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Cohen-Macaulay modules over the plane curve

singularity of type T36

Yuriy A. Drozd and Oleksii Tovpyha

Abstract. For a wide class of Cohen–Macaulay modules

over the local ring of the plane curve singularity of type T36 we

describe explicitly the corresponding matrix factorizations. The

calculations are based on the technique of matrix problems, in

particular, representations of bunches of chains.

1. Introduction

Let ❦ be an algebraically closed field, S = ❦[[x, y]]. Recall that the
complete local ring of the plane curve singularity of type T36 is R = S/(F ),
where F = x(x− y2)(x−λy2) and λ ∈ ❦ \ {0, 1}. In this paper we present
explicit description of a wide class of maximal Cohen–Macaulay modules
over the ring R called modules of the first level. Note that T36 is one of
the critical singularities of tame Cohen-Macaulay representation type [7].
Till now, only for the singularities of type T44 matrix factorizations have
been described [8, 9].

2. Matrix problem and the first reduction

So, let R = ❦[[x, y]]/(F ), where F = x(x−y2)(x−λy2) (λ ∈ ❦\{0, 1}).
We consider R as the subring of the direct product R̃ = R1 ×R2 ×R3,
where all Ri = ❦[[t]], generated by the elements x = (0, t2, λt2) and
y = (t, t, t). We denote by R12 the projection of R onto R1 ×R2. It is
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generated by (t, t, 0) and (0, t2, 0) and R12 ≃ ❦[[x, y]]/x(x − y2). It is a
singularity of type A2, so all indecomposable R12-modules are R1, R2, R12

and R
′

12 = R12[t1], where t1 = (t, 0, 0). We also set t2 = (0, t, 0).

Denote M̃ = R̃M = M1⊕M2⊕M3, where Mi is an Ri-module. There
is an exact sequence:

0 → M12 → M → M3 → 0,

where M12 = M ∩ (M1 ⊕M2) is an R12-module, hence M12 = m1R1 ⊕
m2R2 ⊕m12R12 ⊕m′

12R
′

12. So M gives an element ξ ∈ Ext1
R
(M3,M12).

There is an exact sequence

0 → (x− λy2)R → R → R3 → 0,

whence

Ext1R(M3,M12) = M12/(x− λy2)M12

In the table below we present bases of the modules Ext1
R
(R3, N),

where N ∈ R1,R2,R12,R
′

12. In this table each element actually denotes
its residue class modulo x−λy2, 1s (s ∈ {1, 2, 12}) is the identity element
of Rs, t12 = t1 + t2 and µ = (1− λ)/λ.

R1 11, t11
R2 12, t2
R

′

12 112, t1, t2, t21 = µt22
R12 112, t12, t21 = µt22, t31 = µt32

Homomorphisms R12 → Ri induce the maps Ext1
R
(R3,R12) →

Ext1
R
(R3,Ri) which map 112 7→ 1i and t12 7→ ti. The embedding

R
′

12 → R12 which maps 112 7→ t12 induces the map Ext1
R
(R3,R

′

12) →
Ext1

R
(R3,R12) that coincide with the multiplication by t12. The

embeddings Ri → R
′

12 such that 1i 7→ ti induce the maps Ext1
R
(R3,Ri) →

Ext1
R
(R3,R

′

12) that coincide with the multiplication by ti.

In particular, if we only consider free terms, we obtain representations
of the partially ordered set of width 2:

R12

R
′

12

R1 R2
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(see [12]), hence the matrix A0 of free terms can be reduced to the form:

A0 =



































0 0 0 I1 0 0
0 I1 0 0 0 0
0 0 0 0 0 0

0 0 I2 0 0 0
0 I2 0 0 0 0
0 0 0 0 0 0

0 0 0 0 I12 0
0 0 0 0 0 0

0 0 0 0 0 I12
0 0 0 0 0 0



































,

where Is means 1sI for the identity matrices I of the appropriate size
(maybe different for different matrices). In what follows we always suppose
that A0 is of this form.

3. Modules of the first level

Let now A = A0 + tA1 where A1 is also divided into blocks in the
same way as A0. Using automorphisms of M3 we can make zero the 1st,
4th, 7th and 9th rows of A1, as well as one of the 2rd or 5th rows.

Using automorphisms of M12 we can also make zero all columns in
A1, except the 1st one and the parts of the 2nd, 3rd and 4th columns
in the 10th row, where we can only delete all terms containing t2 or t3.
In particular, the terms 112 from the last vertical stripe become direct
summands of the whole matrix A. So in what follows we can omit this
column. We always suppose that A1 has this form.

Let A0
1 be the free term of the matrix A1. The non-zero part of its

10th row can be considered as representation of the partially ordered set:

2

3 4

1

Hence it can be reduced to the form








0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 0 I 0 I
0 0 0 0 0 0 0 0









,
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where I is again an identity matrix of the appropriate size (maybe different
for different matrices). Then the whole matrix A modulo t2 can be reduced
to the form:

1 2 3 4 5

0 0 0 0 0 0 I1 0 0
0 0 0 0 0 0 0 I1 0

1 A11t
∗ 0 I1 0 0 0 0 0 0

2 A21t
∗ 0 0 I1 0 0 0 0 0

3 A31t1 0 0 0 0 0 0 0 0

0 0 0 0 I2 0 0 0 0
0 0 0 0 0 I2 0 0 0
0 0 I2 0 0 0 0 0 0
0 0 0 I2 0 0 0 0 0

4 A41t2 0 0 0 0 0 0 0 0

5 A51t
∗ A52t

∗ 0 0 0 0 0 0 I12
6 A61 A62t

∗ 0 0 A63t1 0 A64t2 A65t
∗ 0

0 t12I 0 0 0 0 0 0 0
0 0 t12I 0 0 0 0 0 0
0 0 0 0 0 t12I 0 t12I 0
0 0 0 0 0 0 0 0 0

Here the symbol t∗ means that in this block t1 = −t2, and A61 is a matrix
pencil X1t1 +X2t2. The horizontal lines show the division of A into the
stripes such that the 1st stripe corresponds to R1, the 2nd to R2, the 3rd
to R′

12 and the 4th to R12. Moreover, as in the matrix A we have t21 = µt22
with µ 6= −1, one can delete all terms with t2i and t3i everywhere except
the last block of the first column.

The endomorphisms of M3 and M12 which do not destroy the shape
of the matrices A0 and A0

1 induce the transfromations of columns that
can be described by the scheme

2

1

66

//

((

3 // 5

4

66

and the transformations of rows that can be described by the scheme

5

6

66

//

((

3 // 2 // 1

4

66



“adm-n4” — 2020/1/24 — 13:02 — page 217 — #67

Y. Drozd, O. Tovpyha 217

For the matrix A61 it means that we can add the rows of X1 to those of
Ai1 for i ∈ {1, 2, 3} and the rows of X2 to the rows of Ai1 for i ∈ {1, 2, 4}.
In the same way, the columns of X1 can be added to those of A6j for
j ∈ {3, 5}, while the columns of X2 can be added to those of A6j for
j ∈ {4, 5}.

The indecomposable matrix pencils (representations of the Kronecker
quiver) are described in [11, 13]. In [13] the morphisms between indecom-
posable representations are also described. It implies that the matrix A61

is a direct sum of the following matrices:

A(n) =













t1 t2 0 . . . 0
0 t1 t2 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . t2
0 0 0 . . . t1













, B(n) =













t2 t1 0 . . . 0
0 t2 t1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . t1
0 0 0 . . . t2













,

C(n) =









t1 t2 0 . . . 0 0
0 t1 t2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . t1 t2









, D(n) = C(n)⊤

It is easy to see that:

• If A61 = A(n) than we can make zero all matrices above A61 except
the 1st column of A41, and all matrices to the right of A61 except
the last row of A64.

• If A61 = B(n) than we can make zero all matrices above A61 except
the 1st column of A31, and all matrices to the right of A61 except
the last row of A63.

• If A61 = C(n) than we can make zero all matrices to the right
of A61, and all matrices above A61 except the last column of A31,
the 1st column of A41 and one (any chosen) of the columns of the
matrix A51.

• If A61 = D(n) than we can make zero all matrices above A61, and
all matrices to the right of A61 except the last row of A63, the 1st
row of A64 and one (any chosen) of the rows of the matrix A62.

Hence in the non-zero part of A51 (and, respectively, A62) we can left
one non-zero element above each block of C(n) (and, respectively, D(n)).
Therefore, except the summands A(n), B(n), C(n), D(n) in the blocks Aij ,
(i = 5, 6, j = 1, 2), we will also have the summands of the form C ′(n),
with one additional element in A51-part as compared to C(n), and D′(n),
with one additional element in A62-part as compared to D(n)). So we can
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suppose that C ′(n) looks like B(n)⊤, but with the 1st row from A51, and
D′(n) looks like A(n)⊤, but with the last column from A62.

One can see that now we can make zero all elements of the matrix A52

except those which are in the zero rows of A51 and zero columns of A62.

The remaining part of A51 can be reduced to the form

(

I 0
0 0

)

. It gives

direct summands of the whole matrix A of the form

(

t1
t12

)

(certainly, t1

can be replace here by t2). Therefore, in what follows we can suppose that
A52 = 0. Analogously, we can suppose that the matrices A11, A12 and A65

are also zero. Otherwise we obtain direct summands of A. For instance, if
A65 6= 0, all non-zero elements are in the rows which do not belong to the
non-zero parts of A66 and A65. So they give direct summands of the form









0 11
12 0

0 t2
t12 t12









.

The description of homomorphisms between the representations of the
Kronecker quuiver [13] show that we can add the non-zero columns over
A(n) (respectively, B(n) ) to those over A(m) (respectively, B(m) ) for
m > n, and the same for the non-zero rows to the right of A(n) or B(n).
We can also add the non-zero columns over C(n) (respectively, non-zero
rows to the right of D(n) ) to those of C(m) (respectively, of D(m)), where
n < m, as well as to those of A(k) and B(k) for any k. It means that the
possible transformations of these columns and rows can be considered as
representations of a bunch of chains in the sense of [1] or [2, Appendix B]
(we use the formulation of the second paper). Namely, we have the next
pairs of chains:

• E1 = {ai, di, d
′

i | i ∈ N}, F1 = {c3}
• E2 = {bi, d̃i, d̃

′

i | i ∈ N}, F2 = {c4}
• E3 = {r3}, F3 = {ãi, ci, c

′

i | i ∈ N}
• E4 = {r4}, F4 = {b̃i, c̃i, c̃

′

i | i ∈ N}

with the relation ∼:

ai ∼ ãi, bi ∼ b̃i, ci ∼ c̃i, di ∼ d̃i, c′i ∼ c̃′i, d′i ∼ d̃′i (i ∈ N).

Here r3, r4 corresponds to A31, A41 respectively and c3, c4 corresponds to
A63, A64 respectively.
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Now we use the description of the indecomposable representations of
this bunch of chains from [1, 2]. In our case they correspond to the fol-
lowing words in the alphabet {ai, ãi, bi, b̃i, ci, c̃i, di, d̃i, c

′

i, c̃
′

i, d
′

i, d̃
′

i, c3, r4, c4,
r3,−,∼}:

• 4 type of words with ai, i ∈ N: wa(i) = r3 − ãi ∼ ai − c3 and 3
shorter words: r3 − ãi ∼ ai, ãi ∼ ai − c3, ãi ∼ ai;

• 4 type of words with bi, i ∈ N: wb(i) = r4 − b̃i ∼ bi − c4 and 3
shorter words: r4 − b̃i ∼ bi, b̃i ∼ bi − c4, b̃i ∼ bi;

• 4 type of words with ci, i ∈ N: wc(i) = r4 − c̃i ∼ ci − r3 and 3
shorter words: r4 − c̃i ∼ ci, c̃i ∼ ci − r3, c̃i ∼ ci;

• 4 type of words with di, i ∈ N: wd(i) = c4 − d̃i ∼ di − c3 and 3
shorter words: c4 − d̃i ∼ di, d̃i ∼ di − c3, d̃i ∼ di;

• 4 type of words with c′i, i ∈ N: w
′
c(i) = r4 − c̃′i ∼ c′i − r3 and 3

shorter words: r4 − c̃′i ∼ c′i, c̃
′

i ∼ c′i − r3, c̃
′

i ∼ c′i;
• 4 type of words with d′i, i ∈ N: w′

d(i) = c4 − d̃′i ∼ d′i − c3 and 3
shorter words: c4 − d̃′i ∼ d′i, d̃

′

i ∼ d′i − c3, d̃
′

i ∼ d′i;

Following the construction of indecomposable representations from [1],
we construct the matrices corresponding to these words:

Pa(n) =





0 1

t2e1 0

A(n) t2e
⊤
n



 , Pb(n) =





t1e1 0

0 1

B(n) t1e
⊤
n



 ,

Pc(n) =





t1e1
t2e1
C(n)



 , Pd(n) =





0 1 0

0 0 1

D(n) t2e
⊤
n+1 t1e

⊤
n+1



 ,

P ′

c(n) =





t1e1 0

t2e1 0

C ′(n) t12e
⊤
1



 , P ′

d(n) =









0 1 0

0 0 1

D′(n) t2e
⊤
n+1 t1e

⊤
n+1

t12en+1 0 0









.

Here tr = y1r and en = (0, 0, . . . , 0, 1), e1 = (1, 0, . . . , 0) and ⊤ means the
transposition.

4. Generators and relations. Example

Now we calculate matrix factorizations of the polynomial F = x(x−
y2)(x− λy2) corresponding to the indecomposable Cohen-Macaulay mod-
ules over R. In other words, we find minimal sets of generators for these
modules and minimal sets of relations for these generators.
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In order to make smaller the arising matrices, we denote z = x− y2

an z′ = x− λy2. Thus F = xzz′.
We do detailed calculations for the word wa(2) = r3 − ã2 ∼ a2 − c3.

Since all calculations are similar, for other words we just write the resulting
matrices.

Pa(2) =









0 0 1

ye2 0 0

ye1 ye2 0
0 ye1 ye2









Here the first two stripes belongs to R1 and R2 respectively and the
last stripe belongs to R′

12. So we have generators:

v1, v2, v3 ∈ R3,

u1 ∈ R1, u2 ∈ R2,

u121 , ū121 , u122 , ū122 ∈ R′

12.

(∗)

Note that ye1u
12
i = ū12i and ye2u

12
i = yu12i − ū12i for u12i ∈ R′

12, i = 1, 2.
Then we have the following relations for these generators:

z′v1 = ye2u
2 + ye1u

12
1 , z′v2 = ye2u

12
1 + ye1u

12
2 ,

z′v3 = u1 + ye2u
12
2

It implies that

ū121 = z′v1 − yu2, ū122 = z′v1 − yu2 + z′v2 − yu112,

u1 = z′v1 − yu2 + z′v2 − yu112 + z′v3 − yu122

Now we can exclude generators ū121 , ū122 , u1. It is important to note that
ū12i , i = 1, 2 are annihilated by x. Since u1 ∈ R1 is also annihilated by x,
u2 ∈ R2 is annihilated by z and u121 , u122 ∈ R′

12 are annihilated by xz, we
have the following relations for v1, v2, v3, u

2, u121 , u122 from (∗):

zu2 = 0, xzu121 = 0, xzu122 = 0,

xz′v1 − xyu2 = 0, xz′v2 − xyu121 = 0, xz′v3 − xyu122 = 0.

It gives the following matrix factorization with columns corresponding to
u2, u121 , u122 , v1, v2, v3, in this order:

Qa(2) =

















z 0 0 0 0 0
0 xz 0 0 0 0
0 0 xz 0 0 0

−xy 0 0 xz′ 0 0
0 −xy 0 0 xz′ 0
0 0 −xy 0 0 xz′



















“adm-n4” — 2020/1/24 — 13:02 — page 221 — #71

Y. Drozd, O. Tovpyha 221

For the other three words with ai, namely r3 − ãi ∼ ai, ãi ∼ ai − c3,
ãi ∼ ai we obtain the matrix factorizations by excluding some generators
and the appropriate srows and columns:

• Excluding u2 from the list of generators (∗) and deleting the first row
and 1st column from the matrix Qa(2) we get the matrix factorization
for ãi ∼ ai − c3.

• Excluding v3 from the list of generators (∗) and deleting the last
row and the last column from the matrix Qa(2) we get the matrix
factorization for r3 − ãi ∼ ai.

• Excluding both u2, v3 from the list of generators (∗) and deleting
the first and the last rows and the first and the last columns from
the matrix Qa(2) we get the matrix factorization for ãi ∼ ai.

Now one can easily see how the matrix factorization Qa(i) for the
word wa(i) = r3 − ãi ∼ ai − c3 looks like for i > 2.

5. Generators and relations. Other words

For other modules of the first level the corresponding matrix factor-
izations are calculated in a similar way. We only present the results for
n = 2, since otherwise we obtain too cumbersome matrices.

For the word wb(2) = r4 − b̃2 ∼ b2 − c4 we have the matrix of
correspondences with columns corresponding to u1, u121 , u122 , v1, v2, v3:

Qb(2) =

















x 0 0 0 0 0
0 xz 0 0 0 0
0 0 xz 0 0 0

−xy −xy 0 xz′ 0 0
0 0 xy 0 xz′ 0

−zy −zy zy zz′ zz′ zz′

















For the word wc(2) = r4 − c̃2 ∼ c2 − r3 we have the matrix of
correspondences with columns corresponding to u2, u121 , u122 , v3, v2, v1:

Qc(2) =

















z 0 0 0 0 0
0 xz 0 0 0 0
0 0 xz 0 0 0
0 0 −xy xz′ 0 0
0 −xy 0 0 xz′ 0

−xy 0 0 0 0 xz′
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For the word wd(2) = c4 − d̃2 ∼ d2 − c3 we have the matrix of corre-
spondences with columns corresponding to u2, u121 , u122 , u123 , v4, v3, v2, v1:

Qd(2) =

























z 0 0 0 0 0 0 0
0 xz 0 0 0 0 0 0
0 0 xz 0 0 0 0 0
0 0 0 xz 0 0 0 0
−x 0 0 0 xz′ 0 0 0
0 0 0 −xy 0 xz′ 0 0
0 0 0 −xy 0 0 xz′ 0
0 0 −xy 0 0 0 0 xz′

























For the word w
′
c(2) = r4 − c̃′2 ∼ c′2 − r3 we have the matrix of corre-

spondences with columns corresponding to u1, u2, u121 , u122 , v4, v3, v2, v1:

Q′

c(2) =

























x 0 0 0 0 0 0 0
0 z 0 0 0 0 0 0
0 0 xz 0 0 0 0 0
0 0 0 xz 0 0 0 0
0 0 0 0 xzz′ 0 0 0
0 0 0 −xy 0 xz′ 0 0
0 0 −xy 0 0 0 xz′ 0

−xy −xy 0 0 −xyz′ 0 0 xz′

























For the word w
′

d(2) = c4−d̃′2 ∼ d′2−c3 we have the matrix of correspon-
dences with columns corresponding to u2, u121 , u122 , u123 , v5, v4, v3, v2, v1,
namely Q′

d(2) equals:

Q′

d(2)





























z 0 0 0 0 0 0 0 0
0 xz 0 0 0 0 0 0 0
0 0 xz 0 0 0 0 0 0
0 0 0 xz 0 0 0 0 0
−x 0 0 0 xz′ 0 0 0
−x 0 0 0 xzz′ −xzz′ 0 0 0
0 0 0 −xy 0 0 xz′ 0 0
0 0 0 −xy 0 0 0 xz′ 0
0 0 −xy 0 0 0 0 0 xz′





























For the truncated words (without the first or the last letter) we apply
the procedure analogous to that described at the end of the preceding
section.

In this way we obtain all matrix factorizations of the polynom F
corresponding to the modules of the first level.
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