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Decompositions of set-valued mappings

I. Protasov

On 100th anniversary of Professor V. S. Čarin∗

Abstract. Let X be a set, BX denotes the family of all

subsets of X and F : X → BX be a set-valued mapping such that

x ∈ F (x), sup
x∈X

|F (x)| < κ, sup
x∈X

|F−1(x)| < κ for all x ∈ X

and some infinite cardinal κ. Then there exists a family F of bijective

selectors of F such that |F| < κ and F (x) = {f(x) : f ∈ F} for

each x ∈ X. We apply this result to G-space representations of

balleans.

1. Decompositions

For a set X, BX denotes the family of all subsets of X. Given a
set-valued mapping F : X → BX , any function f : X → X such that,
for each x ∈ X, f(x) ∈ F (x) is called a selector of F . We say that a
selector f is bijective if f : X → X is a bijection. For x ∈ X, we denote
F−1(x) = {y ∈ X : x ∈ F (y)}.

In section 1 we prove the mail result and apply it to G-space represen-
tations of balleans in section 2.

Theorem 1. Let F : X → BX be a set-valued mapping such that x ∈ F (x),
supx∈X |F (x)| < κ, supx∈X |F−1(x)| < κ for each x ∈ X and some infinite
cardinal κ. Then there exists a family F of bijective selectors of X such
that |F| < κ and F (x) = {f(x) : f ∈ F} for each x ∈ X.
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encouraged and supported the activity of students and collaborators in many areas, in
particular, in combinatorics.
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Proof. We consider two cases.

Case κ = ω. We put P = {F (x) : x ∈ X} and define a graph Γ with the
set of vertices P and the set of edges {{F (x), F (y)} : F (x)∩F (y) 6= ∅}. We
take a natural number m such that m > supx∈X |F (x)|, m > sup |F−1(x)|
and show that the local degree of each vertices of Γ does not exceed m2−1.
Assume the contrary and choose y ∈ X and distinct y1, . . . , ym2 ∈ X such
that F (y) ∩ F (yi) 6= ∅} for every i ∈ {1, . . . ,m2}. Then yi ∈ F−1F (y)
but, by the choice of m, we have |F−1F (y)| < m2.

We use the following simple fact [2]: if the local degree of each vertices
of a graph Γ′ does not exceed k then the chromatic number of Γ′ does not
exceed k + 1.

Hence the set P of vertices of Γ can be partition P1, . . . ,Pm2 so that
any two vertices from each Pi are not incident.

To construct the family F , we enumerate Pi = {F (yα) : α < γ}. Let
M = supx∈X |F (x)|. Then we enumerate each F (yα) (with repetitions,
if necessary) F (yα) = {yαj) : j < M}, yα0

= yα. For each j < M , we
define a bijective function fj such that fj acts as a transposition of yα
and yαj at each F (yα) and identically at all other elements of X. We put
Fi = {fj : j < M} and note that F = F1 ∪ . . .∪Fm2 is the desired family
of selectors of F .

Case κ > ω. We take an infinite cardinal σ such that σ < κ and
|F (x)| 6 σ, |F−1(x)| 6 σ for each x ∈ X. Then we define a partition P of
X such that each P ∈ P is the minimal by inclusion subset of X satisfying
F (y) ∈ P , F−1(y) ∈ P for each y ∈ P . Constructively, every P can be
obtained applying to x ∈ P the sequence of operations F , F−1 : F (x),
F−1F (x), FF−1F (x), . . .. Then P is the union of all numbers of this
sequence.

By the choice of σ, we have |P | 6 σ. We enumerate P = {Pα : α < γ},
Pα = {xαj : j < γ}. For each j < σ, we choose a family Fj of bijective
selectors of F such that |Fj | 6 σ and F (xαj) = {f(xαj) : f ∈ Fj} for
each α < γ, see the case κ = ω. Then

⋃
j<σ Fj is the desired family F of

bijective selectors of F .

2. Applications

Let X be a set. A family E of subsets of X × X is called a coarse
structure if

• each E ∈ E contains the diagonal △X , △X = {(x, x) : x ∈ X};
• if E, E′ ∈ E then E ◦E′ ∈ E and E−1 ∈ E , where E ◦E′ = {(x, y) :
∃z((x, z) ∈ E, (z, y) ∈ E′)}, E−1 = {(y, x) : (x, y) ∈ E};
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• if E ∈ E and △X ⊆ E′ ⊆ E then E′ ∈ E ;
• for any x, y ∈ X, there exists E ∈ E such that (x, y) ∈ E.

A subset E ′ ⊆ E is called a base for E if, for every E ∈ E , there exists
E′ ∈ E ′ such that E ⊆ E′. For x ∈ X, A ⊆ X we denote E[x] = {y ∈ X :
(x, y) ∈ E}, E[A] = ∪a∈AE[a] and say E[x] and E[A] are balls of radius
E around x and A.

The pair (X, E) is called a coarse space [6] or a ballean [5].

Let (X, E), (X ′, E ′) be coarse spaces. A mapping f : X → X ′ is
called macro-uniform if, for every E ∈ E there exists E′ ∈ E ′ such that
E[x] ⊆ E′[f(x)]. If f is a bijection such that f, f−1 are macro-uniform
then f is called an asymorphism.

Now we describe some general way of constructing balleans. Let G be
a group. A family I of subsets of G is called an ideal if, for every A,B ∈ I
and A′ ⊆ A, we have A ∪B ∈ I and A′ ∈ I. An ideal I is called a group
ideal if F ∈ I for every finite subset of G and A,B ∈ I imply AB−1 ∈ I.

Let a group G acts transitively on a set X by the rule (g, x) 7−→ gx,
g ∈ X, x ∈ X. Every group ideal I on G defines the ballean (X,G, I) on
X with the base of entourages {{(x, y) : y ∈ Ax} : A ∈ I}. By Theorem 1
from [3], for every ballean (X, E), there exist a group G of permutations of
X and a group ideal I on G such that (X, E) is asymorphic to (X,G, I).

Theorem 2. Let (X, E) be a ballean and let κ be an infinite cardinal
such that, for each E ∈ E, supx∈E |E[x]| < κ. Then there exist a group
G of permutations of X and a group ideal I on G such that (X, E) is
asymorphic to (X, E , I) and |A| < κ for each A ∈ I.

Proof. For each E ∈ E , we define a mapping FE : X → BX by FE(x) =
E[x]. By Theorem 1, there exists a family FE of permutations of X such
that |FE | < κ and FE(x) = {f(x) : f ∈ FE} for each x ∈ X. We denote
by I the minimal by inclusion group ideal of G such that FE ∈ I for each
E ∈ E . Then (X, E) is asymorphic to (X,G, I).

In the case κ = ω, Theorem 2 was proved in [4]. For its applications
see Remark 3.5 in [1].

A ballean (X, E) is called cellular if E has a base consisting of equiva-
lence relations. By Theorem 3 from [3], every cellular ballean is asymorphic
to some ballean (X,G, I) such that I has a base consisting of subgroups
of G.

A ballean (X, E) is called finitary if, for every E ∈ E there exists a
natural number m such |E[x]| < m for each x ∈ X. The finitary ballean
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of a G space X is the ballean (X,G, I), where I is the ideal of all finite
subsets of G.

Theorem 3. For every finitary cellular ballean (X, E) there exists a locally
finite group of permutations of X such that (X, E) is asymorphic to the
finitary ballean of G-space X.

Proof. We take a base E ′ of consisting of partitions of X. For every
P ∈ E we pick a natural number nP such that |P | 6 nP for each P ∈ P.
We denote by GP the direct product of the family of symmetric groups
{Sm : m 6 nP} and note that GP acts on each P ∈ P so that GPx = P

for each x ∈ P . Then the group G generated by the family {GP : P ∈ E ′}
satisfies the conclusion of Theorem 3.
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