) is discrete, there exists $k \in \mathbb{N}$ such that, for each n > k, we have

$$z^{-1}\langle a_n c \rangle z = \langle a_n c \rangle, \quad a_n(z^{-1}cz) \in \langle a_n c \rangle.$$

If $q \neq p$ then $z^{-1}cz \in \langle c \rangle$, contradicting the choice of c and z. If q = p and n > 2m, n > k then $(a_nc)^{p^m} = a_n^{p^m}$, $|a_n^{p^m}| > p^m$ and $z^{-1}cz \in \langle a_n^{p^m} \rangle$. Since A is central, $z^{-1}cz = c$ and $z^{-1}cz \in \langle c \rangle$, contradicting the choice of z, c. The proof is completed.

Remark 2. Let G be a transitive group of permutations of a set X, $St(x) = \{g \in G : gx = x\}, x \in X$. Then the natural mapping $x \mapsto St(x)$ is an asymorphic embedding of the finitary coarse space X_G into S $\overset{\leftrightarrow}{(G)}$.

If $(\overset{\leftrightarrow}{G})$ is cellular then applying (1) we see that $\mathcal{S}(\overset{\leftrightarrow}{G})$ is cellular.

Question 1. Is $\overset{\leftrightarrow}{G}$ cellular provided that \mathcal{S} $(\overset{\leftrightarrow}{G})$ is cellular?

6. The direct union of connected components

Let (X, \mathcal{E}) be a coarse space, $\{X_{\alpha} : \alpha < \kappa\}$ is the set of all connected components of (X, \mathcal{E}) . We say that (X, \mathcal{E}) is the *direct union* of $\{X_{\alpha} : \alpha < \kappa\}$ if, for each $E \in \mathcal{E}$, there exists $\alpha_1, \ldots, \alpha_n$ such that $E[x] = \{x\}$ for each $x \in X_{\alpha}$, $\alpha < \kappa$, $\alpha \notin \{\alpha_1, \ldots, \alpha_n\}$.

If a group G is either Abelian or the set of conjugacy classes of G is finite then $\overset{\leftrightarrow}{G}$ is the direct union of conjugacy classes.

For every natural number n, G. Bergman used HNN-extensions to construct a group G such that G has an infinite center (so the number of conjugacy classes of G is infinite) and only n conjugacy classes of G are not singletons. Also, he proved that if G is the direct union of conjugacy classes then all but finely many conjugacy classes are singletons.

Acknowledgment

We thank George Bergman for the kind suggestion to incorporate his results in this paper.

References

- R. Baer, Situation der Untergruppen and Structure der Gruppe, S. B. Heidelberg Acad. Wiss. 2, 1933, pp. 12–17.
- [2] R. Baer, Finiteness properties of groups, Duke Math. J. 15, 1948, pp. 1021–1032.
- [3] T. Banakh, I. Protasov, Set-theoretical problems in Asymptology, preprint, arXiv: 2004.01979.
- [4] S. N. Chernikov, Infinite layer-finite groups, Mat. Sbornik, 22, 1948, pp. 101–133.
- [5] A. G. Kurosh, Theory of Groups, M. Nauka, 1967.
- [6] Ie. Lutsenko, I. Protasov, Thin subsets of balleans, Appl. Gen. Topology, 11, 2011, pp. 89–93.
- [7] I. V Protasov, Balleans of bounded geometry and G-spaces, Algebra Discrete Math. 7:2, 2008, pp. 101–108.
- [8] I. Protasov, Decompositions of set-valued mappings, Algebra Discrete Math. 30:2 (2020), 235–238.

- [9] I. Protasov, Coarse spaces, ultrafilters and dynamical systems, Topology Proceedings 57, 2021, pp. 137–148.
- [10] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., 11, VNTL, Lviv, 2003.
- [11] I. Protasov, K. Protasova, *The dynamical approach to the conjugacy in groups*, Topol. Appl. https://doi.org/10.1016/j.topol.2021.107633, preprint arXiv: 2007.00110.
- [12] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL, Lviv, 2007, pp. 219.
- [13] J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., vol. 31, American Mathematical Society, Providence RI, 2003.

CONTACT INFORMATION

Igor Protasov, Ksenia Protasova

Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, Academic Glushkov pr. 4d, 03680 Kyiv, Ukraine E-Mail(s): i.v.protasov@gmail.com,

k.d.ushakova@gmail.com

Received by the editors: 12.12.2020 and in final form 21.03.2021.