Maximal subgroup growth of a few polycyclic groups*

A. Kelley and E. Wolfe

Communicated by R. A. Grigorchuk

Abstract. We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let $G_{k}=\left\langle x_{1}, x_{2}, \ldots, x_{k}\right|$ $x_{i} x_{j} x_{i}^{-1} x_{j}$ for all $\left.i<j\right\rangle$, so $G_{k}=\mathbb{Z} \rtimes(\mathbb{Z} \rtimes(\mathbb{Z} \rtimes \cdots \rtimes \mathbb{Z}))$. Then for all integers $k \geqslant 2$, we calculate $m_{n}\left(G_{k}\right)$, the number of maximal subgroups of G_{k} of index n, exactly. Also, for infinitely many groups H_{k} of the form $\mathbb{Z}^{2} \rtimes G_{2}$, we calculate $m_{n}\left(H_{k}\right)$ exactly.

Introduction

Let G be a finitely generated group. We denote by $a_{n}(G)$ the number of subgroups of G of index n (which is necessarily finite), and we denote by $m_{n}(G)$ the number of maximal subgroups of G of index n. Subgroup growth is the study of the growth of different subgroup counting functions in groups, such as $a_{n}(G), m_{n}(G)$, and $s_{n}(G):=\sum_{k=1}^{n} a_{k}(G)$.

People have made great progress in understanding subgroup growth. One highlight is the classification of all finitely generated groups for which $a_{n}(G)$ is bounded above by a polynomial in n (see chapter 5 in [7]). Also, Jaikin-Zapirain and Pyber made a significant advance in [3], where they give a "semi-structural characterization" of groups G for which $m_{n}(G)$ is bounded above by a polynomial in n.

[^0]For calculating the word growth in a group with polynomial growth, the degree is given by a nice, simple formula. However, for subgroup growth, it is often very challenging, given a group G of polynomial subgroup growth, to calculate its degree of polynomial growth $\operatorname{deg}(G)$:

$$
\operatorname{deg}(G)=\inf \left\{\alpha \mid a_{n}(G) \leqslant n^{\alpha} \text { for all large } n\right\}=\limsup \frac{\log a_{n}(G)}{\log n}
$$

Similarly, for groups G with polynomial maximal subgroup growth, it is often difficult to determine $\operatorname{mdeg}(G)$, where

$$
\operatorname{mdeg}(G)=\inf \left\{\alpha \mid m_{n}(G) \leqslant n^{\alpha} \text { for all large } n\right\}=\lim \sup \frac{\log m_{n}(G)}{\log n}
$$

Progress has been made in both areas. In [9], Shalev calculated $\operatorname{deg}(G)$ exactly for certain metabelian groups and for all virtually abelian groups. In [6], the first author calculated $\operatorname{mdeg}(G)$ for some metabelian groups, and in [4] he does so for all virtually abelian groups.

The groups G for which $\operatorname{mdeg}(G)$ is known are rare, and rarer still are groups for which an exact formula for $m_{n}(G)$ is known. In [2], Gelman gives a beautiful, exact formula for $a_{n}(\operatorname{BS}(a, b))$, assuming $\operatorname{gcd}(a, b)=1$, where $\mathrm{BS}(a, b)$ is the Baumslag-Solitar group having presentation $\langle x, y|$ $\left.y^{-1} x^{a} y=x^{b}\right\rangle$. Gelman's argument can be easily modified to give an exact formula for $m_{n}(B S(a, b))$, where again $\operatorname{gcd}(a, b)=1$. (Alternatively, a different argument, that explains why $\operatorname{gcd}(a, b)=1$ is such a nice assumption, is given by the first author in [5].)

Since there are so few groups G for which $m_{n}(G)$ has been calculated, this paper gives exact formulas for two infinite classes of polycyclic groups.

For $k \geqslant 2$, consider the group G_{k} with presentation

$$
\left.\left\langle x_{1}, x_{2}, \ldots, x_{k}\right| x_{i} x_{j} x_{i}^{-1} x_{j} \text { for all } i<j\right\rangle
$$

Then G_{k} has the form $\mathbb{Z} \rtimes(\mathbb{Z} \rtimes(\mathbb{Z} \rtimes \cdots \rtimes \mathbb{Z}))$, where the i th \mathbb{Z}, reading from right to left, is generated by x_{i}. Note that the Hirsch length of G_{k} is k, and so if $i \neq j$, then $G_{i} \not \not G_{j}$. In Theorem 3, we calculate $m_{n}\left(G_{k}\right)$ exactly for $k \geqslant 2$.

Let G_{2} be as above. Note that G_{2} is the Baumslag-Solitar group $\mathrm{BS}(1,-1)$, also known as the fundamental group of the Klein bottle. We will write $G_{2}=\mathbb{Z} \rtimes \mathbb{Z}$ as $\langle b\rangle \rtimes\langle a\rangle$ instead of $\left\langle x_{2}\right\rangle \rtimes\left\langle x_{1}\right\rangle$. For $k \in \mathbb{Z}$, we will define the group H_{k}, which is of the form $\mathbb{Z}^{2} \rtimes G_{2}$. The generator a acts (by conjugation) on \mathbb{Z}^{2} by multiplication by the matrix $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and the generator b acts (by conjugation) on \mathbb{Z}^{2} by multiplication by the
matrix $B_{k}=\left(\begin{array}{cc}0 & 1 \\ -1 & k\end{array}\right)$. Then in Theorem 9 , we calculate $m_{n}\left(H_{k}\right)$ exactly for all $k \in \mathbb{Z}$. A consequence of this theorem is that among the groups H_{k}, there are infinitely many that are pairwise non-isomorphic. Also, it is interesting that $\operatorname{mdeg}\left(H_{2}\right)=2$, but $\operatorname{mdeg}\left(H_{k}\right)=1$ for all $k \neq 2$.

One reason for studying the two families $\left\{G_{k}\right\}_{k \geqslant 2}$ and $\left\{H_{k}\right\}_{k \in \mathbb{Z}}$ is that the first author thinks that it might be possible to extend the methods of [6] to apply to the class of polycyclic groups. In particular, it might be feasible to give an exact formula for $\operatorname{mdeg}(G)$ when G is a group of the form $A_{k} \rtimes\left(A_{k-1} \rtimes\left(A_{k-2} \rtimes \ldots \rtimes A_{1}\right)\right)$, where each A_{i} is a finitely generated abelian group. Another reason why we chose the particular infinite families we did is that (besides G_{2}) they appeared to be the easiest such groups to work with that aren't of the form $A_{2} \rtimes A_{1}$.

1. Groups of the form $\mathbb{Z} \rtimes(\mathbb{Z} \rtimes(\mathbb{Z} \rtimes \cdots \rtimes \mathbb{Z}))$

For a group $G=N \rtimes H$ with N abelian, to calculate $m_{n}(G)$, it is useful to consider the H-module structure given by G on N. See Lemma 5 from [6].

Let G_{k} be as in the introduction, and let $G_{1}=\mathbb{Z}$. For a group G and N a G-module, recall that a function $\delta: G \rightarrow N$ is called a derivation (or a 1-cocycle) if $\delta(g h)=\delta(g)+g \cdot \delta(h)$ for all $g, h \in G$. The set of derivations from G to N is denoted $\operatorname{Der}(G, N)$. In the following lemma, we will use the fact that if $\delta \in \operatorname{Der}(G, N)$, then for $g \in G$, we have $\delta\left(g^{-1}\right)=-g^{-1} \delta(g)$ which follows from the fact that $\delta\left(g^{-1} g\right)=\delta(1)=0$.

Lemma 1. Let S be a G_{k}-module. There is a one-to-one correspondence between the set $\operatorname{Der}\left(G_{k}, S\right)$ and the set Δ of all functions δ : $\left\{x_{1}, x_{2}, \ldots x_{k}\right\} \rightarrow S$ satisfying

$$
\begin{equation*}
\left(1-x_{j}^{-1}\right) \delta\left(x_{i}\right)=\left(-x_{i}-x_{j}^{-1}\right) \delta\left(x_{j}\right) \quad \text { for all } i, j \text { with } i<j \tag{*}
\end{equation*}
$$

Proof. If $\delta \in \Delta$, then exercise 3(a) in [1] (pg. 90) (or Lemma 2.20 from [4]), gives us a unique derivation $\delta: F_{k} \rightarrow S$, where F_{k} is the free group on k generators and the action of F_{k} on S is the induced action. So by slight abuse of notation, by taking δ in Δ, we mean the derivation of the free group F_{k} that corresponds to the map $\delta \in \Delta$.

Let δ be an element either of $\operatorname{Der}\left(G_{k}, S\right)$ or of Δ. We will show that $\delta\left(x_{i} x_{j} x_{i}^{-1} x_{j}\right)=0$ for all $i<j$ if and only if $(*)$ holds. Fix i and j with
$i<j$. Then

$$
\begin{aligned}
\delta\left(x_{i} x_{j} x_{i}^{-1} x_{j}\right) & =\delta\left(x_{i}\right)+x_{i} \delta\left(x_{j}\right)+x_{i} x_{j} \delta\left(x_{i}^{-1}\right)+x_{i} x_{j} x_{i}^{-1} \delta\left(x_{j}\right) \\
& =\delta\left(x_{i}\right)+x_{i} \delta\left(x_{j}\right)-x_{i} x_{j} x_{i}^{-1} \delta\left(x_{i}\right)+x_{j}^{-1} \delta\left(x_{j}\right) \\
& =\delta\left(x_{i}\right)+x_{i} \delta\left(x_{j}\right)-x_{j}^{-1} \delta\left(x_{i}\right)+x_{j}^{-1} \delta\left(x_{j}\right) \\
& =\left(\delta\left(x_{i}\right)-x_{j}^{-1} \delta\left(x_{i}\right)\right)-\left(-x_{i} \delta\left(x_{j}\right)-x_{j}^{-1} \delta\left(x_{j}\right)\right) \\
& =\left(1-x_{j}^{-1}\right) \delta\left(x_{i}\right)-\left(-x_{i}-x_{j}^{-1}\right) \delta\left(x_{j}\right)
\end{aligned}
$$

If $\delta \in \operatorname{Der}\left(G_{k}, S\right)$, then $\delta\left(x_{i} x_{j} x_{i}^{-1} x_{j}\right)=0$ because $\delta(1)=0$, and so $(*)$ holds. Conversely, if $\delta \in \Delta$, then that $(*)$ holds implies $\delta\left(x_{i} x_{j} x_{i}^{-1} x_{j}\right)=0$ for all $i<j$, in which case Lemma 2.19 from [4], which is basically exercise 4(a) in [1] (pg. 90), gives a derivation δ from G_{k} to S.

Lemma 2. Consider $\mathbb{Z} / p \mathbb{Z}$, a simple G_{k}-module, where each generator x_{i} of G_{k} acts on $\mathbb{Z} / p \mathbb{Z}$ by multiplication by -1 . Then

$$
\left|\operatorname{Der}\left(G_{k}, \mathbb{Z} / p \mathbb{Z}\right)\right|= \begin{cases}2^{k} & \text { if } p=2 \\ p & \text { if } p \neq 2\end{cases}
$$

Proof. If $p=2$, then the action of G_{k} on $\mathbb{Z} / 2 \mathbb{Z}$ is trivial, and so $\left|\operatorname{Der}\left(G_{k}, \mathbb{Z} / 2 \mathbb{Z}\right)\right|=\left|\operatorname{Hom}\left(G_{k}, \mathbb{Z} / 2 \mathbb{Z}\right)\right|$, which is 2^{k}.

Next, suppose $p \neq 2$. The action of $\left(1-x_{i}^{-1}\right)$ and $\left(-x_{i}-x_{j}^{-1}\right)$ on $\mathbb{Z} / p \mathbb{Z}$ is multiplication by 2 , which is invertible since $p \neq 2$. So $(*)$ from Lemma 1 becomes $2 \delta\left(x_{i}\right)=2 \delta\left(x_{j}\right)$ for all $i<j$, which simplifies to $\delta\left(x_{i}\right)=\delta\left(x_{j}\right)$ for all $i<j$.

So by Lemma 1, we may choose a derivation by picking $\delta\left(x_{k}\right)$ to be any element of $\mathbb{Z} / p \mathbb{Z}$, and then letting $\delta\left(x_{i}\right)=\delta\left(x_{k}\right)$ for all $i<k$. Thus $\left|\operatorname{Der}\left(G_{k}, \mathbb{Z} / p \mathbb{Z}\right)\right|=|\mathbb{Z} / p \mathbb{Z}|=p$.

Theorem 3. Let G_{k} be as above. Then

$$
m_{n}\left(G_{k}\right)=\left\{\begin{array}{ll}
1+(k-1) n & \text { if } n \text { is a prime with } n>2 \\
2^{k}-1 & \text { if } n=2 \\
0 & \text { if } n \text { is not prime. }
\end{array} \quad(* *)\right.
$$

Proof. Consider N, the subgroup of G_{k} generated by x_{k}. Then $N \cong \mathbb{Z}$, and $N \unlhd G_{k}$ with $G_{k} / N \cong G_{k-1}$. So, N is a G_{k-1}-module. Since $G_{k} \cong$ $N \rtimes G_{k-1}$, Lemma 5 from [6] gives us

$$
m_{n}\left(G_{k}\right)=m_{n}\left(G_{k-1}\right)+\sum_{N_{0}}\left|\operatorname{Der}\left(G_{k-1}, N / N_{0}\right)\right|
$$

where the sum is over all maximal submodules N_{0} of N of index n. Of course, the maximal submodules of N are precisely the subgroups of prime index. Thus if n is not prime, then $m_{n}\left(G_{k}\right)=0$; this follows by induction on k.

Fix a prime p. For both cases $p>2$ and $p=2$, we proceed by induction on k.

First, let $p>2$, and let $k=1$. Then $m_{p}\left(G_{1}\right)=1=1+(k-1) p$. Assume ($* *$) holds for $k=a$. Then $m_{p}\left(G_{a}\right)=1+(a-1) p$. Consider $k=a+1$. We have

$$
m_{p}\left(G_{a+1}\right)=m_{p}\left(G_{a}\right)+\sum_{N_{0}}\left|\operatorname{Der}\left(G_{a}, N / N_{0}\right)\right|
$$

By Lemma 2, $\sum_{N_{0}}\left|\operatorname{Der}\left(G_{a}, N / N_{0}\right)\right|=p$. So $m_{p}\left(G_{a+1}\right)=1+(a-1) p+$ $p=1+(a+1-1) p$, the desired result.

Finally, let $p=2$, and let $k=1$. Then $m_{2}\left(G_{1}\right)=1=2^{1}-1$. Assume $(* *)$ holds for $k=a$. Then $m_{2}\left(G_{a}\right)=2^{a}-1$. Consider $k=a+1$. Then $m_{2}\left(G_{a+1}\right)=m_{2}\left(G_{a}\right)+\left|\operatorname{Der}\left(G_{a}, \mathbb{Z} / 2 \mathbb{Z}\right)\right|$. By Lemma $2,\left|\operatorname{Der}\left(G_{a}, \mathbb{Z} / 2 \mathbb{Z}\right)\right|=$ 2^{a}. Thus $m_{2}\left(G_{a+1}\right)=2^{a}-1+2^{a}=2^{a+1}-1$, the desired result.

2. Some groups of the form $\mathbb{Z}^{2} \rtimes(\mathbb{Z} \rtimes \mathbb{Z})$

Next, we will define the groups H_{k}, which are of the form $\mathbb{Z}^{2} \rtimes(\mathbb{Z} \rtimes \mathbb{Z})$. We will write $G_{2}=\mathbb{Z} \rtimes \mathbb{Z}$ as $\langle b\rangle \rtimes\langle a\rangle$ instead of $\left\langle x_{2}\right\rangle \rtimes\left\langle x_{1}\right\rangle$. Recall that $G_{2}=\left\langle a, b \mid a b a^{-1} b\right\rangle$. To form a group of the form $\mathbb{Z}^{2} \rtimes(\mathbb{Z} \rtimes \mathbb{Z})$, what we need is an action of G_{2} on \mathbb{Z}^{2}, and so, we just need to find matrices $A, B \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $A B A^{-1} B=I_{2}$. With this, we can say that the action (by conjugation) of the generator a on \mathbb{Z}^{2} is multiplication by the matrix A, and the generator b acts (by conjugation) on \mathbb{Z}^{2} by multiplication by the matrix B.

We will take $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Let $B=\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)$. Then $A B A^{-1} B=$ $\left(\begin{array}{cc}y^{2}+w z & y z+x z \\ w y+x w & w z+x^{2}\end{array}\right)$, and we will find solutions which make this equal I_{2}. We thus have $y^{2}+w z=1, w z+x^{2}=1, w y+x w=0$ (equivalently, $w=0$ or $x+y=0$), and $y z+x z=0$ (equivalently, $z=0$ or $x+y=0$). Also, we have $w z-x y= \pm 1$. One way to solve these equations is to let $w=0$. Then $x, y= \pm 1$. Take $x=1$. If we take $y=-1$, then z can be any integer.

Let the group H_{k} be the group formed when we take B to be $B_{k}=$ $\left(\begin{array}{cc}0 & 1 \\ -1 & k\end{array}\right)$. Our choice of A and B is in part to make calculating $m_{n}\left(H_{k}\right)$ be as simple as possible, but other choices could also be considered.

For a module M, we let $N \leqslant M$ denote that N is a submodule of M.
Lemma 4. Consider \mathbb{Z}^{2} to be a G_{2}-module as above. Let M be a maximal submodule of \mathbb{Z}^{2}. Then $p \mathbb{Z}^{2} \leqslant M$ for some prime p.

Proof. First, recall that every maximal subgroup of a polycyclic group has prime power index; this follows, for example, from the proof of Result 5.4.3 (iii) in [8].

Let H_{k} be as above, so $H_{k}=\mathbb{Z}^{2} \rtimes G_{2}$. We claim that M yields a maximal subgroup of H_{k} with index equal to $\left[\mathbb{Z}^{2}: M\right]$. Indeed, we have that $H_{k} / M \cong\left(\mathbb{Z}^{2} / M\right) \rtimes G_{2}$. Thus \mathbb{Z}^{2} / M has a complement in $\left(\mathbb{Z}^{2} / M\right) \rtimes G_{2}$, which by Lemma 3 of [6] must be maximal and of index $\left[\mathbb{Z}^{2}: M\right]$. Then just take its preimage in H_{k}.

Since M yields a maximal subgroup of H_{k} with index equal to $\left[\mathbb{Z}^{2}: M\right]$ and H_{k} is polycyclic, we must have $\left[\mathbb{Z}^{2}: M\right]=p^{j}$ for some prime p. Therefore, $p^{j} \mathbb{Z}^{2} \leqslant M$. Consider the group $\mathbb{Z}^{2} / p^{j} \mathbb{Z}^{2}$. Its Frattini subgroup is $p \mathbb{Z}^{2} / p^{j} \mathbb{Z}^{2}$, and therefore, $p \mathbb{Z}^{2} / p^{j} \mathbb{Z}^{2}+M / p^{j} \mathbb{Z}^{2}=M / p^{j} \mathbb{Z}^{2}$. And hence $p \mathbb{Z}^{2}+M=M$, that is, $p \mathbb{Z}^{2} \leqslant M$.

For a module N and for $n_{i} \in N$ for $i=1, \ldots, t$, the submodule they generate is denoted $\left\langle n_{1}, n_{2}, \ldots, n_{t}\right\rangle$. For a prime p, consider the submodule $M_{p, \mathbf{w}}$ of \mathbb{Z}^{2}, where $M_{p, \mathbf{w}}=\left\langle\binom{ p}{0},\binom{0}{p}, \mathbf{w}\right\rangle$, with $\mathbf{w} \in \mathbb{Z}^{2}$. We will assume $\mathbf{w} \notin p \mathbb{Z}^{2}$. Then $M_{p, \mathbf{w}}$ is a proper (and hence maximal) submodule of \mathbb{Z}^{2} if and only if the image of \mathbf{w} in $\mathbb{Z} / p \mathbb{Z}^{2}$ is an eigenvector of both matrices A and B_{k}, considered as elements of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

Let $\mathbf{v}=\binom{1}{1}$ and $\mathbf{u}=\binom{1}{-1}$, and let $M_{p}=M_{p, \mathbf{v}}$ and $M_{p,-1}=M_{p, \mathbf{u}}$. Of course, \mathbf{v} and \mathbf{u} are eigenvectors of $A \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ for all p. (And $\mathbf{v} \equiv \mathbf{u}$ $(\bmod 2)$. Hence, $M_{2}=M_{2,-1}$.)

Lemma 5. With the above notation, we have that M_{p} is a maximal submodule of \mathbb{Z}^{2} if and only if $p \mid k-2$. Also, $M_{p,-1}$ is a maximal submodule of \mathbb{Z}^{2} if and only if $p \mid k+2$. Further, $M_{p, \mathbf{w}}$ is not a proper submodule of \mathbb{Z}^{2} unless $M_{p, \mathbf{w}}=M_{p}$ or $M_{p,-1}$. Thus, $p \mathbb{Z}^{2}$ is a maximal submodule of \mathbb{Z}^{2} if and only if $p \nmid(k-2)(k+2)$. Finally there are no maximal submodules of \mathbb{Z}^{2} besides (the appropriate) $M_{p}, M_{p,-1}$, and $p \mathbb{Z}^{2}$. Proof. Let \mathbf{v} and \mathbf{u} be as above, but consider them as elements of $\mathbb{Z}^{2} / p \mathbb{Z}^{2}$. We have that $B_{k} \mathbf{v}=\left({ }_{k-1}^{1}\right)$, and so $B_{k} \mathbf{v}=\lambda \mathbf{v}$ for some $\lambda \in \mathbb{Z}$ if and only if $k-1 \equiv 1(\bmod p)$, i.e. if and only if $p \mid k-2$.

Also, $B_{k} \mathbf{u}=\binom{-1}{-1-k}$, and since multiples of \mathbf{u} are characterized by the sum of their coordinates being $0(\bmod p), B_{k} \mathbf{u}=\lambda \mathbf{u}$ for some $\lambda \in \mathbb{Z}$ if and only if $-1-1-k \equiv 0(\bmod p)$, which is equivalent to $p \mid k+2$.

That no other $M_{p, \mathbf{w}}$ is a proper submodule of \mathbb{Z}^{2} follows from the fact that any eigenvector of A is a multiple of \mathbf{v} or of \mathbf{u}.

Next, let $p \nmid(k-2)(k+2)$. Since neither M_{p} nor $M_{p,-1}$ is a maximal submodule of \mathbb{Z}^{2} and neither is any other $M_{p, \mathbf{w}}$, we have that $p \mathbb{Z}^{2}$ is a maximal submodule of \mathbb{Z}^{2}. And if $p \mid(k-2)(k+2)$, then $p \mid k-2$ or $p \mid k+2$, in which case M_{p} or $M_{p,-1}$ is a proper submodule of \mathbb{Z}^{2} that properly contains $p \mathbb{Z}^{2}$.

The final statement of this lemma follows from the previous parts of this lemma, together with Lemma 4; indeed it follows from Lemma 4 that any maximal submodule is either $p \mathbb{Z}^{2}$ or of the form $M_{p, \mathbf{w}}$.

For a module N, we let $\tilde{m}_{n}(N)$ denote the number of maximal submodules of N of index n.

Corollary 6. We have

$$
\tilde{m}_{n}\left(\mathbb{Z}^{2}\right)= \begin{cases}1 & \text { if } n \text { is a prime } p, \text { and } p \mid(k-2)(k+2) \\ 1 & \text { if } n=p^{2} \text { for some prime } p, \text { and } p \nmid(k-2)(k+2) \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. Note that if $p \mid k-2$ and $p \mid k+2$, then $k-2 \equiv k+2(\bmod p)$, whence $p=2$. And using the previous notation, recall that $M_{2}=M_{2,-1}$.

This corollary then follows from Lemma 5.
Lemma 7. Consider G_{2} with presentation $\left\langle a, b \mid a b a^{-1} b\right\rangle$, as described above. Let S be a G_{2}-module. Then there is a one-to-one correspondence between the set $\operatorname{Der}\left(G_{2}, S\right)$ and the set of functions $\delta:\{a, b\} \rightarrow S$ satisfying

$$
\begin{equation*}
\left(1-b^{-1}\right) \delta(a)=\left(-a-b^{-1}\right) \delta(b) \tag{***}
\end{equation*}
$$

Proof. This follows from Lemma 1.
Lemma 8. Fix k, and let \mathbb{Z}^{2} have the G_{2}-module structure given above. For a given prime p, define S as either $\mathbb{Z}^{2} / M_{p}, \mathbb{Z}^{2} / M_{p,-1}$ or $\mathbb{Z}^{2} / p \mathbb{Z}^{2}$ such that S is simple (see Lemma 5). Any simple quotient of \mathbb{Z}^{2} must be some such S. Then

$$
\left|\operatorname{Der}\left(G_{2}, S\right)\right|= \begin{cases}|S|^{2}=p^{2} & \text { if } p \mid k-2 \\ |S|=p & \text { if } p \mid k+2 \text { and } p>2 \\ |S|=p^{2} & \text { if } p \nmid(k-2)(k+2)\end{cases}
$$

Proof. That any simple quotient of \mathbb{Z}^{2} is some such S follows from Lemma 5.

Let $\delta \in \operatorname{Der}\left(G_{2}, S\right)$ (to be specified later). The element $1-b^{-1}$ in $(* * *)$ from Lemma 7 acts on $\delta(a)$ by multiplication by the matrix $I_{2}-B_{k}^{-1}=$ $\left(\begin{array}{cc}1-k & 1 \\ -1 & 1\end{array}\right)$ which has determinant $2-k$, and the element $-a-b^{-1}$ acts by multiplication by the matrix $-A-B_{k}^{-1}=\left(\begin{array}{cc}-k & 0 \\ -2 & 0\end{array}\right)$.

First, suppose $p \nmid k-2$. Then by Lemma 5, either $M_{p,-1}$ or $p \mathbb{Z}^{2}$ is a maximal submodule of \mathbb{Z}^{2}, depending on whether or not $p \mid k+2$. Notice that if $p=2$, then $p \mid k+2$ implies $p \mid k-2$, and hence if $p \mid k+2$, then $p>2$ (because we are assuming here that $p \nmid k-2$).

In this case, $I_{2}-B_{k}^{-1}$ is invertible, considered as a 2×2 matrix over \mathbb{F}_{p}. Hence $(* * *)$ from Lemma 7 may be written as

$$
\delta(a)=\left(I_{2}-B_{k}^{-1}\right)^{-1}\left(-A-B_{k}^{-1}\right) \delta(b)
$$

And so in this case, we are free to choose $\delta(b)$ to be any element of S, and then this determines what $\delta(a)$ must be. Thus we would have $\left|\operatorname{Der}\left(G_{2}, S\right)\right|=|S|$. If $p \mid k+2$, then $S=\mathbb{Z}^{2} / M_{p,-1}$, and $|S|=p$. If $p \nmid k+2$, then $S=\mathbb{Z}^{2} / p \mathbb{Z}^{2}$, and $|S|=p^{2}$.

Next, suppose that $p \mid k-2$. Then $I_{2}-B_{k}^{-1} \equiv\left(\begin{array}{cc}-1 & 1 \\ -1 & 1\end{array}\right)$ and $-A-B_{k}^{-1} \equiv$ $\left(\begin{array}{cc}-2 & 0 \\ -2 & 0\end{array}\right)(\bmod p)$. Also, $p \mid k-2$ implies (by Lemma 5$)$ that M_{p} is a maximal submodule of \mathbb{Z}^{2}. By Corollary 6 , we have that $\tilde{m}_{p}\left(\mathbb{Z}^{2}\right) \leqslant 1$, and thus $S=\mathbb{Z}^{2} / M_{p}$.

We have that $\left\{\binom{i}{0}: 0 \leqslant i<p\right\}$ is a complete set of representatives of \mathbb{Z}^{2} / M_{p}. Then letting $\delta(a)=\binom{i}{0}+M_{p}$ and $\delta(b)=\binom{j}{0}+M_{p}$, we have that equation $(* * *)$ from Lemma 7 holds because $\left(I_{2}-B_{k}^{-1}\right)\binom{i}{0}=\binom{-i}{-i} \in M_{p}$ and $\left(-A-B_{k}^{-1}\right)\binom{j}{0}=\binom{-2 j}{-2 j} \in M_{p}$. And so both $\left(1-b^{-1}\right) \delta(a)$ and $\left(-a-b^{-1}\right) \delta(b)$ are the trivial element of \mathbb{Z}^{2} / M_{p}. Therefore, in this case, we have $|S|^{2}$ options for a derivation from G_{2} to S.

Theorem 9. We have
$m_{n}\left(H_{k}\right)= \begin{cases}n^{2}+n+1 & \text { if } n \text { is prime, and } n \mid k-2 \\ 2 n+1 & \text { if } n \text { is prime, and } n \mid k+2 \text { with } p>2 \\ n+1 & \text { if } n \text { is prime, and } n \nmid(k-2)(k+2) \\ n & \text { if } n=p^{2} \text { for some prime } p, \text { and } \\ & p \nmid(k-2)(k+2) \\ 0 & \text { otherwise. }\end{cases}$

Proof. Consider $\mathbb{Z}^{2} \unlhd \mathbb{Z}^{2} \rtimes G_{2}$. By Lemma 5 from [6], we have

$$
\begin{equation*}
m_{n}\left(H_{k}\right)=m_{n}\left(G_{2}\right)+\sum_{N_{0}}\left|\operatorname{Der}\left(G_{2}, \mathbb{Z}^{2} / N_{0}\right)\right| \tag{1}
\end{equation*}
$$

where the sum is over all maximal submodules N_{0} of \mathbb{Z}^{2} of index n. Also, by Theorem 3, we have

$$
m_{n}\left(G_{2}\right)= \begin{cases}n+1 & \text { if } n \text { is a prime } \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

We have that Lemma 8 and Corollary 6 together imply that

$$
\sum_{N_{0}}\left|\operatorname{Der}\left(G_{2}, \mathbb{Z}^{2} / N_{0}\right)\right|= \begin{cases}n^{2} & \text { if } n \text { is prime, and } n \mid k-2 \tag{3}\\ n & \text { if } n \text { is prime and } n \mid k+2 \text { with } n>2 \\ n & \text { if } n=p^{2} \text { for some prime } p, \text { and } \\ 0 \nmid l(k-2)(k+2) \\ 0 & \text { otherwise. }\end{cases}
$$

The present theorem follows from (1) by adding (2) and (3).
For $n \in \mathbb{Z}$, let $\pi(n)$ denote the set of prime numbers dividing n. Then a consequence of Theorem 9 is that for $i, j \in \mathbb{Z}$, if $\pi(i-2) \neq \pi(j-2)$ or $\pi(i+2) \neq \pi(j+2)$, then $H_{i} \neq H_{j}$. Also, note that $\operatorname{mdeg}\left(H_{2}\right)=2$ (because $\pi(0)$ is the set of all primes), and for all $k \neq 2, \operatorname{mdeg}\left(H_{k}\right)=1$.

Acknowledgment

We would like to thank the referee for a detailed referee report that helped us improve this paper.

References

[1] K. Brown. Cohomology of groups. Springer-Verlag, New York, 1982.
[2] E. Gelman. (2005). Subgroup growth of Baumslag-Solitar groups. J. Group Theory, 8(no. 6), 801-806.
[3] A. Jaikin-Zapirain and L. Pyber. (2011). Random generation of finite and profinite groups and group enumeration. Ann. of Math. (2), 173(no. 2):769-814.
[4] A. Kelley. Maximal Subgroup Growth of Some Groups. PhD thesis, State University of New York at Binghamton, (2017).
[5] A. Kelley. (2020). Subgroup growth of all Baumslag-Solitar groups. New York J. of Math., 218-229; http://nyjm.albany .edu/j/2020/26-11.html.
[6] A. Kelley. Maximal subgroup growth of some metabelian groups. To appear in Comm. Algebra. Preprint (2018), https://arxiv.org/abs/1807.03423.
[7] A. Lubotzky and D. Segal. Subgroup growth. Birkhauser Verlag, Basel, 2003.
[8] D. Robinson. A course in the theory of groups. Springer-Verlag, New York, second edition, 1996.
[9] A. Shalev. (1999). On the degree of groups of polynomial subgroup growth. Trans. Amer. Math. Soc., 351(no. 9):3793-3822.

Contact information

Andrew James Department of Mathematics and Computer Kelley Science
14 E. Cache La Poudre St.
Colorado Springs, CO, 80903, USA
E-Mail(s): akelley2500@gmail.com

Elizabeth Ciorsdan Elizabeth Wolfe 1848
Dwyer Wolfe Colorado College
902 N Cascade Ave
Colorado Springs, CO 80946, USA
E-Mail(s): e_wolfe@coloradocollege.edu

Received by the editors: 03.12.2019
and in final form 04.01.2021.

[^0]: *This paper was done with the support of the Student Collaborative Research grant at Colorado College.

 2020 MSC: 20E07.
 Key words and phrases: maximal subgroup growth, polycyclic groups, semidirect products.

