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Abstract. An algebra L over a field F is said to be a
Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies
the Leibniz identity: [[a, b], c] = [a, [b, c]]− [b, [a, c]] for all a, b, c ∈ L.
Leibniz algebras are generalizations of Lie algebras. A subalgebra S
of a Leibniz algebra L is called a core-free, if S does not include a
non-zero ideal. We study the Leibniz algebras, whose subalgebras
are either ideals or core-free.

Introduction

Let L be an algebra over a field F with the binary operations + and
[ · , · ]. Then L is called a Leibniz algebra (more precisely, a left Leibniz

algebra), if it satisfies the Leibniz identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]],

for all a, b, c ∈ L.
If L is a Lie algebra, then L is a Leibniz algebra. Conversely, if L is a

Leibniz algebra such that [a, a] = 0 for every element a ∈ L, then L is a
Lie algebra. Therefore, Lie algebras can be characterized as the Leibniz
algebras in which [a, a] = 0 for every element a.

Leibniz algebras appeared first in the papers by A.M. Bloh [1–3] in
which he called them the D-algebras. However, in that time, these works
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were not in demand, and they had not been properly developed. Only in
two decades, a real interest in Leibniz algebras rose. It is happened due to
the work of by J.L. Loday [4] (see also [5, Section 10.6]), who "rediscovered"
these algebras and used the term Leibniz algebras, since it was Leibniz, who
discovered and proved the Leibniz rule for the differentiation of functions.

A Leibniz algebra which is not a Lie algebra has one specific ideal.
Denote, by Leib(L), the subspace generated by the elements [a, a], a ∈ L.
It is possible to prove that Leib(L) is an ideal of L. Moreover, L/Leib(L)
is a Lie algebra. Conversely, if H is an ideal of L such that L/H is a Lie
algebra, then Leib(L) 6 H.

The ideal Leib(L) is called the Leibniz kernel of the algebra L.
One approach to the study of Leibniz algebras, which proved to be

quite efficient especially for infinite dimensional Leibniz algebras, is to
consider Leibniz algebras, all whose subalgebras have some fixed natural
properties. This approach has been very efficient for Lie algebras, while it
became to be used in Leibniz algebras only recently. The Leibniz algebras,
whose subalgebras are Lie algebras and Leibniz algebras with Abelian
subalgebras, were studied in [6]. In paper [7] (see also [8]), the Leibniz
algebras, whose subalgebras are ideals, were studied.

Two ideals are naturally associated with each subalgebra A of a Leibniz
algebra L: the ideal AL which is the intersection of all ideals including A
(i.e., an ideal generated by A); and the ideal CoreL(A) which is the sum
of all ideals that are contained in A.

A subalgebra A of L is called a core-free in L if CoreL(A) = 〈0〉.
From the definition, it follows that the core-free subalgebras are natural
antipodes to the concepts of ideals. Therefore, the study of Leibniz algebras,
whose subalgebras are either core-free or ideals, seems to us very natural.
The main results of the current article give a description of such Leibniz
algebras.

The first example of such algebras is Leibniz algebras whose subalgebras
are ideals. As we have noted above, these Leibniz algebras have been
studied in [7]. The main result of this paper is as follows:

If every subalgebra of a Leibniz algebra L is an ideal, then either L is

Abelian or L = Z⊕E where Z 6 ζ(L) and E is an extraspecial subalgebra

such that [a, a] 6= 0 for each element a ∈ E \ ζ(L).
In particular, [L,L] 6 ζ(L), and a derived subalgebra [L,L] has di-

mension 1.
Recall that a Leibniz algebra E is called extraspecial, if ζ(E) = [E,E]

is a subalgebra of dimension 1.
Note also that a Lie algebra, whose subalgebras are ideals, is Abelian.
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On the other hand, if L is a simple Leibniz algebra, then every its
proper subalgebra is core-free. We note that, in this case, L is a Lie algebra.

We show also another example which is typical in some sense. Let L be
a cyclic nilpotent Leibniz algebra of dimension 3. That is,L = Fa⊕Fb⊕Fc,
where b = [a, a], c = [a, b]. Here, Leib(L) = Fb⊕ Fc. If A is a subalgebra
of L such that Leib(L) does not include A, then A = L. If A 6 Leib(L)
and Fc 6 A, then A is an ideal of L. If A does not include Fc, then A is
not an ideal, dimF (A) = 1. Therefore, CoreL(A) = 〈0〉.

Let L be a Leibniz algebra. The intersection of all non-zero ideals
Mon(L) of L is called the monolith of a Leibniz algebra L. If Mon(L) 6= 〈0〉,
then the Leibniz algebra L is called monolithic, and, in this case, Mon(G)
is the least non-zero ideal of L.

The next proposition shows how the Leibniz algebras, whose subalge-
bras being not ideals are core-free, appear.

Proposition 1. Let L be a monolithic Leibniz algebra. If every subalgebra

of a factor-algebra L/Mon(L) is an ideal, then every subalgebra of L are

either core-free or ideal.

Indeed, let A be a subalgebra of L such that B = CoreL(A) 6= 〈0〉.
Since L is monolithic, Mon(L) 6 B 6 A. Since every subalgebra of
L/Mon(L) is an ideal, A is an ideal of L.

Thus, we can see that the following natural cases hold:
• L is a non-monolithic Leibniz algebra;
• L is a monolithic Leibniz algebra.
The second case is basic, as is shown by

Theorem 1. Let L be a non-monolithic Leibniz algebra. If every subalgebra

of L, which is not an ideal, is core-free, then every subalgebra of L is an

ideal.

Corollary 1. Let L be a non-monolithic Lie algebra. If every subalgebra

of L, which is not an ideal, is core-free, then L is Abelian.

The monolithic case splits naturally in two subcases:
• Leibniz algebra L has a non-zero center;
• Leibniz algebra L has a zero center.
Recall that the center ζ(L) of L is defined by the rule:

ζ(L) = {x ∈ L | [x, y] = 0 = [y, x] for every element y ∈ L} .

The center is an ideal of L. In particular, we can consider the factor-algebra
L/ζ(L).
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More precisely, the left (respectively, right) center ζ left(L) (respectively,
ζright(L)) of a Leibniz algebra L is defined by the rule:

ζ left(L) = {x ∈ L | [x, y] = 0 for every element y ∈ L} .

(respectively,

ζright(L) = {x ∈ L | [y, x] = 0 for every element y ∈ L} .)

It is not hard to prove that the left center of L is an ideal, but it
is not true for the right center. Moreover, Leib(L) 6 ζ left(L), so that
L/ζ left(L) is a Lie algebra. The right center is an subalgebra of L, and,
in general, the left and right centers are different; they even may have
different dimensions. Paper [9] contains some examples, which are shown
by

Theorem 2. Let L be a Leibniz algebra. Suppose that L includes a sub-

algebra, which is not an ideal, and every subalgebra of L, which is not

an ideal, is core-free. If the center of L is non-zero, then L satisfies the

following conditions:

(i) L is monolithic, and Mon(L) = ζ(L) = γ3(L), in particular,

dimF (ζ(L)) = 1;
(ii) γ2(L) = [L,L] 6 ζ2(L) and γ2(L) has dimension 2;

(iii) every subalgebra of L, which is not an ideal, is Abelian;

(iv) every subalgebra of L/ζ(L) is an ideal.

Conversely, if L is a Leibniz algebra satisfying the above conditions,

then every subalgebra of L either is core-free or an ideal.

Corollary 2. Let L be a monolithic non-Abelian Lie algebra having non-

trivial center. Then every subalgebra of L, which is not an ideal, is core-free,

if and only if L is an extraspecial algebra.

The situation, where L has a non-central monolith, was considered in
the following proposition.

Theorem 3. Let L be a monolithic Leibniz algebra whose center is zero.

Suppose that every subalgebra of L, which is not an ideal, is core-free. If

L is not a Lie algebra, then the following conditions hold:

(i) Mon(L) is a minimal ideal of L;

(ii) Mon(L) is a maximal Abelian ideal of L;

(iii) L = Mon(L)⊕A for some Abelian subalgebra A;

(iv) AnnL(Mon(L)) = AnnleftL (Mon(L)) = Mon(L).
Conversely, if L is a Leibniz algebra satisfying the above conditions,

then every subalgebra of L either is core-free or an ideal.
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We note also that, in this case, a core-free subalgebra can be not
Abelian. The following example shows this.

Example 1. Let F be an arbitrary field, and let L be a vector space
over F with a basis a, b, a1, a2. We define the operation [ · , · ] on L in the
following way:

[a, a] = a1, [a, a1] = a2, [a, a2] = −a1 − a2, [a, b] = 0,

[b, a] = a1 + a2, [b, b] = 0, [b, a1] = −a1, [b, a2] = −a2,

[a1, a] = 0, [a1, b] = 0, [a2, a] = 0, [a2, b] = 0,

[a1, a1] = 0, [a1, a2] = 0, [a2, a1] = 0, [a2, a2] = 0.

It is possible to check that L is a Leibniz algebra, Leib(L) = Fa1 +
Fa2, Leib(L) = Mon(L), and a factor-algebra L/Mon(L) is Abelian.
Proposition 1 implies that every subalgebra of L, which is not an ideal, is
core-free. But the subalgebra 〈b, a1〉 is a not ideal, is not Abelian, and is
core-free.

For the Lie algebras, we obtained the following

Proposition 2. Let L be a monolithic Lie algebra whose center is zero.

Suppose that every subalgebra of L, which is not an ideal, is core-free.

Then Mon(L) is a minimal ideal of L such that AnnL(Mon(L)) = Mon(L)
and the factor-algebra L/Mon(L) is Abelian. Moreover, every core-free

subalgebra of L is Abelian.

If Mon(L) is Abelian, the description should be more detailed.
Let L be a Leibniz algebra, and let a be a some fixed element of L.

Consider the mapping ra : L 7→ L defined by the rule ra(x) = [x, a],
x ∈ L. It is not hard to see that ra is a linear mapping, βra = rβa, and
ra + rb = ra+b for all a, b ∈ L and β ∈ F . Put ca(x) = x+ [x, a], x ∈ L,
i.e., ca(x) = i(x) + ra(x), where i is an identity permutation of L. Clearly,
ca is also a linear mapping.

Theorem 4. Let L be a monolithic Lie algebra whose center is zero.

Suppose that every subalgebra of L, which is not an ideal, is core-free. If

the monolith of L is Abelian, then the following conditions hold:

(i) Mon(L) is a minimal ideal of L;

(ii) Mon(L) is a maximal Abelian ideal of L;

(iii) AnnL(Mon(L)) = Mon(L);
(iv) L = Mon(L)⊕A for some Abelian subalgebra A;

(v) if L = Mon(L) ⊕ C for some subalgebra C, then there exists an

element v ∈ Mon(L) such that C = cv(A). Moreover, cv is an

automorphism of the algebra L.
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Preliminary results

We start from the following simple result.

Lemma 1. Let L be a Leibniz algebra, and let A be a non-zero ideal of

L. If every subalgebra of L, which is not an ideal, is core-free, then every

subalgebra of L/A is an ideal.

Proof. Indeed, let x be an element of L such that x /∈ A. We denote, by
X, the subalgebra of L generated by x and A. Then X includes a non-zero
ideal A. It follows that CoreL(X) 6= 〈0〉. Hence, X must be an ideal of L.
This means that every cyclic subalgebra of L/A is an ideal. Then each
subalgebra of L/A is an ideal of L/A.

Let L be a Lie algebra. We define the lower central series of L,

L = γ1(L) > γ2(L) > . . . > γα(L) > γα+1(L) > . . . γδ(L),

by the following rule: γ1(L) = L, γ2(L) = [L,L], and, recursively,
γα+1(L) = [L, γα(L)] for all ordinals α, and γλ(L) =

⋂
µ<λ γµ(L) for the

limit ordinals λ. The last term γδ(L) is called the lower hypocenter of L.
We have γδ(L) = [L, γδ(L)].

If α = k is a positive integer, then γk(L) = [L, [L, [L, . . . , L] . . .] is
the left normed commutator of k copies of L. Note the following useful
properties of subalgebras and ideals.

Corollary 3. Let L be a Leibniz algebra, and let A be a non-zero ideal

of L. If every subalgebra of L, which is not an ideal, is core-free, then

γ3(L) 6 A.

Proof. Indeed, as we have noted above, a Leibniz algebra, whose subalge-
bras are ideals, is Abelian or nilpotent and belongs to the 2-nilpotency
class.

Corollary 4. Let L be a non-monolithic Leibniz algebra. If every subal-

gebra of L, which is not an ideal, is core-free, then γ3(L) = 〈0〉 .

Proof. Indeed, let S be a family of all non-zero ideals of L. Then Corol-
lary 3 implies that γ3(L) 6 S for each non-zero ideal S of L. Since L is
non-monolithic, ∩S = 〈0〉. It follows that γ3(L) = 〈0〉.

Corollary 5. Let L be a non-monolithic Leibniz algebra. If every subal-

gebra of L, which is not an ideal, is core-free, then its center is non-zero.
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Lemma 2. Let L be a Leibniz algebra whose center is non-zero. Suppose

that every subalgebra of L, which is not an ideal, is core-free. If C is a

non-zero core-free subalgebra of L, then C is Abelian.

Proof. Since C is core-free, then C ∩ ζ(L) = 〈0〉. Assume that C contains
a non-zero element c such that c1 = [c, c] 6= 0. Using Corollary 3 of
Lemma 1, we obtain that [c, [c, c]] ∈ ζ(L). On the other hand, since C is
a subalgebra, [c, [c, c]] ∈ C, so that [c, [c, c]] ∈ C ∩ ζ(L) = 〈0〉. It follows
that 〈c〉 = Fc⊕ Fc1. The fact that C is core-free implies that every its
subalgebra is core-free. It follows that the subalgebra 〈c1〉 = Fc1 is not
an ideal of L. Then there exists an element x such that [x, c1] /∈ 〈c1〉. By
Lemma 1, a subalgebra 〈c1, ζ(L)〉 = 〈c1〉 ⊕ ζ(L) = Fc1 ⊕ ζ(L) is an ideal
of L. This implies that [x, c1] ∈ Fc1 ⊕ ζ(L), i.e., [x, c1] = αc1 + z, where
α ∈ F , z ∈ ζ(L). Clearly, z 6= 0. Using again Lemma 1, we obtain that
the subalgebra 〈c, ζ(L)〉 = 〈c〉 ⊕ ζ(L) = Fc⊕ Fc1 ⊕ ζ(L) is an ideal of L.
Then [x, c] = βc+ γc1 + z1, where β, γ ∈ F , z1 ∈ ζ(L). We have

[[x, c], c] = [βc+ γc1 + z1, c] = βc1.

On the other hand,

[[x, c], c] = [x, [c, c]]− [c, [x, c]] = [x, c1]− [c, βc+ γc1 + z1]

= αc1 + z − βc1 = (α− β)c1 + z.

Thus, we obtain βc1 = (α − β)c1 + z or (α − 2β)c1 = z. By the above
consideration, the element z is non-zero, so that (α− 2β)c1 is a non-zero
element of ζ(L). But this contradicts the equality C ∩ ζ(L) = 〈0〉. This
contradiction shows that [y, y] = 0 for each element y ∈ C. It follows that
〈y〉 = Fy for each element y ∈ C.

If dimF (C) = 1, all is proved. Therefore, we will suppose
that dimF (C) > 1. Let {cλ|λ ∈ Λ} be the basis of C. By the above proof,
〈cλ〉 = Fcλ. Lemma 1 shows that 〈cλ, ζ(L)〉 = Fcλ⊕ζ(L) is an ideal of L. It
follows that [cλ, cµ] ∈ Fcλ⊕ζ(L), i.e., [cλ, cµ] = σcλ+z2 for some elements
σ ∈ F , z2 ∈ ζ(L). By the same reason, [cλ, cµ] = τcµ+z3 for some elements
τ ∈ F , z3 ∈ ζ(L). Thus, we have σcλ − τcµ = z2 − z3 ∈ C ∩ ζ(L) = 〈0〉.
The fact that the elements cλ, cµ are linearly independent implies that
σ = τ = 0. This means that [cλ, cµ] ∈ ζ(L). On the other hand, since C is
a subalgebra, [cλ, cµ] ∈ C, so that [cλ, cµ] ∈ C ∩ ζ(L) = 〈0〉. It is true for
each pair of indices λ, µ, and it follows that a subalgebra C is Abelian.
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Proof of Theorem 1

Let S be a family of all non-zero ideals of L. Since L is non-monolithic,
∩S = 〈0〉. Moreover, Corollary 4 of Lemma 1 implies that γ3(L) = 〈0〉.
In particular, ζ(L) is non-zero. If every cyclic subalgebra of L is an ideal,
then every subalgebra of L is an ideal. Therefore, we assume that L
includes a cyclic subalgebra 〈a〉, which is not an ideal. Then 〈a〉 must be
core-free. Lemma 2 implies that 〈a〉 is Abelian, and, therefore, 〈a〉 = Fa.
In particular, 〈a〉 has dimension 1. Lemma 1 implies that a subalgebra
(〈a〉 + S)/S of the factor-algebra L/S is an ideal of L/S for each ideal
S ∈ S. Since L/S is nilpotent and ideal, (〈a〉 + S)/S has dimension 1.
Lemma 2.4 in [10] implies that (〈a〉+S)/S 6 ζ(L/S) for each ideal S ∈ S.
Then [x, a], [a, x] ∈ S for every element x ∈ L. Since it is true for each
S ∈ S, [x, a], [a, x] ∈ ∩S = 〈0〉. This means that a ∈ ζ(L), that follows
from the fact that a subalgebra 〈a〉 is an ideal of L. We have obtained a
contradiction. This contradiction proves that every cyclic subalgebra of L
is an ideal.

Corollary 6. Let L be a Leibniz algebra. Suppose that every subalgebra

of L, which is not an ideal, is core-free. If the center of L is non-zero and

dimF (ζ(L)) > 1, then every subalgebra of L is an ideal.

Proof. Since dimF (ζ(L)) > 1, ζ(L) includes two non-zero subspaces Z1,
Z2 such that Z1 ∩ Z2 = 〈0〉. It follows that L is not monolithic, and we
can apply Theorem 1.

Proof of Theorem 2

If we suppose that dimF (ζ(L)) > 1, then Corollary 6 shows that every
subalgebra of L is an ideal, and we obtain a contradiction. This contra-
diction shows that dimF (ζ(L)) = 1. Corollary 6 shows that L must be
monolithic. An obvious inclusion Mon(L) 6 ζ(L) together with the fact
that dimF (ζ(L)) = 1 imply that Mon(L) = ζ(L). Lemma 1 shows that
every subalgebra of L/ζ(L) is an ideal. Using now Theorem A in [7], we
obtain that ζ(L/ζ(L)) includes [L/ζ(L), L/ζ(L)] and [L/ζ(L), L/ζ(L)]
has dimension 1. Furthermore, the equality Mon(L) = ζ(L) implies that
ζ(L) 6 [L,L], and the equality [L/ζ(L), L/ζ(L)] = [L,L]ζ(L)/ζ(L) im-
plies that [L/ζ(L), L/ζ(L)] = [L,L]/ζ(L), so that [L,L] has dimension 2,
and ζ(L/ζ(L)) > [L,L]/ζ(L). Therefore, ζ2(L) > [L,L] = γ2(L). Condi-
tion (iii) follows from Lemma 2, and condition (iv) follows from Lemma 1.
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Conversely, let L be a Leibniz algebra satisfying conditions (i) - (iv).
Then conditions (i) and (iv) together with Proposition 1 imply that every
subalgebra of L, which is not an ideal, is core-free.

Corollary 7. Let L be a Leibniz algebra. Suppose that L includes a

subalgebra, which is not an ideal, and every subalgebra of L, which is not

an ideal, is core-free. If γ3(L) = 〈0〉, then L is an extraspecial Leibniz

algebra. Conversely, if L is an extraspecial Leibniz algebra, then every

subalgebra of L, which is not an ideal, is core-free.

Proof. Since γ3(L) = 〈0〉, a factor-algebra L/ζ(L) is Abelian. The fact
that L includes a subalgebra, which is not an ideal, implies that L is non-
Abelian. In turn, this implies that L 6= ζ(L) and [L,L] 6= 〈0〉. Corollary 3
implies that dimF (ζ(L)) = 1. Since [L,L] 6= 〈0〉 and [L,L] 6 ζ(L),
[L,L] = ζ(L). This means that L is an extraspecial Leibniz algebra.

Conversely, let L be an extraspecial Leibniz algebra, and let A be
a subalgebra of L such that B = CoreL(A) 6= 〈0〉. Since L is nilpotent,
Lemma 2.4 in [10] implies that B∩ζ(L) 6= 〈0〉. The fact that dimF (ζ(L)) =
1 implies that ζ(L) 6 B 6 A. For each arbitrary subalgebra D, we have
ζ(L) 6 D or D∩ ζ(L) = 〈0〉. In the first case, D is an ideal. In the second
one, in view of the above consideration, we obtain that D is core-free.

Lemma 3. Let L be a Lie algebra, whose subalgebras are ideals. Then L
is Abelian.

This lemma is almost obvious.

Proof of Corollary 2

As above, we obtain that Mon(L) = ζ(L) and dimF (ζ(L)) = 1.
Lemma 1 shows that every subalgebra of L/ζ(L) is an ideal. Then
Lemma 3 implies that a factor-algebra L/ζ(L) is Abelian. It follows
that [L,L] 6 ζ(L). Since L is not Abelian, the equality dimF (ζ(L)) = 1
implies that [L,L] = ζ(L), so that L is an extraspecial Leibniz algebra.

Lemma 4. Let L be a monolithic Leibniz algebra whose center is zero.

Suppose that every subalgebra of L, which is not an ideal, is core-free. If L
is not a Lie algebra, then Mon(L) is a minimal ideal of L and a maximal

Abelian ideal of L, and the factor-algebra L/Mon(L) is Abelian.

Proof. Since L is not Lie algebra, its Leibniz kernel Leib(L) is non-zero.
Recall that the left center of L includes Leib(L). It follows that Leib(L) is
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Abelian. The inclusion M = Mon(L) 6 Leib(L) implies that M is Abelian.
The factor-algebra L/Leib(L) is a Lie algebra. Lemma 1 shows that every
subalgebra of this factor-algebra must be an ideal. Using Lemma 3, we
obtain that L/Leib(L) is Abelian. Since ζ(L) = 〈0〉, L 6= AnnL(M).

Let A be a maximal Abelian ideal of L including Leib(L). Suppose
that A 6= M . The application of Lemma 1 shows that every subalgebra
of L/M is an ideal. Theorem A in [7] shows that L/M is nilpotent. It
follows that A has a finite series

〈0〉 = M0 6 M = M1 6 M2 6 M3 = A

of L-invariant subalgebras, where the factors M3/M2 and M2/M1 are
L-central. Using Proposition 1.3 in [11], we obtain that A includes an L-
invariant subalgebra D such that A = M ⊕D. In particular, D∩M = 〈0〉.
On the other hand, L is a monolithic Leibniz algebra, and we obtain a
contradiction. This contradiction shows that A = M .

Lemma 5. Let L be a monolithic Leibniz algebra whose center is zero.

Suppose that every subalgebra of L, which is not an ideal, is core-free. If

L is not a Lie algebra, then L = Mon(L)⊕A for some Abelian subalgebra

A. Moreover, AnnL(Mon(L)) = AnnleftL (Mon(L)) = Mon(L).

Proof. By its definition, M = Mon(L) is a minimal ideal of L. Lemma 4
shows that the factor-algebra L/M is Abelian. It follows that [x, y] ∈ M
for every pairs of elements x, y ∈ L. The inclusion Mon(L) 6 Leib(L) and
the fact that the left center of L includes Leib(L) yield [M,L] = 〈0〉. It
follows that AnnL(M) = AnnleftL (M). Since 〈0〉 = M ∩ ζ(L), there exists
an element d such that d /∈ AnnL(M). Put

[d,M ] = {[d, a]|a ∈ M} .

Clearly, [d,M ] is a subspace of M . Since M is Abelian, [d,M ] is a subal-
gebra of L. Let x be an arbitrary element of L. For each element a ∈ A,
we have

[x, [d, a]] = [[x, d], a] + [d, [x, a]].

By the above remark, [x, d] ∈ M . Therefore, [[x, d], a] = 0, because M is
Abelian. Since M is an ideal, [x, a] ∈ M , so that [d, [x, a]] ∈ [d,M ] and
[x, [d, a]] ∈ M . Further, we have

[[d, a], x] = [d, [a, x]]− [a, [d, x]].
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Again, [a, [d, x]] = 0 and [a, x] ∈ M . Therefore, [d, [a, x]] ∈ [d,M ] and
[[d, a], x] ∈ M . This means that [d,M ] is an ideal of L. The choice of
d shows that [d,M ] is a non-zero ideal. Since M is a minimal ideal, we
obtain that M = [d,M ].

Let again x be an arbitrary element of L. As we noted above, [d, x] ∈ M .
The equality M = [d,M ] shows that there exists an element b ∈ M such
that [d, x] = [d, b]. It follows that [d, x − b] = 0, so that x − b = c ∈

AnnrightL (d). Then x = b+ c ∈ M +A, where A = AnnrightL (d).

Let a ∈ A∩M = AnnrightM (d). For an arbitrary element x ∈ L, we have

[d, [a, x]] = [[d, a], x] + [a, [d, x]].

The choice of a shows that [d, a] = 0. Since a ∈ M 6 Leib(L) 6 ζ left(L),
[a, [d, x]] = 0, so that [d, [a, x]] = 0. Since [a, x] = 0, [[a, x], d] = 0. This

means that AnnrightM (d) is an ideal of L. The fact that M is a minimal

ideal implies that either AnnrightM (d) = M or AnnrightM (d) = 〈0〉. The choice

of an element d shows that the equality AnnrightM (d) = M is impossible,

so that 〈0〉 = AnnrightM (d) = A ∩M .
Finally, suppose that AnnleftL (M) = K 6= M . We have noted above that

AnnleftL (M) = AnnL(M). It follows that K is an ideal of L. The obvious
inclusion M 6 K implies that K = M⊕(K∩A). Being a subalgebra of an
Abelian algebra A, K ∩A is also Abelian. If u, v be an arbitrary elements
of K, then u = a1 + c1, v = a2 + c2, where a1, a2 ∈ M , c1, c2 ∈ K ∩ A.
We have

[u, v] = [a1 + c1, a2 + c2] = [a1, a2] + [a1, c2] + [c1, a2] + [c1, c2] = 0.

Then an ideal K is Abelian. On the other hand, Lemma 4 shows that
M is a maximal Abelian ideal of L, and we obtain a contradiction. This
contradiction proves that AnnleftL (M) = M .

Proof of Theorem 3

Conditions (i), (ii) follow from Lemma 4. Conditions (iii), (vi) follow
from Lemma 5.

Proof of Proposition 2

Let M be a monolith of L. By its choice, M is a minimal ideal of L.
By Lemma 1, every subalgebra of L/M is an ideal of L/M . Lemma 3
shows that L/M must be Abelian.
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Suppose that A = AnnL(M) 6= M . Consider firstly the case where M
is Abelian. Choose an element d ∈ A \M . Put D = 〈a,M〉. Since a factor-
algebra L/M is Abelian, D is an ideal of L. The fact that d ∈ AnnL(M)
implies that a subalgebra D is Abelian. Since ζ(L) = 〈0〉, L 6= AnnL(M).
By Lemma 2.3 in [12], we obtain that D includes an L-invariant subalgebra
C such that D = M ⊕ C. Since D 6= M , C is non-zero, and we obtain a
contradiction.

Suppose now that M is non-Abelian. Then A ∩M = 〈0〉, and, again,
we obtain a contradiction. This contradiction shows that AnnL(M) = M .

Proof of Theorem 4

Let M be a monolith of L. By its choice, M is a minimal ideal of L.
By Proposition 2, AnnL(M) = M . In particular, it follows that M is a
maximal Abelian ideal of L. Proposition 2 shows also that the factor-
algebra L/M is Abelian. It follows that [x, y] ∈ M for every pairs of
elements x, y ∈ L. Since 〈0〉 = M ∩ ζ(L), there exists an element d such
that d /∈ AnnL(M). Put

[d,M ] = {[d, a]|a ∈ M} .

Clearly, [d,M ] is a subspace of M . Since M is Abelian, [d,M ] is a subal-
gebra of L. Let x be an arbitrary element of L. For each element a ∈ A,
we have

[[d, a], x] + [[x, d], a] + [[a, x], d] = 0 or [[d, a], x] = −[[a, x], d] = [d, [a, x]].

By the above remark, [x, d] ∈ M . Therefore, [[x, d], a] = 0, because
M is Abelian. Thus, we obtain [[d, a], x] + [[a, x], d] = 0 or [[d, a], x] =
−[[a, x], d] = [d, [a, x]]. Since M is an ideal, [a, x] ∈ M , so that [d, [a, x]] ∈
[d,M ], and [[d, a], x] ∈ M . This means that [d,M ] is an ideal of L.

The choice of d shows that [d,M ] is a non-zero ideal. Since M is a
minimal ideal, we obtain M = [d,M ].

Let again x be an arbitrary element of L. As we noted above, [d, x] ∈ M .
The equality M = [d,M ] shows that there exists an element b ∈ M such
that [d, x] = [d, b]. It follows that [d, x−b] = 0, so that x−b = c ∈ AnnL(d).
Then x = b+ c ∈ M +A, where A = AnnL(d).

Let a ∈ A ∩M = AnnM (d). For an arbitrary element x ∈ L, we have

[[a, x], d] + [[d, a], x] + [[x, d], a] = 0.

The choice of a shows that [d, a] = 0. By the above remark, [x, d] ∈
M . Therefore, [[x, d], a] = 0, because M is Abelian. Thus, we obtain
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[[a, x], d] = 0, and this implies that AnnM (d) is an ideal of L. The choice
of an element d shows that the equality AnnM (d) = M is impossible, so
that 〈0〉 = AnnM (d) = A ∩M .

The equality L = M ⊕ C implies that d = c + b for some elements
c ∈ C, b ∈ M . Then c = d− b. If a is an arbitrary element of M , then the
equality M = [d,M ] implies that there is an element v ∈ M such that
−b = [d, v]. It follows that c = d+ [d, v], that is, c = cv(d). As we have
noted above, the mapping cv is linear. Let x, y be arbitrary elements of L.
We have

cv([x, y]) = [x, y] + [[x, y], v] = [x, y],

because [x, y] ∈ M , and the ideal M is Abelian. Further, we have

[cv(x), cv(y)] = [x+ [x, v], y + [y, v]]

= [x, y] + [[x, v], y] + [x, [y, v]] + [[x, v], [y, v]]

= [x, y] + [[x, v], y] + [x, [y, v]]

and
[[x, v], y] + [[y, x], v] + [[v, y], x] = 0.

Again, [[y, x], v] = 0. So, we obtain

[[x, v], y] + [[v, y], x] = 0

or
[[x, v], y] = −[[v, y], x] = [x, [v, y]] = −[x, [y, v]].

It follows that [cv(x), cv(y)] = [x, y] = cv([x, y]). Hence, the mapping cv
is a homomorphism.

Let x, y be two arbitrary elements of L. Suppose that x 6= y. If
x, y ∈ M , then cv(x) = x + [x, v] = x 6= y = y + [y, v] = cv(y). If
x ∈ M , y /∈ M , then cv(x) = x ∈ M , cv(y) = y + [y, v] /∈ M , so that
cv(x) 6= cv(y). Finally, let x, y /∈ M . We have x = u1 + b1, y = u2 + b2,
where u1, u2 ∈ M , b1, b2 ∈ A. Then [x, v] = [b1, v], [y, v] = [b2, v]. Suppose
that cv(x) = cv(y), i.e.,

x+ [x, y] = u1 + b1 + [b1, v] = y + [y, v] = u2 + b2 + [b2, v].

It follows that b1−b2 = u2−u1+[b2, v]− [b1, v]. The equality A∩M = 〈0〉
implies that b1 − b2 = 0 and b1 = b2. Then [b1, v] = [b2, v], and we
obtain that u2 − u1 = 0 and u1 = u2. Thus, x = y, and we obtain a
contradiction, which proves that cv(x) 6= cv(y). Hence, the mapping cv is
a monomorphism.
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Let x be an arbitrary element of L, x = u1+b1, where u1 ∈ M , b1 ∈ A,
and y = b1 + u1 − [b1, v]. Then

cv(y) = y + [y, v] = b1 + u1 − [b1, v] + [b1 + u1− [b1, v], v]

= b1 + u1 − [b1, v] + [b1, v] = b1 + u1 = x.

Hence, the mapping cv is an epimorphism and, therefore, an automorphism.
We get

L = cv(L) = cv(M)⊕ cv(A) = M ⊕ cv(A).

If x ∈ A, then [d, a] = 0 and [c, cv(x)] = [cv(d), cv(x)] = [d, x] = 0.
It follows that cv(A) 6 AnnL(c). In turn, it follows that AnnL(c) =
cv(A) ⊕ (M ∩ AnnL(c)). Clearly, [c,M ] = [d,M ]. It follows that 〈0〉 =
AnnM (c) = M ∩AnnL(c). Thus, AnnL(c) = cv(A). Since the subalgebra
C is Abelian, C 6 AnnL(c). This inclusion together with the equality
L = M ⊕AnnL(c) imply that C = AnnL(c) = cv(A).
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