Quadratic residues of the norm group in sectorial domains

Lyubov Balyas and Pavel Varbanets

Communicated by D. Simson

Abstract. In the article the distribution of quadratic residues in the ring $G_{p^{n}}$, in the norm subgroup E_{n} of multiplicative group $G_{p^{n}}^{*}$, is investigated. The asymptotic formula for the number $R(x, \phi)$ of quadratic residues in the sectorial domain of a special form has been constructed.

1. Introduction

In 1918 I.M. Vinogradov and G. Polya built the asymptotic formula for the number of quadratic residues modulo prime number on the segment $1 \leqslant n \leqslant x<p$, which was nontrivial for every $x>\sqrt{p} \log p$. It was the first result about incomplete residue system in analytic number theory. Henceforth Vinogradov-Polya theorem was firstly sharpened by D. Burgess [1]. After this on the assumption under extended Weil hypothesis H. Montogomery and R. Vaughan [3] got the unimprovable result for the theorem.

The research of analogous issue over the ring of Gaussian integers is, evidently, a difficult problem by the virtue of the fact, that geometry of points of a plane is richer than geometry of points on a line. In this article the distribution of quadratic residues in the norm subgroup E_{n}

[^0]of multiplicative group $G_{p^{n}}^{*}$, is investigated. Here p is a prime rational number of the type $p=3+4 k$ and E_{n} can be written in the form:
$$
E_{n}:=\left\{\alpha \in G_{p^{n}} \mid N(\alpha) \equiv \pm 1 \quad\left(\bmod p^{n}\right)\right\}
$$

This subgroup is cyclic, its order is equal to $2(p+1) p^{n-1}$. The numbers $p=2$ and $p \equiv 1(\bmod 4)$ are not prime in G. Thus, for $p \equiv 1(\bmod 4)$ we have $p=\pi \cdot \bar{\pi} ; \pi, \bar{\pi} \in \mathbb{Z}[i]$, and the residue class rings in $\mathbb{Z}[i]$ modulo p^{n} (respectively, π^{n}) are isomorphic. So, this case was investigated in the works mentioned above. Similarly we have for $p=2$. That is why we don't consider these p.

If $\left(u_{0}+i v_{0}\right)$ is a generating element of the group E_{n}, then $N\left(u_{0}+i v_{0}\right) \equiv$ $-1\left(\bmod p^{n}\right)$. It follows that only the elements of the type $\left(u_{0}+i v_{0}\right)^{2 a}$, where $a=0,1, \ldots,(p+1) p^{n-1}$, are quadratic residues modulo p^{n} in E_{n}.

Our aim is to prove Theorems 1 and 2 stated in Section 3, and to obtain an asymptotic formula for the number $R(x, \phi)$ of quadratic residues in the sectorial domain

$$
\begin{equation*}
S(x, \phi)=\left\{\phi_{1} \leqslant \arg w<\phi_{2}, 0<N(w) \leqslant x, \phi_{2}-\phi_{1}=\phi<\frac{\pi}{2}\right\} \tag{1}
\end{equation*}
$$

The formula for $R(x, \varphi)$ is contained in Theorem 2 and has the following form

$$
R(x ; \phi)=\frac{\phi_{2}-\phi_{1}}{2} \cdot \frac{p+1}{p} \cdot \frac{x}{p^{n}}+O\left(3^{n} \frac{x^{1-s}}{p^{n}} \log x\right) .
$$

The most interesting case is the case, when $\phi_{2}-\phi_{1} \rightarrow 0$ with $x \rightarrow \infty$, because the case $\phi_{2}-\phi_{1} \geqslant C, C>0$ is a fixed constant, follows from the work [5] about the distribution of values of the function $r(n)$ (the number of representations of n by the sum of two squares) in the arithmetic progression.
Notations. We will use the following notations:

- $G:=\left\{a+b i \mid a, b \in \mathbb{Z}, i^{2}=-1\right\}$ is the ring of Gaussian integers;
- G_{γ} is the ring of residues of Gaussian integers modulo γ;
- $G_{\gamma}^{*}=\left\{\alpha \in G_{\gamma},(\alpha, \gamma)=1\right\}$;
- for $\alpha \in G$ we denote $N(\alpha)=|\alpha|^{2}, \operatorname{Sp}(\alpha)=2 \Re(\alpha)$;
- $E_{n} \subset G_{p^{n}}$ is the norm group;
- χ stands for a character of the group E_{n};
- for $a \in \mathbb{Z}$ (or $\alpha \in G) \nu_{p}(a)$ (or $\left.\nu_{p}(\alpha)\right)$ stands that $p^{\nu_{p}(a)} \mid a, p^{\nu_{p}(a)+1}$ does not divide a;
- $s \in \mathbb{C}, s=\sigma+i t, \sigma=\Re s, t=\Im s$;
- $\Gamma(z)$ is the Euler gamma-function;
- by $f \ll g(f=O(g))$ for $x \in X$, where X is an arbitrary set, on which f and g are defined, we mean that there exists a constant $C>0$ such that $|f(x)| \leqslant C \cdot g(x)$ for all $x \in X$;
- $\exp (x)=\mathrm{e}^{x}$ for $x \in \mathbb{C}$ (sometimes, instead of e^{x} we will use $\left.\exp (x)\right)$.

Let us denote

$$
\begin{aligned}
E_{n}^{+} & :=\left\{\alpha \in G_{p^{n}}^{*} \mid N(\alpha) \equiv 1\left(\bmod p^{n}\right)\right\} \\
& =\left\{\alpha \in E_{n} \mid \alpha=\left(u_{0}+i v_{0}\right)^{2 a}, a=0,1, \ldots,(p+1) p^{n-1}\right\}
\end{aligned}
$$

Then

$$
\begin{equation*}
R(x, \phi)=\sum_{\alpha \in E_{n}^{+}} \sum_{\substack{w \in G \\ w \equiv\left(\bmod p^{n}\right) \\ w \in S(x, \phi)}} 1 . \tag{2}
\end{equation*}
$$

We consider Dirichlet series

$$
F_{m}(s)=\sum_{\alpha \in E_{n}^{+}} \sum_{w \equiv \alpha\left(\bmod p^{n}\right)} \frac{\mathrm{e}^{4 m i \arg w}}{N(w)^{s}}, \quad \Re s>1
$$

We have

$$
\begin{equation*}
F_{m}(s)=\sum_{\alpha \in E_{n}^{+}} \frac{1}{N\left(p^{n}\right)^{s}} \zeta_{m}\left(s ; \frac{\alpha}{p^{n}}, 0\right), \quad \Re s>1 \tag{3}
\end{equation*}
$$

where $\zeta_{m}\left(s ; \frac{\alpha}{p^{n}}, 0\right)$ is a special case of Hecke zeta-function $\zeta_{m}\left(s ; \delta_{0}, \delta\right)$ with a shift. In the domain $\Re s>1$ the last is defined by absolutely convergent Dirichlet series

$$
\zeta_{m}\left(s ; \delta_{0}, \delta\right)=\sum_{w \in G} \frac{\mathrm{e}^{4 m i \arg \left(w+\delta_{0}\right)}}{N\left(w+\delta_{0}\right)^{s}} e^{\pi i S p(\delta w)}
$$

where δ_{0}, δ are Gaussian numbers from the field $\mathbb{Q}(i) ; \operatorname{Sp}(\beta)$ is a trace of an element β from $\mathbb{Q}(i)$ to \mathbb{Q}.

2. Auxiliary results

In the following lemmas we bring necessary information about Hecke zeta-function for the next steps.

Lemma 1. The Hecke zeta-function $\zeta_{m}\left(s ; \delta_{0}, \delta\right)$ satisfies the functional equation

$$
\begin{aligned}
& \pi^{-s} \Gamma(2|m|+s) \zeta_{m}\left(s ; \delta_{0}, \delta\right) \\
& \quad=\pi^{-(1-s)} \Gamma(2|m|+1-s) \cdot \zeta_{-m}\left(1-s ; \delta_{0},-\delta\right) e^{-\pi i \operatorname{Sp}\left(\delta \bar{\delta}_{0}\right)}
\end{aligned}
$$

Moreover, $\zeta_{m}\left(s ; \delta_{0}, \delta\right)$ is an entire function if $m \neq 0$ or $m=0$ and δ is not a Gaussian integer. For $m=0$ and $\delta \in G$ it is holomorphic except for the point $s=1$, where it has a simple pole with the residue π.

Proof. For $\delta_{0}=\delta=0$ and $m=4 m_{1}$, we get the well-known Hecke zeta-function $Z_{m}(s)$ with the Hecke character of the first kind with the exponent m (see, [2]). In [8] this lemma has been stated without a proof. But for the completeness of treatment we restore a proof of this statement.

In the general case, for the proof of statement of the lemma we start from the relation

$$
\Gamma(s)\left|w \delta_{0}\right|^{-2 s}=\int_{0}^{\infty} \exp \left(-x\left|w+\delta_{0}\right|^{2}\right) x^{s-1} d x
$$

It is evident that for $\Re s>1$ and $m \in \mathbb{Z}$ we can write

$$
\Gamma(2|m|+s) Z_{m}\left(s ; \delta_{0} ; \delta\right)=\int_{0}^{\delta} \sum_{\substack{w \in G \\ w \neq-\delta_{0}}} \mathrm{e}^{-x\left|w+\delta_{0}\right|^{2}} x^{s-1} d x
$$

Let us denote $\delta_{0}=\delta_{01}+\delta_{02}$. Then a groundtruthing shows that the functions

$$
\begin{aligned}
& f\left(u_{1}, u_{2}\right)=\exp \left(-x\left(u_{1}^{2}+u_{2}^{2}\right)+2 \pi i\left(\delta_{01} u_{1}+\delta_{02} u_{2}\right)\right), \\
& \hat{f}\left(v_{1}, v_{2}\right)=\frac{\pi}{x} \exp \left(-\frac{\pi^{2}}{x}\left[\left(\delta_{01}+v_{1}\right)^{2}+\left(\delta_{02}+v_{2}\right)^{2}\right]\right)
\end{aligned}
$$

satisfy the conditions of Poisson summation formula (see, e.g. [6], Ch. VII, Corollary 2.6).

Hence, denoting

$$
\Theta_{m}\left(x, \delta_{0}, \delta\right)=\sum_{w \in G} \exp \left(-x\left|w+\delta_{0}\right|^{2}\right)\left(w+\delta_{0}\right)^{4 m} \exp (\pi i \operatorname{Sp}(\bar{\delta} w))
$$

and using Poisson summation formula, we find

$$
\Theta_{0}\left(x, \delta_{0}, \delta\right)=\frac{\pi}{x} \Theta_{0}\left(\frac{\pi^{2}}{x}, \delta,-\delta_{0}\right) \exp \left(-\pi i \operatorname{Sp}\left(\delta_{0} \bar{\delta}\right)\right)
$$

Consider the operator

$$
\frac{d}{d \delta_{0}}:=\frac{\partial}{\partial \delta_{01}}+i \frac{\partial}{\partial \delta_{02}}, \quad \delta_{0}=\delta_{01}+\delta_{02}
$$

Then the following equalities for $m \geqslant 0$

$$
(-2 x)^{4 m} \Theta_{m}\left(x, \delta_{0}, \delta\right)=\frac{d^{m}}{d \delta^{m}} \Theta_{0}\left(x, \delta_{0}, \delta\right)
$$

and

$$
\begin{aligned}
& \frac{\pi}{x}(-2 \pi i)^{4 m} \Theta_{m}\left(\frac{\pi^{2}}{x}, \delta_{0},-\delta\right) \exp \left(-\pi i \operatorname{Sp}\left(\delta_{0} \bar{\delta}\right)\right) \\
& \quad=\frac{d^{m}}{d \delta_{0}^{m}}\left(\frac{\pi}{x} \Theta_{0}\left(\frac{\pi^{2}}{x}, \delta,-\delta_{0}\right) \exp \left(-\pi i \operatorname{Sp}\left(\delta_{0} \bar{\delta}\right)\right)\right)
\end{aligned}
$$

hold.
So, for any $m \in \mathbb{Z}$ the following functional equation

$$
\begin{equation*}
\Theta_{m}\left(x, \delta_{0}, \delta\right)=\left(\frac{\pi}{x}\right)^{4 m+1} \Theta_{m}\left(\frac{\pi^{2}}{x}, \delta, \delta_{0}\right) \exp \left(-\pi i \operatorname{Sp}\left(\delta_{0} \bar{\delta}\right)\right) \tag{4}
\end{equation*}
$$

is true.
Now, applying reasoning used for the proof of the functional equation for Riemann zeta-function by the functional equation for a thetafunction Θ_{m} we easily infer

$$
\Gamma(2|m|+s) \zeta_{m}\left(s, \delta_{0}, \delta\right)=\pi^{-(1-2 s)} \exp \left(-\pi i \operatorname{Sp}\left(\bar{\delta}_{0} \delta\right)\right) \mathfrak{I}_{m}\left(\delta_{0}, \delta\right)
$$

where

$$
\begin{aligned}
& \mathfrak{I}_{m}\left(\delta_{0}, \delta\right) \\
& \quad=\int_{0}^{\infty} \sum_{\substack{w \\
w \neq-\delta_{0}}} \exp \left(-x\left|w+\delta_{0}\right|^{2}\right)\left(w+\delta_{0}\right)^{4 m} \exp (\pi i \operatorname{Sp}(\bar{\delta} w)) x^{s+2 m-1} d x \\
& \quad=\int_{0}^{\pi}+\int_{\pi}^{\infty}:=\Im_{m, 1}+\Im_{m, 2}
\end{aligned}
$$

In the integral $\Im_{m, 1}$ we apply the functional equation (4) for $\Theta_{m}\left(x, \delta_{0}, \delta\right)$ and make the substitution $x=\pi^{2} y^{-1}$. This gives the equality

$$
\begin{align*}
& \Gamma(2|m|+s) \zeta_{m}\left(s, \delta_{0}, \delta\right)=\pi^{2 s-1} \exp \left(-\pi i \operatorname{Sp}\left(\bar{\delta}_{0} \delta\right)\right) \times \\
& \quad \times \int_{\pi}^{\infty} \sum_{\substack{w \in G \\
w \neq-\delta}} \exp \left(-x|w+\delta|^{2}\right)(w+\delta)^{4 m} \exp \left(-\pi i \operatorname{Sp}\left(\bar{\delta}_{0} w\right)\right) x^{-s+2 m} d x \\
& \quad+\int_{\pi}^{\infty} \sum_{\substack{w \in G \\
w \neq-\delta_{0}}} \exp \left(-x\left|w+\delta_{0}\right|^{2}\right)\left(w+\delta_{0}\right)^{4 m} \exp (-\pi i \operatorname{Sp}(\bar{\delta} w)) x^{s+2 m-1} d x \\
& \quad+\varepsilon(m, \delta) \frac{\pi^{s}}{s-1}-\varepsilon\left(m, \delta_{0}\right) \exp \left(-\pi i \operatorname{Sp}\left(\delta_{0}, \bar{\delta}\right)\right) \frac{\pi^{s}}{s} \tag{5}
\end{align*}
$$

where

$$
\varepsilon(m, a)= \begin{cases}1 & \text { if } m=0 \text { and } a \in G \\ 0 & \text { otherwise }\end{cases}
$$

The equality (5) was obtained for $\Re s>1$. However, the right part of this equality is an analytic function in all complex s-planes except maybe the points $s=0$ and $s=1$, which can be the poles.

Now, multiplying the equality (5) by $\exp \left(\pi i \operatorname{Sp}\left(\bar{\delta}_{0} \delta\right)\right) \pi^{-2 s+1}$ and making the substitution $s \rightarrow 1-s, \delta_{0} \rightarrow \delta, \delta \rightarrow \delta_{0}$, we obtain that the right part doesn't vary, and hence, we have proved the following functional equation

$$
\begin{aligned}
& \pi^{-s} \Gamma(2|m|+s) \zeta_{m}\left(s ; \delta_{0}, \delta\right) \\
& \quad=\pi^{-(1-s)} \Gamma(2|m|+1-s) \zeta_{m}\left(1-s ;-\delta, \delta_{0}\right) \exp \left(-\pi i \operatorname{Sp}\left(\delta_{0} \bar{\delta}\right)\right)
\end{aligned}
$$

If $m=-m^{\prime}, m^{\prime}>0$, we put $\delta_{0}=-\delta_{0}^{\prime}, \delta=-\delta^{\prime}$, and then we have

$$
\zeta_{m}\left(s, \delta, \delta_{0}\right)=\zeta_{m^{\prime}}\left(s,-\delta,-\delta_{0}\right) \Rightarrow \zeta_{m^{\prime}}\left(1-s, \delta_{0},-\delta\right)=\zeta_{m}\left(1-s,-\delta_{0}, \delta\right)
$$

So, for any $m \in \mathbb{Z}$,

$$
\begin{aligned}
\pi^{-s} \Gamma(2|m|+s) \zeta_{m}\left(s ; \delta, \delta_{0}\right) & =\pi^{-(1-s)} \Gamma(2|m|+1-s) \zeta_{-m}\left(1-s,-\delta_{0}, \delta\right) \\
& =\pi^{-(1-s)} \Gamma(2|m|+1-s) \zeta_{-m}\left(1-s ; \delta_{0},-\delta\right)
\end{aligned}
$$

This completes the proof of Lemma 1.
Corollary 1. If δ is not a Gaussian integer, then $\zeta_{0}\left(0 ; \delta_{0}, \delta\right)=0$.

Lemma 2. In the strip $\varepsilon \leqslant \Re s \leqslant 1+\varepsilon, \varepsilon>0$, the following estimate

$$
(s-1) \cdot \zeta_{m}\left(s ; \delta_{0}, \delta\right) \ll(|t|+1)\left(t^{2}+m^{2}\right)^{\frac{(1-2 \sigma)(1+\varepsilon-\sigma)}{1+2 \varepsilon}}|N(\delta)|^{-\frac{\sigma+\varepsilon}{1+2 \varepsilon}}
$$

holds.
This lemma follows from Phragmen-Lindelof principle and the estimates for $\zeta_{m}\left(s ; \delta_{0}, \delta\right)$ on the boundaries of the strip $\varepsilon \leqslant \Re s \leqslant 1+\varepsilon$, which can be received with the usage of the functional equation for $\zeta_{m}\left(s ; \delta_{0}, \delta\right)$ and Stirling formula for $\Gamma(z)$.
Lemma 3. Let $y \geqslant k \in\{0,1,2\}$. Let a be a real number, $-1<a \leqslant \frac{5}{4}$, $\eta(a)=\min _{j=0,1, \ldots, k}|a-j| \neq 0$. Then for any real numbers u, v the following estimate

$$
\begin{aligned}
& \int_{a+i u}^{a+i v} \frac{y^{s} \psi(s, m)}{s(s+1) \ldots(s+k)} d s \\
& \quad \ll N(\gamma)^{\frac{1}{2}} M\left(\left(\frac{y}{N(\gamma)} \cdot \frac{1}{M}\right)^{a}\left(\eta^{-1}(a)+\log M\right)+\left(\frac{y}{N(\gamma) M}\right)^{\frac{1}{2}-\frac{2 k+1}{4}}\right)
\end{aligned}
$$

holds, where $\psi(s, m)=\left(\frac{1}{\pi} N(\gamma)^{\frac{1}{2}}\right)^{1-2 s} \frac{\Gamma(2|m|+1-s)}{\Gamma(2|m|+s)}, M=|m|+10$.
Proof. Apply [3, Lemma 8].
Lemma 4 ([7], Theorem 1). Upon the condition $D^{\frac{1}{2}} \leqslant x<D^{2}$ the asymptotic formula

$$
\begin{gathered}
\sum_{n \equiv 1(\bmod D)}^{n \leqslant x} r
\end{gathered} r(n)=\frac{\pi x}{D} \gamma_{0} \prod_{p \mid D}\left(1-\frac{\chi_{4}(p)}{p}\right) .
$$

is true.
Lemma 5. Let $p \equiv 3(\bmod 4)$. Then for $n=1,2,3, \ldots$ the estimate

$$
\sum_{\alpha \in E_{n}^{+}} e^{\pi i \operatorname{Sp} \frac{\alpha^{2}}{p^{n}}} \ll p^{\frac{n}{2}}
$$

holds.

Proof. In the articles [5] and [9] the following description of elements $\alpha \in E_{n}^{+}, n \geqslant 2$ was given:

$$
\alpha=\left(u_{0}+i v_{0}\right)^{2(p+1) t+k} \equiv \sum_{j=0}^{n-1}\left(A_{j}(k)+i B_{j}(k)\right) t^{j}\left(\bmod p^{n}\right)
$$

Here $\left(u_{0}+i v_{0}\right)$ is a generator of the group $E_{n}^{+}, t=0,1, \ldots, p^{n-1}$, $k=0,1, \ldots, 2 p+1$. Moreover,

$$
\begin{gathered}
A_{0}(k)=u(k), \quad B_{0}(k)=v(k) \\
A_{1}(k) \equiv-p y_{0} v(k)\left(\bmod p^{3}\right), \quad B_{1}(k) \equiv p y_{0} u(k)\left(\bmod p^{3}\right) \\
A_{2}(k) \equiv-\frac{1}{2} p^{2} y_{0}^{2} u(k)\left(\bmod p^{3}\right), \quad B_{2}(k) \equiv-\frac{1}{2} p^{2} y_{0}^{2} v(k)\left(\bmod p^{3}\right) \\
\left(u_{0}+i v_{0}\right)^{k} \equiv u(k)+i v(k)\left(\bmod p^{n}\right),\left(y_{0}, p\right)=1
\end{gathered}
$$

Furthermore,

$$
\begin{gathered}
u(k) \equiv 0(\bmod p), \quad \text { when } k=\frac{p+1}{2}, k=\frac{3(p+1)}{2} \\
v(k) \equiv 0(\bmod p), \quad \text { when } k=0, k=p+1 \\
A_{j}(k) \equiv B_{j}(k) \equiv 0\left(\bmod p^{3}\right), \quad j=3,4, \ldots, m-1, k=0,1, \ldots, 2 p+1
\end{gathered}
$$

Hence we easily conclude

$$
\begin{aligned}
\Re\left(\alpha^{2}\right) \equiv & \left(A_{0}^{2}(k)-B_{0}^{2}(k)\right)+2\left(A_{0}(k) A_{1}(k)-B_{0}(k) B_{1}(k)\right) t \\
& +\left(A_{1}^{2}(k)-B_{1}^{2}(k)\right)+A_{0}(k) A_{2}(k)-B_{0}(k) B_{2}(k) t^{2}\left(\bmod p^{3}\right)
\end{aligned}
$$

Then $\Re\left(\alpha^{2}\right) \equiv C_{0}+C_{1} t+C_{2} t^{2}\left(\bmod p^{3}\right)$ with the coefficients

$$
\begin{gathered}
C_{1} \equiv-2 p y_{0} u(k) v(k)\left(\bmod p^{3}\right), \quad C_{2} \equiv \frac{1}{2} p^{2} y_{0}^{2}\left(u^{2}(k)-v^{2}(k)\right)\left(\bmod p^{3}\right) \\
\text { or } C_{2} \equiv \frac{1}{2} p^{2} y_{0}^{2}\left(1-2 v^{2}(k)\right)\left(\bmod p^{3}\right)
\end{gathered}
$$

Let us note that $u(k)^{2}+v(k)^{2} \equiv(-1)^{k}(\bmod p)$. Therefore, it follows that $u(k)$ and $v(k)$ can not divide p simultaneously. It is obvious that $\nu_{p}\left(C_{2}\right) \geqslant 2$ (the strict inequality holds for the cases $\left.k=0, \frac{p+1}{2}, \frac{3(p+1)}{2}, p+1\right)$. That is why, when $\nu_{p}\left(C_{1}\right)<\nu_{p}\left(C_{2}\right), S=0$. So, from the well-known relation, for $(b, p)=1, f(x) \in \mathbb{Z}[x]$,

$$
\left|\sum_{x \in \mathbb{Z}_{p^{n}}} e^{2 \pi i \frac{a x+p b x^{2}+p^{2} f(x)}{p^{n}}}\right|=\left\{\begin{array}{clc}
0 & \text { if } & (a, p)=1 \\
2 p^{\frac{n-1}{2}} & \text { if } & a \equiv 0(\bmod p)
\end{array}\right.
$$

we get

$$
\left|\sum_{\alpha \in E_{n}^{+}} e^{\pi i \operatorname{Sp} \frac{\alpha^{2}}{p^{n}}}\right| \leqslant 4 p^{\frac{n}{2}}
$$

In case $n=1$ we take into account that

$$
E_{1}=\left\{ \pm 1, \pm i, \frac{a-i}{a+i}, \left.i \frac{a-i}{a+i} \right\rvert\, a=1,2, \ldots, p-1\right\}
$$

Thus, we conclude that $\operatorname{Sp}\left(\alpha^{2}\right)$ can be represented as the ratio of the polynomials of degree 2. Then, following Weil [11], we have

$$
\left|\sum_{\alpha \in E_{1}} e^{\pi i \operatorname{Sp} \frac{\alpha^{2}}{p}}\right| \leqslant 2 \sqrt{p}
$$

Hence, the assertion of lemma follows.
Lemma 6 ([7], Lemma 5). Let p be a prime number, let u_{1}, u_{2} be integers and $\left(u_{1}, u_{2}, p^{n}\right)=p^{m}$. Then

$$
\left|\sum_{l_{1}^{2}+l_{2}^{2} \equiv 1\left(\bmod p^{n}\right)} e^{2 \pi i \frac{u_{1} l_{1}+u_{2} l_{2}}{p^{n}}}\right| \leqslant 2 p^{\frac{n+m}{2}} .
$$

Corollary 2. For $m \neq 0$ the following estimate

$$
\sum_{\alpha \in E_{n}^{+}} \zeta_{m}\left(0 ; \frac{\alpha}{p^{n}}, 0\right) \ll p^{\frac{3}{2} n} M \log M, \quad M=|m|+10
$$

holds.
This statement follows immediately from the functional equation for $\zeta_{m}\left(s ; \delta_{0}, \delta\right)$ for $m \neq 0$ and Lemma 6.

The following Lemma was proved in [10] (see Lemma 11, pp. 259-260).
Lemma 7 (Vinogradov's 'glasses'). Let $r \in \mathbb{N}, \Omega>0,0<\Delta<\frac{1}{2} \Omega$ and let ϕ_{1}, ϕ_{2} be real numbers, $\Delta \leqslant \phi_{2}-\phi_{1} \leqslant \Omega-2 \Delta$. Then there exists a periodic function $f(\phi)$ with the period Ω such that:
(i) $f(\phi)=1$, in the segment $\phi \in\left[\phi_{1}, \phi_{2}\right]$;
$0 \leqslant f(\phi) \leqslant 1$ in the segments $\left[\phi_{1}-\Delta, \phi_{1}\right]$ and $\left[\phi_{2}, \phi_{2}+\Delta\right]$;
$f(\phi)=0$, in the segment $\left[\phi_{2}+\Delta, \phi_{1}+\Omega-\Delta\right]$;
(ii) $f(\phi)$ has the expansion in a Fourier series

$$
f(\phi)=\sum_{m=-\infty}^{+\infty} a_{m} e^{2 \pi i \frac{m \phi}{\Omega}}
$$

where $a_{0}=\frac{1}{\Omega}\left(\phi_{2}-\phi_{1}+\Delta\right)$, and for $m \neq 0$ and $r \in \mathbb{N}$ each of the following inequalities holds

$$
\left|a_{m}\right| \leqslant\left\{\begin{array}{l}
\frac{1}{\Omega}\left(\phi_{2}-\phi_{1}+\Delta\right) \\
\frac{2}{\pi|m|}, \\
\frac{2}{\pi|m|}\left(\frac{r \Omega}{\pi|m| \Delta}\right)^{r}
\end{array}\right.
$$

3. Main results

Let us consider the function of a natural argument

$$
r_{m}(k)=\sum_{\substack{u, v \in \mathbb{Z} \\ u^{2}+v^{2}=k}} e^{4 m i \arg (u+i v)}
$$

In view of (3) we can write

$$
F_{m}(s)=\sum_{\substack{k \leqslant x \\ k \equiv 1\left(\bmod p^{n}\right)}}^{\infty} \frac{r_{m}(k)}{k^{s}}
$$

Theorem 1. Let $m \neq 0, p^{n} \leqslant x \leqslant p^{2 n}$. Then

$$
\sum_{\substack{k \leqslant x \\ k \equiv 1\left(\bmod p^{n}\right)}} r_{m}(k) \ll \frac{\sqrt{x}}{p^{\frac{n}{2}}}+p^{\frac{n}{2}} \log x+p^{\frac{n}{2}} M \log M .
$$

Proof. Our assertion is trivial for $x \ll p^{n} M$. That is why we will assume that $x \geqslant C \cdot M p^{n}, C>0$. It follows from Lemma 1 that $\zeta_{m}\left(s ; \delta_{0}, \delta\right)$ is an entire function. In view of the fact

$$
\frac{1}{p^{2 n s}} \zeta_{m}\left(s ; \frac{\alpha}{p^{n}}, 0\right)=\sum_{\substack{w \in G \\ w \equiv \alpha\left(\bmod p^{n}\right)}} e^{\frac{4 \operatorname{mi\operatorname {arg}w}}{N(w)^{s}}}
$$

for $\Re s>1$ and every $\alpha \in G$ the usage of the theorem of the residues gives

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{2-i \cdot \infty}^{2+i \cdot \infty} \frac{x^{s+2} \zeta_{m}\left(s ; \frac{\alpha}{p^{n}}, 0\right)}{p^{2 n s} s(s+1)(s+2)} d s \\
& \quad=\frac{x^{2}}{2} \delta_{m}\left(s ; \frac{\alpha}{p^{n}}, 0\right)+\frac{1}{2 \pi i} \int_{a-i \cdot \infty}^{a+i \cdot \infty} \frac{x^{s+2} \zeta_{m}\left(s ; \frac{\alpha}{p^{n}}, 0\right)}{p^{2 n s} s(s+1)(s+2)} \tag{6}
\end{align*}
$$

for every $-1<a<0$.
Let us denote

$$
\begin{equation*}
S_{2}(x, \alpha)=\frac{1}{2} \sum_{\substack{0<N(w) \leqslant x \\ w \equiv \alpha\left(\bmod p^{n}\right)}} e^{4 m i \arg w}(x-N(w))^{2} \tag{7}
\end{equation*}
$$

Using the relation

$$
\frac{1}{2 \pi i} \int_{2-i \cdot \infty}^{2+i \cdot \infty} \frac{y^{s+l}}{s(s+1) \ldots(s+k)}=\left\{\begin{array}{ccc}
\frac{1}{l!}(y-1)^{l} & \text { if } & y>1 \\
0 & \text { if } & 0<y<1
\end{array}\right.
$$

and taking into account the uniform convergence of the series for zetafunction $\zeta_{m}\left(s ; \frac{\alpha}{p^{n}}, 0\right)$ in the semiplane $\Re s \geqslant 1+\varepsilon, \varepsilon>0$, we get

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{2-i \cdot \infty}^{2+i \cdot \infty} \frac{x^{s+2} \zeta_{m}\left(s ; \frac{\alpha}{p^{n}}, 0\right)}{p^{2 n s} s(s+1)(s+2)} d s \\
& \quad=\sum_{\substack{w \\
w \equiv \alpha\left(\bmod p^{n}\right)}} \frac{e^{4 m i \arg w}}{N(w)^{-2}} \cdot \frac{1}{2 \pi i} \int_{2-i \cdot \infty}^{2+i \cdot \infty} \frac{\left(\frac{x}{N(w)}\right)^{s+2}}{s(s+1)(s+2)} d s \tag{8}\\
& \quad=\frac{1}{2} \sum_{\substack{w \equiv \alpha\left(\bmod p^{n}\right) \\
N(w) \leqslant x}} e^{4 m i \arg w}(x-N(w))^{2}=S_{2}(x, \alpha) .
\end{align*}
$$

The application of the functional equation for $\zeta_{m}\left(s ; \delta_{0}, \delta\right)$ (see Lemma 1) and the estimate $\zeta_{m}\left(s ; \delta_{0}, \delta\right)$ in critical strip (see Lemma 2) give

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{a-i \cdot \infty}^{a+i \cdot \infty} \frac{x^{s+2} \zeta_{m}\left(s ; \frac{\alpha}{p^{n}}, 0\right)}{p^{2 n s} s(s+1)(s+2)} \\
& =\sum_{w \in G \backslash\{0\}} \mathrm{e}^{-4 m i \arg w} \mathrm{e}^{\pi i \operatorname{Sp}\left(\frac{\alpha w}{p^{n}}\right)} N(w)^{-s} \frac{1}{2 \pi i} \int_{a-i \cdot \infty}^{a+i \cdot \infty} \frac{(x N(w))^{s+2} \frac{\Gamma(2|m|+1-s)}{\Gamma(2|m|+s)}}{\pi^{1-2 s} s(s+1)(s+2) p^{2 n s}} d s \tag{9}
\end{align*}
$$

From (6)-(9) we deduce the formula:

$$
\begin{aligned}
& S_{2}(x, \alpha)=\frac{x^{2}}{2} \zeta_{m}\left(0 ; \frac{\alpha}{p^{n}}, 0\right) \\
& \quad+\sum_{w \in G \backslash\{0\}} \mathrm{e}^{-4 m i \arg w} \mathrm{e}^{\pi i \operatorname{Sp}\left(\frac{\alpha w}{p^{n}}\right)} N(w)^{-s} W\left(\frac{x N(w)}{p^{2 n}}\right) p^{2(n+1)}
\end{aligned}
$$

where

$$
W(y)=\frac{1}{2 \pi i} \int_{a-i \cdot \infty}^{a+i \cdot \infty} \frac{y^{s+2} \Gamma(2|m|+1-s)}{s(s+1)(s+2) \Gamma(2|m|+s)} d s
$$

We consider the following operator

$$
\Delta_{z} F(x)=\sum_{j=0}^{2}(-1)^{j} F(x+j z)=\int_{x}^{x+z} d y_{1} \int_{y_{1}}^{y_{1}+z} F^{\prime \prime}\left(y_{2}\right) d y_{2}
$$

Then

$$
\Delta_{z}\left(\frac{x^{2}}{2} \zeta_{m}\left(0 ; \frac{\alpha}{p^{n}}, 0\right)\right)=z^{2} \zeta_{m}\left(0 ; \frac{\alpha}{p^{n}}, 0\right)
$$

It is obvious that for every $b,-1<b<0$, we have

$$
W(y)=\frac{1}{2 \pi i} \int_{b-i \cdot \infty}^{b+i \cdot \infty} \frac{y^{s+2} \Gamma(2|m|+1-s)}{s(s+1)(s+2) \Gamma(2|m|+s)} d s
$$

We put $b=-1+\frac{1}{\log y}$, if $y>1$. Using Lemma 3, we conclude that

$$
\begin{equation*}
W(y) \ll K(y, m) \tag{10}
\end{equation*}
$$

where

$$
K(y, m)=p^{3 n} M^{3} y(\log y+\log M)
$$

It means that

$$
\begin{equation*}
\Delta_{z} W\left(\frac{x N(w)}{p^{2 n}}\right) \ll K\left(\frac{x N(w)}{p^{2 n}}, m\right) \tag{11}
\end{equation*}
$$

if only $z \ll \frac{x N(w)}{p^{2 n}}$.
The value $\Delta_{z} W\left(\frac{x N(w)}{p^{2 n}}\right)$ may be defined in a different way. We put

$$
\Phi(y)=\frac{1}{2 \pi i} \int_{c-i \cdot \infty}^{c+i \cdot \infty} \frac{y^{s+2} \Gamma(2|m|+1-s)}{s(s+1)(s+2) \Gamma(2|m|+s)} d s, \quad c>1
$$

Then

$$
\Phi(y)=\frac{y^{2}}{2} \frac{\Gamma(2|m|+1)}{\Gamma(2|m|)}+W(y)
$$

For all $y>0$ the integrals

$$
\frac{1}{2 \pi i} \int_{c-i \cdot \infty}^{c+i \cdot \infty} \frac{y^{s+2} \Gamma(2|m|+1-s)}{s \cdot \ldots \cdot(s+2-j) \Gamma(2|m|+s)} d s, j=0,1,2
$$

converge absolutely and uniformly. Hence, for the derivatives of $\Phi(y)$ we have

$$
\Phi^{(j)}(y)=\frac{1}{2 \pi i} \int_{c-i \cdot \infty}^{c+i \cdot \infty} \frac{y^{s+2-j} \Gamma(2|m|+1-s)}{s \cdot \ldots \cdot(s+2-j) \Gamma(2|m|+s)} d s, \quad j=0,1,2
$$

Thus,

$$
\begin{equation*}
W^{\prime \prime}(y)=-\frac{\Gamma(2|m|+1)}{\Gamma(2|m|)}+\frac{1}{2 \pi i} \int_{c-i \cdot \infty}^{c+i \cdot \infty} \frac{y^{s}}{s} \frac{\Gamma(2|m|+1-s)}{\Gamma(2|m|+s)} d s \tag{12}
\end{equation*}
$$

Now we will take into account that the subintegral function doesn't have singularities in the semiplane $\Re s>0$. Then, transfering the contour of the integration in (12) to the line $\Re s=\frac{1}{\log y}$ and using Lemma 3, Stirling formula for the gamma-function, we get

$$
W^{\prime \prime}(y) \ll L(y, m)
$$

where $L(y, m)=p^{n}\left(M \log M+y^{\frac{1}{4}}\right)$. But then

$$
\begin{align*}
\Delta_{z}\left(W\left(\frac{N(w) x}{p^{2 n}}\right)\right) & =\int_{\frac{N(w)}{p^{2 n}} x}^{\frac{N(w)}{p^{2 n}}(x+z)} d y_{1} \int_{y_{1}}^{y_{1}+\frac{N(w)}{p^{2 n}} z} W^{\prime \prime}\left(y_{2}\right) d y_{2} \\
& \ll L\left(\frac{x N(\alpha)}{p^{2 n}}, m\right) \frac{z^{2} N(w)^{2}}{p^{4 n}} \tag{13}
\end{align*}
$$

Let us denote as $S_{2}(x)$ the following sum

$$
S_{2}(x)=\sum_{\alpha \in E_{n}^{+}} S_{2}(x, \alpha)
$$

We have

$$
\begin{align*}
S_{2}(x)= & \frac{x^{2}}{2} \sum_{\alpha \in E_{n}^{+}} \zeta_{m}\left(0 ; \frac{\alpha}{p^{n}}, 0\right) \\
& +\sum_{\alpha \in E_{n}^{+}} \sum_{w \equiv \alpha\left(\bmod p^{n}\right)} \mathrm{e}^{4 m i \arg w} \mathrm{e}^{\pi i \operatorname{Sp}\left(\frac{\alpha w}{p^{n}}\right)} \frac{W\left(\frac{x N(w)}{p^{2 n}}\right)}{N(w)^{3}} \tag{14}\\
= & \frac{x^{2}}{2} \sum_{\alpha \in E_{n}^{+}} \zeta_{m}\left(0 ; \frac{\alpha}{p^{n}}, 0\right)+\sum_{\chi E_{n}} \frac{1}{\left|E_{n}\right|} \sum_{\alpha \in E_{n}} \bar{\chi}(\alpha) \\
& \times \sum_{N(w) \equiv 1\left(\bmod p^{n}\right)} \frac{\chi(w) \mathrm{e}^{4 m i \arg w}}{N(w)^{3}} \cdot \mathrm{e}^{\pi i \operatorname{Sp}\left(\frac{\alpha w}{p^{n}}\right)} W\left(\frac{x N(w)}{p^{n}}\right) .
\end{align*}
$$

Applying the operator Δ_{z} to both parts of (14), we obtain

$$
\begin{aligned}
\Delta_{z}\left(S_{2}(x)\right)= & z^{2} \sum_{\alpha \in E_{n}^{+}} \zeta_{m}\left(0 ; \frac{\alpha}{p^{n}}, 0\right) \\
& +\sum_{\substack{w \in G\\
}} \mathrm{e}^{-4 m i \arg w} N(w)^{-3} W\left(\frac{x N(w)}{p^{2 n}}\right) \sum_{\alpha \in E_{n}^{+}} \mathrm{e}^{\pi i \mathrm{Sp} \frac{\alpha^{2}}{p^{n}}}
\end{aligned}
$$

In virtue of (10), (11) and (13), Lemma 5 and Corollary 2 we infer
$\Delta_{z}\left(S_{2}(x)\right)$

$$
\begin{align*}
\ll & z^{2} p^{\frac{3}{2} n} M \log M+p^{\frac{n}{2}} z^{2} \sum_{N(w) \leqslant x} N(w)^{-1} L\left(\frac{x N(w)}{p^{2 n}}, m\right) \\
& +p^{\frac{n}{2}} \sum_{N(w)>x} N(w)^{-3} K\left(\frac{x N(w)}{p^{2 n}}, m\right) \\
\ll & z^{2} p^{\frac{n}{2}} p^{n} M \log M+z^{2} p^{\frac{n}{2}} \sum_{N(w) \leqslant x} p^{n}\left(M \log M+\frac{N(w)^{\frac{1}{4}} x^{\frac{1}{4}}}{p^{\frac{n}{2}}}\right) N(w)^{-1} \\
& +z^{2} p^{\frac{n}{2}} \sum_{N(w)>x} p^{3 n} M^{3} N(w)^{-2} p^{-2 n} \log N(w) . \tag{15}
\end{align*}
$$

From this we get

$$
\begin{align*}
& \Delta_{z}\left(S_{2}(x)\right) \ll \\
& \quad \ll p^{\frac{3}{2}}\left\{z^{2} M \log M+z^{2} M \log M \log x+z^{2} p^{-\frac{n}{2}} \sqrt{x}+M^{3} \log x\right\} \tag{16}
\end{align*}
$$

The application of the estimates (10), (14) requires that $z \ll \frac{x N(w)}{p^{2 n}}$. Thus the condition $N(w)>x$ in the second sum of (15) allows to assume $z=p^{n} M \leqslant \frac{x^{2}}{p^{2 n}}$ for $M \ll \frac{x^{2}}{p^{2 n}}$. Then the following inequality

$$
\Delta_{z}\left(S_{2}(x)\right) \ll z^{2} p^{\frac{3}{2} n} M \log M
$$

holds.
Let $H_{2}(x)$ stands for the sum

$$
\begin{equation*}
H_{2}(x)=\sum_{\alpha \in E_{n}^{+}} \sum_{\substack{w \in G \\ w \equiv \alpha\left(\bmod p^{n}\right) \\ N(w) \leqslant x}} \mathrm{e}^{4 m i \arg w} \tag{17}
\end{equation*}
$$

Then from the definition of $S_{2}(x)$ we easily find

$$
H_{2}(x)=\frac{d^{2}}{d x^{2}}\left(S_{2}(x)\right)
$$

It is clear that

$$
\int_{x}^{x+z} d y_{1} \int_{y_{1}}^{y_{1}+z} H_{2}\left(y_{2}\right) d y_{2}=\Delta_{z}\left(S_{2}(x)\right)
$$

By $x \leqslant y_{1} \leqslant x+2 z$ and Lemma 4 we have

$$
\begin{aligned}
\left|H_{2}\left(y_{2}\right)-H_{2}(x)\right| & =\left|E_{n}^{+}\right| \cdot\left|\sum_{\substack{x<N(w) \leqslant y_{2} \\
N(w) \equiv 1\left(\bmod p^{n}\right)}} \mathrm{e}^{4 m i \arg w}\right| \\
& \leqslant(p+1) p^{n-1} \sum_{\substack{x<n \leqslant x+2 z \\
n \equiv 1\left(\bmod p^{n}\right)}} r(n) \\
& \leqslant \frac{\pi z}{p^{n}} \cdot \frac{p+1}{p}+O\left(\frac{\sqrt{x}}{p^{\frac{n}{2}}}\right)+O\left(p^{\frac{n}{2}} \exp \left(c \frac{\left(\log p^{n}\right)^{\frac{1}{2}}}{\log \log p^{n}}\right)\right)
\end{aligned}
$$

Consequently,

$$
\left|H_{2}\left(y_{2}\right)-H_{2}(x)\right|=O\left(\frac{z}{p^{n}}\right)+O\left(\sqrt{x} p^{-\frac{n}{2}}\right)+O\left(p^{\frac{n}{2}} \exp \left(c \frac{\left(\log p^{n}\right)^{\frac{1}{2}}}{\log \log p^{n}}\right)\right)
$$

It follows that
$H_{2}\left(y_{2}\right)=H_{2}(x)+O\left(\frac{z}{p^{n}}\right)+O\left(\sqrt{x} p^{-\frac{n}{2}}\right)+O\left(p^{\frac{n}{2}} \exp \left(c \frac{\left(\log p^{n}\right)^{\frac{1}{2}}}{\log \log p^{n}}\right)\right)$.

Now from (17) and (18) we get

$$
\begin{aligned}
& z^{2}\left(H_{2}(x)+O\left(\frac{z}{p^{n}}\right)+O\left(\sqrt{x} p^{-\frac{n}{2}}\right)+O\left(p^{\frac{n}{2}} \exp \left(c \frac{\left(\log p^{n}\right)^{\frac{1}{2}}}{\log \log p^{n}}\right)\right)\right) \\
& \quad=O\left(z^{2} p^{\frac{n}{2}} M \log M\right)
\end{aligned}
$$

Thus,

$$
H_{2}(x)=x^{\frac{1}{2}} p^{-\frac{n}{2}}+p^{\frac{n}{2}} \exp \left(c \frac{\left(\log p^{n}\right)^{\frac{1}{2}}}{\log \log p^{n}}\right)+p^{\frac{n}{2}} M \log M
$$

So, the proof of Theorem 1 is completed.
Now we can investigate the distribution of quadratic residues modulo p^{n} in narrow sectors.

Theorem 2. Let $p^{\frac{3}{2} n} \leqslant x \leqslant p^{2 n}, 0 \leqslant \phi_{1}<\phi_{2} \leqslant \frac{\pi}{2}$ and let $0<s \leqslant \frac{1}{8}$. Then for $\phi_{2}-\phi_{1} \geqslant x^{-s}$ the asymptotic formula

$$
R(x ; \phi)=\frac{\phi_{2}-\phi_{1}}{2} \cdot \frac{p+1}{p} \cdot \frac{x}{p^{n}}+O\left(3^{n} \frac{x^{1-s}}{p^{n}} \log x\right)
$$

holds.
Proof. It is known that the distribution of the arguments of Gaussian integers (being considered up to the association) has the period $\frac{\pi}{2}$. In view of this fact the application of Lemma 7 with $\Omega=\frac{\pi}{2}$ gives for every $T \geqslant 1$

$$
\begin{aligned}
& \sum_{\substack{\alpha \in E_{n}^{+} \\
\phi_{1} \leqslant \alpha<\phi_{2} \\
N(\alpha) \leqslant x}} 1=\Phi\left(\phi_{1}, \phi_{2}\right)+\theta_{1} \Phi\left(\phi_{1}-\Delta, \phi_{1}\right)+\theta_{2} \Phi\left(\phi_{2}, \phi_{2}+\Delta\right), \\
& \left|\theta_{i}\right| \leqslant 1, \quad i=1,2, \quad \Phi\left(\phi_{1}, \phi_{2}\right)=\frac{1}{4} \sum_{\substack{\left.w \in E_{n}^{+} \\
N(w) \leqslant x\right)}} f(\arg w)
\end{aligned}
$$

and $f(\phi)$ is the function from Lemma $7,0<\Delta=\frac{1}{2} \Omega$.
Furthermore

$$
\Phi\left(\phi_{1}, \phi_{2}\right)=\sum_{\substack{\left.w \in E_{n}^{+} \\ N(w) \leqslant x\right)}} \sum_{m=-\infty}^{+\infty} a_{m} \mathrm{e}^{4 m i \arg \alpha}=\sum_{m=-\infty}^{+\infty} a_{m} \sum_{\substack{k \equiv 1\left(\bmod p^{n}\right) \\ k \leqslant x}} r_{m}(x),
$$

where a_{m} is the Fourier coefficient from Lemma 7.

We put $\delta=x^{s}, 0<s<1$ (we will find the more precise estimate for s later). Let us use the estimates for the coefficients a_{m} (see Lemma 7 with $r=2$):

$$
\left|a_{m}\right| \ll \begin{cases}\frac{1}{|m|}, & |m| \leqslant \delta=\Delta^{-1} ; \\ \frac{1}{|m|^{3} \Delta^{2}}, & |m|>\delta .\end{cases}
$$

After simple calculations we get

$$
\begin{aligned}
\Phi\left(\phi_{1}, \phi_{2}\right)= & \frac{\phi_{2}-\phi_{1}}{2} \cdot \frac{p+1}{p} \cdot \frac{x}{p^{n}}+O\left(\frac{x^{1-s}}{p^{n}}\right)+O\left(s \frac{\sqrt{x}}{p^{\frac{n}{2}}} \log ^{2} x\right) \\
& +O\left(s p^{\frac{n}{2}} \log ^{2} x\right)+O\left(\frac{x^{\frac{1}{2}+s}}{p^{\frac{n}{2}}}\right)+O\left(3^{n} p^{\frac{n}{2}} x^{s} \log x\right)
\end{aligned}
$$

In view of the assumption of the theorem the following inequalities

$$
\frac{x^{1-s}}{p^{n}} \gg p^{\frac{n}{2}} x^{s}, \quad \frac{x^{1-s}}{p^{n}} \gg \frac{x^{\frac{1}{2}+s}}{p^{\frac{n}{2}}}
$$

hold. Therefore,

$$
\begin{equation*}
\Phi\left(\phi_{1}, \phi_{2}\right)=\frac{\phi_{2}-\phi_{1}}{2} \cdot \frac{p+1}{p} \cdot \frac{x}{p^{n}}+O\left(3^{n} \frac{x^{1-s}}{p^{n}} \log x\right) \tag{19}
\end{equation*}
$$

It follows from (19) that

$$
\begin{equation*}
\Phi\left(\phi_{1}-\Delta, \phi_{1}\right), \Phi\left(\phi_{2}, \phi_{2}+\Delta\right) \ll 3^{n} \frac{x^{1-s}}{p^{n}} \log x \tag{20}
\end{equation*}
$$

The relations (19) and (20) show that Theorem 2 is proved for every s, $0<s \leqslant \frac{1}{8}$.

Acknowledgment

The authors would like to thank the referee for useful remarks and suggestions.

References

[1] D. Burgess, The Distribution of quadratic residues and non-residues, Mathematika, N.4, 1957, pp.106-112.
[2] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen I-II, Math.Z., T.1, 1918, ss.357-376; T.6, 1920, pp.11-51.
[3] J. Kubilius, On one problem of multidimensional analytic number theory, Proc. Vilnius Univ., N.4, 1955, pp.5-41 (in Lithuanian).
[4] H. Montgomery, R. Vaughan, Exponential sums with multiplicative coefficients, Inventiones math., N.43, 1977, pp.69-82.
[5] S. Sergeev, P. Varbanets, Exponential sums over norm group, Siauliai Math.Seminar, N.9(17), 2014, pp.83-92.
[6] Elias M. Stein, Guido Weiss, Introduction to Fourier analysis on Euclidian spaces, Princeton, New Jersey, Princeton University Press, 1971, P. 312.
[7] P. Varbanets, Problem of circle in aritmetic progression, Mat. Zametki, N.8(6), 1970, pp.787-798 (in Russian).
[8] P. Varbanec, P. Zarzycki, Divisors of the Gaussian integers in an Arithmetic Progression, Journal of Number Theory, V.33, N.2, 1989, pp.152-169.
[9] S. Varbanets, General Klosterman sums over ring of Gaussian integers, Ukr. Math. J., N.59(9), 2007, pp.1179-2000.
[10] I.M. Vinogradov, Selectas, Academic Press USSR, Moscow, 1952 (in Russian).
[11] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34, 1948, pp. 204-207.

Contact information

L. Balyas,
P. Varbanets
Department of Computer Algebra and Discrete Mathematics, I. I. Mechnikov Odessa National University, Dvoryanskaya 265026 Odessa, Ukraine E-Mail(s): balyas@ukr.net, varb@sana.od.ua
Web-page (s): onu.edu.ua

Received by the editors: 29.01.2016
and in final form 29.12.2016.

[^0]: 2010 MSC: 11L05, 11L07, 11N25, 11S40.
 Key words and phrases: quadratic residue, the norm group, Hecke Z-function, the gamma function, Dirichlet series,functional equation, Gaussian integers.

