Sets of prime power order generators of finite groups*

A. Stocka

Communicated by I. Ya. Subbotin

Abstract

A subset X of prime power order elements of a finite group G is called pp-independent if there is no proper subset Y of X such that $\langle Y, \Phi(G)\rangle=\langle X, \Phi(G)\rangle$, where $\Phi(G)$ is the Frattini subgroup of G. A group G has property $\mathcal{B}_{p p}$ if all pp-independent generating sets of G have the same size. G has the pp-basis exchange property if for any pp-independent generating sets B_{1}, B_{2} of G and $x \in B_{1}$ there exists $y \in B_{2}$ such that $\left(B_{1} \backslash\{x\}\right) \cup\{y\}$ is a ppindependent generating set of G. In this paper we describe all finite solvable groups with property $\mathcal{B}_{p p}$ and all finite solvable groups with the pp-basis exchange property.

1. Introduction

Throughout this paper, all groups are finite. Let G be a group. We denote by $\Phi(G)$ the Frattini subgroup of G and we call a group with the trivial Frattini subgroup a Frattini-free group. For other notation, terminology and results one can consult for example [3, 4].

In this paper, our purpose is to extend the famous theorem of Burnside known as Burnside basis theorem. This theorem provides that the Frattini quotient of every p-group is an elementary abelian p-group. Hence it can

[^0]be view as a vector space over the field of order p. So generating sets of p-groups share properties with generating sets of vector spaces. However generating sets outside the class of p-groups do not have such properties, even generating sets of cyclic groups whose order is divisible by at least two different primes.

Obviously all elements of p-groups have prime power orders. So also in arbitrary groups we want to consider sets of prime power order generators. In this purpose we introduce the concept of a pp-element which simplifies our considerations. So we say that an element $g \in G$ is a pp-element if it has prime power order, while by p-element, as usual, we mean an element of order being a power of a prime p. Many authors have studied similar problems concerning sets of not only pp-generators, see for instance [1, 8 , $9,11]$ and the reference therein. In particular in [1] groups in which all minimal generating sets have the same size are classified.

A subset X of pp-elements of a group G will be called $p p$-independent if $\langle Y, \Phi(G)\rangle \neq\langle X, \Phi(G)\rangle$ for every $Y \subset X$ and a $p p$-base of G if X is a pp-independent generating set of G. We say that a finite group G

- has property $\mathcal{B}_{p p}$ (is a $\mathcal{B}_{p p}$-group for short) if all pp-bases of G have the same size;
- has the pp-embedding property if every pp-independent set of G can be embedded to a pp-base of G;
- has the pp-basis exchange property if for any two pp-basis B_{1}, B_{2} and $x \in B_{1}$ there exists $y \in B_{2}$ such that $\left(B_{1} \backslash\{x\}\right) \cup\{y\}$ is a pp-base of G.
- is a pp-matroid group if G has property $\mathcal{B}_{p p}$ and the pp-embedding property.
In view of the above definitions, Burnside basis theorem provides that all finite p-groups are pp-matroid and have the pp-basis exchange property. Another example, outside the class of p-groups, is a group called a scalar extension. After [6] we say that G is a scalar extension if $G=P \rtimes Q$, where P is an elementary abelian p-group, Q is a non-trivial cyclic q-group for distinct primes $p \neq q$ such that Q acts faithfully on P and the $\mathbb{F}_{p}[Q]$ module P is a direct sum of isomorphic copies of one simple module. This construction will be constantly use in our further considerations. A scalar extension is not always a pp-matroid group (only if Q has prime order, see [11]) but every scalar extension is a $\mathcal{B}_{p p}$-group (see [8]).

Our focus of interest is to study the structure of groups which have one of the properties listed above. Solvable groups with the pp-embedding property were studied in $[10,11]$. In [7] all pp-matroid groups were de-
scribed. Moreover in [7] it was proved that pp-matroid groups have the pp-basis exchange property.

The properties of pp-matroid groups imply that every maximal ppindependent set of a pp-matroid group G is a pp-base of G. Let \mathcal{I} be the family of all pp-independent sets of G. Then the pair (\mathcal{I}, G) forms a matroid where every pp-base of G is a base of a matroid ($\mathcal{I}, G)$ (see [12]). Hence pp-matroid groups can be view as a generalization of p-groups in the sense of generating sets. Thus the aim of this paper is to describe the structure of solvable groups with property $\mathcal{B}_{p p}$ and the structure of solvable groups with the pp-basis exchange property.

By [6, Theorem 4.2], we know that every pp-independent set (pp-base) of $G / \Phi(G)$ may be lifted to a pp-independent set (pp-base) of G. Hence using properties of the Frattini subgroup we obtain the following

Theorem 1.1. A group G has property $\mathcal{B}_{p p}$, the pp-embedding property, the pp-basis exchange property if and only if $G / \Phi(G)$ has, respectively, property $\mathcal{B}_{p p}$, the pp-embedding property and the pp-basis exchange property. In particular G is pp-matroid if and only if $G / \Phi(G)$ is pp-matroid.

Based on the above theorem we may restrict our consideration to Frattini-free groups. The structure of the paper is as follows. We present our concepts and main results in Sections 1. In Section 2 we present the classification of all solvable groups with property $\mathcal{B}_{p p}$. The proof of Theorem 1.2 is presented in Section 3.

Theorem 1.2. Let G be a Frattini-free solvable group. Then G has property $\mathcal{B}_{p p}$ if and only if it is one of the following groups:

1) an elementary abelian p-group;
2) a scalar extension;
3) a direct product of groups given in (1) and (2) with pairwise coprime orders.

Using the above theorem we describe in Section 3 solvable groups with the pp-basis exchange property. The proof of Theorem 1.3 is presented in Section 4.

Theorem 1.3. Let G be a Frattini-free solvable groups. Then G has the pp-basis exchange property if and only if G is a $\mathcal{B}_{p p}$-group such that all pp-elements of G have prime orders.

2. Groups with property $\mathcal{B}_{p p}$

In this section we present the classification of groups with property $\mathcal{B}_{p p}$. First results concerning a $\mathcal{B}_{p p}$-groups appear in [6, 8]. We recall some of these results which we will apply in further proofs.

Theorem 2.1 ([6]). Let $G=P \rtimes Q$ be a non-trivial semidirect product, where P is a p-group and Q is a cyclic q-group, for distinct primes $p \neq q$. Then the following conditions are equivalent:

1) G is a $\mathcal{B}_{p p}$-group.
2) $G / \Phi(G)$ is a scalar extension.

Furthermore, suppose that the above conditions hold. Then all minimal generating sets of G have the same size.

Theorem 2.2 ([8]). Let G be a group and $G / \Phi(G)$ be a scalar extension. Then

1) G has a unique Sylow p-subgroup P;
2) $G=P \rtimes Q$ for a Sylow q-subgroup Q and all Sylow q-subgroups of G are cyclic;
3) $\Phi(G)=\Phi(P) \times\left\langle x^{q^{m}}\right\rangle$, where x is a generator of Q. Moreover, $x^{q^{m}}$ centralizes P.

Theorem 2.3 ([6]). If G is a $\mathcal{B}_{p p}$-group, then every homomorphic image of G is also a $\mathcal{B}_{\text {pp }}$-group.

Theorem 2.4 ([6]). Let G_{1} and G_{2} be groups with coprime orders. Then G_{1} and G_{2} are $\mathcal{B}_{p p}$-groups if and only if $G_{1} \times G_{2}$ is a $\mathcal{B}_{p p}$-group.

3. Solvable $\mathcal{B}_{p p}$-groups

In this section we investigate the finite solvable $\mathcal{B}_{p p}$-groups. The following lemmas will be needed for proving Theorem 1.2.

Remark 3.1. Let G be a solvable group and $G=P \rtimes H$, where P is a minimal normal subgroup of G and $C_{H}(P)=1$. Assume that $d \geqslant 2$ is a size of a minimal generating set of G. Theorem 7 of [2] follows that there exists a minimal generating set $\left\{h_{1}, \ldots, h_{d}\right\}$ of H such that $\left\langle h_{1}^{x_{1}}, \ldots, h_{d}^{x_{d}}\right\rangle=G$ for some $x_{1}, \ldots, x_{d} \in P$. We say then, after the authors, that (P, H) does not satisfy the strong complement property.

Lemma 3.2. Let G be a solvable group with a minimal normal p-subgroup P, and let H be a complement to P in G, where p is a prime and p does not divide $|H|$. Assume that H is a non-cyclic q-group for some prime q
or $H / \Phi(H)$ is a scalar extension. If H acts non-trivially on P, then G is not a $\mathcal{B}_{p p}$-group.

Proof. By assumption, H is a q-group or $H / \Phi(H)$ is a scalar extension. Hence, by Theorem 2.1, all minimal generating sets of H have the same size, say d. Assume $d \geqslant 2$. Since H acts non-trivially on P, by Remark 3.1 there exists a minimal generating set $\left\{h_{1}, \ldots, h_{d}\right\}$ of H such that $\left\langle h_{1}^{x_{1}}, \ldots, h_{d}^{x_{d}}\right\rangle=G$ for some $x_{1}, \ldots, x_{d} \in P$. Observe that $\left\{h_{1}^{x_{1}}, \ldots, h_{d}^{x_{d}}\right\}$ is a generating set of pp-elements of G. Hence there exists a pp-base $B^{\prime} \subseteq\left\{h_{1}^{x_{1}}, \ldots, h_{d}^{x_{d}}\right\}$ of G such that $\left|B^{\prime}\right| \leqslant n$.

On the other hand $P=\langle a\rangle^{H}$, for every $1 \neq a \in P$. Hence $\left\{a, h_{1}, \ldots, h_{n}\right\}$ is a pp-base of G. Thus G is not a $\mathcal{B}_{p p}$-group.

Lemma 3.3. Let G be a solvable group with a minimal normal p-subgroup P, and let H be a nilpotent complement to P in G, where p is a prime and p does not divide $|H|$. If G is an indecomposable $\mathcal{B}_{p p}$-group, then H is a cyclic q-group for some prime divisor q of $|H|$.

Proof. Assume that $H=P_{1} \times \ldots \times P_{n}$, where P_{i} is a Sylow p_{i}-subgroup of H and $\left[P, P_{i}\right] \neq 1$, for $i=1, \ldots, n$. Let $1 \neq a \in P$ and B_{i} be a ppbase of P_{i}, for $i=1, \ldots, n$. Then $\{a\} \cup B_{1} \cup \ldots \cup B_{n}$ is a pp-base of G. Moreover assume that $B_{1}=\left\{x_{1}, \ldots, x_{k}\right\}$ and $B_{2}=\left\{y_{1}, \ldots, y_{l}\right\}$. Hence there exist $c_{1}, \ldots, c_{k} \in P$ such that $x_{1}^{a}=c_{1} x_{1}, \ldots, x_{k}^{a}=c_{k} x_{k}$. Observe that $\left(x_{i}^{a}\right)^{y_{j}}\left(x_{i}^{a}\right)^{-1}=\left(c_{i} x_{i}\right)^{y_{j}}\left(c_{i} x_{i}\right)^{-1}=c_{i}^{y_{j}} c_{i}^{-1} \neq 1$ for at least one $j \in\{1, \ldots, l\}$. So $\left\{x_{1}^{a}, \ldots, x_{k}^{a}, y_{1}, \ldots y_{l}\right\} \cup B_{3} \cup \ldots \cup B_{k}$ is a pp-base of G , a contradiction. Hence only one P_{i} acts non-trivially on P. Without loss of generality we can set $i=1$. Then $G=\left(P \rtimes P_{1}\right) \times\left(P_{2} \times \ldots \times P_{n}\right)$, in contradiction to our assumption. This contradiction implies that $H=P_{1}$. Thus, by Lemma 3.2, H is a cyclic q-group with $q=p_{1}$.

Lemma 3.4. Let G be a solvable group with a minimal normal p-subgroup P_{1}, where p is a prime and let H be a complement to P in G. Assume that $H=Q \rtimes P_{2}$, where Q is a q-group for some prime $q \neq p$ and P_{2} is a cyclic p-group such that $H / \Phi(H)$ is a scalar extension. Then G is not a $\mathcal{B}_{p p}$-group.

Proof. Since P_{1} is a minimal normal subgroup of G and G is solvable, P_{1} is elementary abelian and $\langle g\rangle^{H}=P_{1}$ for all $1 \neq g \in P_{1}$. Let $P_{2}=\langle y\rangle$ and $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq Q$ be a minimal set such that $\left\langle x_{1}, \ldots, x_{n}\right\rangle^{P_{2}}=Q$. Hence, by the assumption, $\left\{g, x_{1}, \ldots, x_{n}, y\right\}$ is a pp-base of G. We need to consider the following cases:

1. $\left[P_{1}, Q\right] \neq 1,\left[P_{1}, P_{2}\right] \neq 1 ;$
2. $\left[P_{1}, Q\right]=1,\left[P_{1}, P_{2}\right] \neq 1$;
3. $\left[P_{1}, Q\right] \neq 1,\left[P_{1}, P_{2}\right]=1$;
4. $\left[P_{1}, Q\right]=1,\left[P_{1}, P_{2}\right]=1$.
5. In this case there exists $a \in P_{1}$ such that $Q^{a} \neq Q$. From [4, Theorem 2.3], we know that $P_{1}=C_{P_{1}}(Q) \times\left[P_{1}, Q\right]$. Assume first that $C_{P_{1}}(Q) \neq 1$. Since P_{1} is a minimal normal subgroup of G, there exists $a \in C_{P_{1}}(Q)$ such that $a^{y^{-1}} \notin C_{P_{1}}(Q)$. Set $b=a^{y^{-1}}$. Then $b^{y}=a \in C_{P_{1}}(Q)$ and $b^{-1} b^{y^{-1}} \notin C_{P_{1}}(Q)$. It follows that $Q^{b} \neq Q^{b^{-1}}$. Since $H / \Phi(H)$ is a scalar extension,

$$
Q / \Phi(Q)=Q_{1} \Phi(Q) / \Phi(Q) \times \ldots \times Q_{n} \Phi(Q) / \Phi(Q)
$$

where $Q_{i} \Phi(Q) / \Phi(Q)$ is a simple $\mathbb{F}_{q}[Q]$-module. Hence $\left\langle x_{i}\right\rangle^{Q}=Q_{i}$, for every $x_{i} \in Q_{i} \backslash \Phi(Q)$. Moreover $Q=Q_{1} \cdot \ldots \cdot Q_{n}$. It follows that there exists Q_{i} such that $Q_{i}^{b} \neq Q_{i}$, for some $i=1, \ldots, n$. Thus at least one element, say x_{i}, satisfies $x_{i}^{b} \notin Q_{i}$. Consider the set $X=\left\{y, x_{1}^{b}, \ldots, x_{n}^{b}\right\}$. Observe that

$$
x_{i}^{b y}=x^{y y^{-1} b y}=\left(x_{i}^{y}\right)^{b^{y}} .
$$

Since $x_{i}^{y} \in Q$ and $b^{y} \in C_{P_{1}}(Q)$, we have $x_{i}^{b y}=x_{i}^{y} \in\langle X\rangle$. Hence $x_{i} \in\langle X\rangle$ and further $c=x_{i}^{-1} x_{i}^{b} \in P_{1} \cap\langle X\rangle$, where $c \neq 1$. It follows that $G=\langle X\rangle$ and X is a generating set of pp-elements of G. So there exists a pp-base $B \subseteq X$ of G such that $|B|<n+2=\left|\left\{g, x_{1}, \ldots, x_{n}, y\right\}\right|$.

Assume now that $C_{P_{1}}(Q)=1$ and $C_{P_{1}}\left(P_{2}\right) \neq 1$. So $P_{1}=\left[P_{1}, Q\right]$ and hence there exists $c \in C_{P_{1}}\left(P_{2}\right)$, where $c=\left[a, x_{1}^{-1}\right]$, for some $a \in P_{1}$ and $x_{1} \in Q \backslash \Phi(Q)$. Thus there exist $x_{2}, \ldots, x_{n} \in Q$ such that $\left\langle x_{1}, \ldots, x_{n}\right\rangle^{P_{2}}=$ Q. Let $X=\left\{x_{1}^{a}, \ldots, x_{n}^{a}, y\right\}$. Since $x_{1}^{a}=\left[a, x_{1}^{-1}\right] x_{1}=c x_{1}$ for some $1 \neq$ $c \in P_{1}$, we have $\left(x_{1}^{a}\right)^{-1}\left(x_{1}^{a}\right)^{y}=x_{1}^{-1} x_{1}^{y}$. Moreover $1 \neq x_{1}^{-1} x_{1}^{y} \in\langle X\rangle$. Hence $\left\langle x_{1}\right\rangle^{P_{2}} \subseteq\langle X\rangle$ and $x_{1} \in\langle X\rangle$. So $1 \neq x_{1}^{-1} x_{1}^{a} \in\langle X\rangle \cap P_{1}$ and $G=\langle X\rangle$. It follows that $\left\{a, x_{1}, \ldots, x_{n}, y\right\}$ and $\left\{y, x_{1}^{a}, \ldots, x_{n}^{a}\right\}$ are a pp-base of G.
2. Now there exists $a \in P_{1}$ and at least one x_{i}, say x_{1} such that $[a, y] \neq 1 \neq\left[x_{1}, y\right]$. Then $y^{a}\left(y^{x_{1}}\right)^{-1}=a^{-1} a^{y^{-1}} x_{1}^{y^{-1}} x_{1} \neq 1$. It follows that $\left\{y^{a}, y^{x_{1}}, x_{2}, \ldots, x_{n}\right\}$ is a pp-base of G.
3. Since $\left[P_{1}, Q\right] \neq 1$, there exists $a \in P_{1}$ such that $Q \neq Q^{a}$. Moreover $P_{1}=\left[P_{1}, Q\right]$. Otherwise $C_{P_{1}}(Q)$ is a normal subgroup of G, contradicting the minimality of P_{1}. Hence there exist $c_{1}, \ldots, c_{n} \in P_{1}$ such that $x_{1}^{a_{1}}=$ $c_{1} x_{1}, \ldots, x_{n}^{a}=c_{n} x_{n}$. So we obtain $\left(x_{i}^{a}\right)^{-1}\left(x_{i}^{a}\right)^{y}=x_{i}^{-1} x_{i}^{y} \neq 1$. It follows that $\left\{x_{1}^{a}, \ldots, x_{n}^{a}, y\right\}$ is a pp-base of G.
4. In this case $\left\{g, x_{1}, x_{2} \ldots, x_{n}, y\right\}$ and $\left\{g x_{1} y, x_{2} \ldots, x_{n}, y\right\}$ are ppbases of $P \times H$.

Hence G is not a $\mathcal{B}_{p p}$-group in all the cases. So the proof is complete.

Remark 3.5. Let G be a solvable group with a minimal normal p subgroup P, where p is a prime and let H be a complement to P in G. Assume that $H / \Phi(H)$ is a scalar extension. It follows, by Theorem 2.1, that H is a $\mathcal{B}_{p p}$-group and we may assume that d is the size of every pp-bases of H, for some positive integer d. Then from proofs of Lemmas $3.2,3.4$ we immediately deduce that there exist pp-bases B_{1} and B_{2} of G such that $\left|B_{1}\right|=n+1$ and $\left|B_{2}\right|<n+1$.

Proof of Theorem 1.2. Let G be a Frattini-free solvable group with property $\mathcal{B}_{p p}$. We use induction on $|G|$. Let $P=O_{p}(G)$ be a maximal normal p-group of G, for some prime p. Hence $\Phi(P) \leqslant \Phi(G)=1$ and P is an elementary abelian p-group. By [3, Theorem 10.6], there exists a subgroup H of G such that $G=P \rtimes H$. From Theorem 2.3, H is a $\mathcal{B}_{p p}$-group. So by the induction assumption $H=H_{1} \times \ldots \times H_{k}$, where $H_{i} / \Phi(H)_{i}$ is an elementary abelian q-group or a scalar extension for $i=1, \ldots, k$. By [3, Theorem 10.6], $P=P_{1} \times \ldots \times P_{n}$, where P_{i} is a minimal normal subgroup of G, for $i \in\{1, \ldots, n\}$.

Let $a_{i} \in P_{i}$ be a non-trivial element for $i \in\{1, \ldots, n\}$ and $\left\{h_{1}, \ldots, h_{r}\right\}$ be a pp-base of H. Then $B=\left\{a_{1}, \ldots, a_{n}, h_{1}, \ldots, h_{r}\right\}$ is a pp-base of G. Assume that P_{i} and P_{j} are not isomorphic as $\mathbb{F}_{p}[H]$-module for some $i \neq j$. Then $B^{\prime}=\left(B \backslash\left\{a_{i}, a_{j}\right\}\right) \cup\left\{a_{i} a_{j}\right\}$ is a pp-base of G. Since $\left|B^{\prime}\right|=|B|-1$, G is not a $\mathcal{B}_{p p}$-group, a contradiction. So all the P_{i} are isomorphic to each another as $\mathbb{F}_{p}[H]$-modules. In particular, this implies that $C_{H}\left(P_{i}\right)=1$ for each P_{i}.

Again, by Theorem 2.3, we may suppose that P is a minimal normal subgroup of G. Thus $G=P \rtimes\left(H_{1} \times \ldots \times H_{k}\right)$ and $P=\langle a\rangle^{H}$, for every $1 \neq a \in P$. Assume that B_{i} is a pp-base of H_{i} for $i=1, \ldots, k$. Then $\{a\} \cup B_{1} \cup \ldots \cup B_{k}$ is a pp-base of $P \rtimes H$, as $\left(\left|H_{i}\right|,\left|H_{j}\right|\right)=1$, for $i \neq j$.

If for some $i \in\{1, \ldots, k\}, H_{i}$ is a q-group, then $q \neq p$, by the choice of P. So suppose that $H_{1} / \Phi\left(H_{1}\right)$ is a scalar extension and $\left[P, H_{1}\right] \neq 1$. Let $P_{1}=\langle a\rangle^{H_{1}} \leqslant P$, for some $a \in P_{1}$. Then $\{a\} \cup B_{1}$ is a pp-base of $P_{1} \rtimes H_{1}$. Moreover, by Remark 3.5, there exists a pp-base, say B of $P_{1} \rtimes H_{1}$, such that $|B|<\left|B_{1}\right|+1$. Observe that $B \cup B_{2} \cup \ldots \cup B_{k}$ is a generating set of pp-elements of G. So there exists a pp-base $C \subseteq B \cup B_{2} \cup \ldots \cup B_{k}$ of G such that $|C|<\left|\{a\} \cup B_{1} \cup \ldots \cup B_{k}\right|$, a contradiction. Hence either [$\left.P, H_{1}\right]=1$ or H_{1} is a p-group. If $\left[P, H_{1}\right]=1$ and P and H have not coprime orders, then by Case 4. of Lemma 3.4 and analogous consideration as the above, we obtain that G is not a $\mathcal{B}_{p p}$-group.

It follows that if H_{i} is not a q-group, then H_{i} centralises P. It implies that $G=\left[P \rtimes\left(H_{1} \times \ldots \times H_{r}\right)\right] \times H_{r+1} \times \ldots \times H_{k}$. Moreover H_{i} is a $q_{i^{-}}$group,
where $\left[H_{i}, P\right] \neq 1$ and $\left(q_{i}, p\right)=1$ for $i=1, \ldots, r$ while $\left(\left|H_{i}\right|,|p|\right)=1$, for $i=r+1, \ldots, k$.

Further, by Theorem 2.3, $P \rtimes\left(H_{1} \times \ldots \times H_{r}\right)$ is a $\mathcal{B}_{p p}$-group. Then, by Lemma 3.3, only one H_{i} acts non-trivially on P and such H_{i} is cyclic. It follows that $G=\left(P \rtimes H_{1}\right) \times H_{2} \times \ldots \times H_{k}$, where H_{1} is a cyclic q-group, and $\left(\left|P \rtimes H_{1}\right|\left|, H_{j}\right|\right)=1$ for $j=2, \ldots, n$. Moreover, by Theorems 2.1, 2.3, $P \rtimes H_{1}$ is a scalar extension or is abelian.

Conversely, let $G=G_{1} \times \ldots \times G_{n}$, where G_{i} is either an elementary abelian p-group or a scalar extension and $\left(\left|G_{i}\right|,\left|G_{j}\right|\right)=1$ for $i \neq j$. Then, by Theorem 2.1, every direct factor of G is a $\mathcal{B}_{p p}$-group. Hence, by Theorem 2.4, G is a $\mathcal{B}_{p p}$-group. So the proof is complete.

4. Solvable groups with the pp-basis exchange property

In this section we investigate the structure of finite solvable groups which have the pp-basis exchange property. We start from the statement analogous to Theorem 2.4.

Proposition 4.1. Let G_{1} and G_{2} be groups with coprime orders. Then G_{1} and G_{2} have the pp-basis exchange property if and only if $G_{1} \times G_{2}$ has the pp-basis exchange property.

Proof. Since G_{1} and G_{2} have coprime orders, an element $g=g_{1} g_{2} \in$ $G_{1} \times G_{2}$, where $g_{1} \in G_{1}, g_{2} \in G_{2}$, is a pp-element if and only if $g=g_{1}$ or $g=g_{2}$. Hence B is a pp-base of $G_{1} \times G_{2}$ if and only if $B=B_{1} \cup B_{2}$, where B_{1}, B_{2} are pp-bases of G_{1}, G_{2}, respectively. From here the result follows immediately.

Proposition 4.2. Let G be a Frattini-free solvable group. If G has the pp-basis exchange property, then G has property $\mathcal{B}_{p p}$ and all pp-elements of G have prime orders.

Proof. Assume that B_{1}, B_{2} are two pp-bases of G such that $\left|B_{1}\right|<\left|B_{2}\right|$. We choose B_{1} and B_{2} with the property that $\left|B_{2} \backslash B_{1}\right|$ is minimal. Let $x \in B_{2} \backslash B_{1}$. Since G has the pp-basis exchange property, there exists $y \in B_{1} \backslash B_{2}$ such that $\left(B_{2} \backslash\{x\}\right) \cup\{y\}$ is a pp-base of G. Moreover $\left|\left(B_{2} \backslash\{x\}\right) \cup\{y\} \backslash B_{1}\right|<\left|B_{2} \backslash B_{1}\right|$. This contradicts the minimality of $\left|B_{1} \backslash B_{2}\right|$. So G is a $\mathcal{B}_{p p}$-group.

Now, by Theorem 1.2, $G=G_{1} \times \ldots \times G_{k}$ where G_{i} is either an elementary abelian p-group or a scalar extension. If G_{i} is elementary abelian, then obviously all elements have prime orders. So assume that $G_{i}=P \rtimes\langle x\rangle$ is
a scalar extension and x is a q-element. Moreover assume $x^{q} \notin C_{G_{i}}(P)$. Let $a_{1}, \ldots, a_{s} \in P$ be a minimal set such that $\left\langle a_{1}, \ldots a_{s}\right\rangle^{\langle x\rangle}=P$. Hence $B_{1}=\left\{a_{1} x, a_{2}, \ldots, a_{s}, x^{q}\right\}$ and $B_{2}=\left\{a_{1}, \ldots a_{s}, x\right\}$ are pp-bases of G_{i}. Moreover $\left\langle\left(B_{1} \backslash\left\{a_{1} x\right\}\right) \cup\{y\}\right\rangle \neq G_{i}$ for every $y \in B_{2}$. Hence G_{i} has not the pp-basis exchange property. So, by Theorem 4.1, G also has not the pp-basis exchange property, a contradiction. Hence $x^{q} \in C_{G_{i}}(P)$. Since G is Frattini-free, it follows, by Theorem 2.2, that all pp-elements of G_{i} have prime orders.

Lemma 4.3. Let $G=P \rtimes Q$ be a scalar extension. If all pp-elements of G have prime orders, then G has the pp-basis exchange property.

Proof. Assume that $|Q|=q$, then all pp-elements of G have prime orders and all pp-basis have n elements . Let $B_{1}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $B_{2}=$ $\left\{y_{1}, \ldots, y_{n}\right\}$ be pp-bases of G. Assume that $x_{1} \notin B_{2}$ and $H=\left\langle x_{2}, \ldots, x_{n}\right\rangle$. We show that H is a maximal subgroup of G. In this purpose we consider two cases:

1. $x_{1} \in P$. Then $\left\langle x_{1}\right\rangle^{Q}$ is a minimal normal subgroup of G and $H=$ $P /\left\langle x_{1}\right\rangle^{Q} \rtimes Q^{a}$, where $a \in P$. So H is a maximal subgroup of G.
2. $x_{1} \notin P$. Then x_{1} is a q-element, where q is a prime and Q is a q group. Since $H \nsubseteq P$ there exists in H another q-element, say x_{2}. We may assume that $x_{1}=x^{a_{1}}$ and $x_{2}=x^{a_{2}}$, where $a_{1} a_{2}^{-1} \notin C_{P}(Q)$. Hence $x^{a_{1}} x^{-a_{2}}=c \in P$ and $c \notin H$. Indeed, if $c \in H$ and $x^{a_{2}} \in H$, then $x^{a_{1}} \in H$, a contradiction. It follows, by analogous as in (1), that H is a maximal subgroup in G.

By assumption, there exists $y_{i} \notin H$ for some $i \in\{1, \ldots, n\}$. Since H is a maximal subgroup of $G,\left\langle H, y_{i}\right\rangle=G$. It follows that $\left\langle\left(B_{1} \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}\right\rangle=$ G and $\left|\left(B_{1} \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}\right|=n$. Since G is a $\mathcal{B}_{p p^{-}}$-group, $\left(B_{1} \backslash\left\{x_{1}\right\}\right) \cup\left\{y_{1}\right\}$ is a pp-base of G. The proof is complete.

Proof of Theorem 1.3. It follows immediately from Proposition 4.1, Proposition 4.2 and Lemma 4.3.

Using Theorem 1.2 we obtain
Corollary 4.4. Let G be a Frattini-free solvable group. Then G has the $p p-b a s i s ~ e x c h a n g e ~ p r o p e r t y ~ i f ~ a n d ~ o n l y ~ i f ~ i t ~ i s ~ o n e ~ o f ~ t h e ~ f o l l o w i n g ~ g r o u p s: ~$

1) an elementary abelian p-group;
2) a scalar extension $P \rtimes Q$, where P is an elementary abelian p-group, Q has order q for distinct primes $p \neq q$;
3) a direct product of groups given in (1) and (2) with pairwise coprime orders.

Remark 4.5. By [5], we know that every simple group is generated by an involution and an element of prime order. So a simple group has a 2 -element pp-base. On the other hand, by the Classification of Finite Simple Group, we know that every simple group is generated by at least three involutions, so every simple group has a pp-base which has at least 3 elements. It implies that all simple groups do not have property $\mathcal{B}_{p p}$. By the first part of the proof of Proposition 4.2, we may deduced that if a simple group has not property $\mathcal{B}_{p p}$, then it has not the pp-basis exchange property.

References

[1] P. Apisa, B. Klopsch, A generalization of the Burnside basis theorem. J. Algebra 400 2014, 8-16.
[2] E. Detomi, A. Lucchini, M. Moscatiello, P. Spiga, G. Traustason, Groups satisfying a strong complement property. J. Algebra 535, 2019, 35-52.
[3] K. Doerk, T. O. Hawkes, Finite Solvable Group. Walter de Gruyter, 1992.
[4] D. Gorenstein, Finite groups. 2nd edition, Chelsea Publishing Company, New York 1980.
[5] C.S.H. King, Generation of finite simple groups by an involution and an element of prime order. J. Algebra 478 2017, 153-173.
[6] J. Krempa, A. Stocka, On some sets of generators of finite groups. J. Algebra 405 2014, 122-134.
[7] J. Krempa, A. Stocka, Addendum to: On sets of pp-generators of finite groups, Bull. Aust. Math. Soc. 91 2015, no.2, 241-249. Bull. Aust. Math. Soc. 93 2016, 350-352.
[8] J. McDougall-Bagnall, M. Quick, Groups with the basis property. J. Algebra 346 2011, 332-339.
[9] R. Scapellato, L. Verardi, Groupes finis qui jouissent d'une propriété analogue au théorème des bases de Burnside. Boll. Unione Mat. Ital. A (7) 5 1991, 187-194.
[10] R. Scapellato, L. Verardi, Bases of certain finite groups. Ann. Math. Blaise Pascal 1 1994, 85-93.
[11] A. Stocka, Finite groups with the pp-embedding property. Rend. Sem. Mat. Univ. Padova 141 2019, 107-119.
[12] D. J. A. Welsh, Matroid Theory. Academic Press, London, 1976.

Contact information

$\begin{array}{ll}\text { Agnieszka Stocka } & \begin{array}{l}\text { Faculty of Mathematics University of Białystok } \\ \text { K. Ciołkowskiego 1M 15-245 Białystok } \\ \text { E-Mail(s): stocka@math.uwb.edu.pl }\end{array}\end{array}$
Received by the editors: 17.10.2019
and in final form 17.12.2019.

[^0]: *This article has received financial support from the Polish Ministry of Science and Higher Education under subsidy for maintaining the research potential of the Faculty of Mathematics and Informatics, University of Białystok.

 2010 MSC: Primary 20D10; Secondary $20 F 05$.
 Key words and phrases: finite groups, independent sets, minimal generating sets, Burnside basis theorem.

