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Abstract. We prove that all gentle 2-Calabi–Yau tilted
algebras are Jacobian, moreover their bound quiver can be obtained
via block decomposition. For two related families, the m-cluster-
tilted algebras of type A and Ã, we prove that a module M is stable
Cohen-Macaulay if and only if Ωm+1τM ≃M .

Introduction

Gentle algebras are a class of finite dimensional algebras whose mod-
ule (and derived) category is well understood. These algebras have good
properties, they are Gorenstein [18], tame, and their module category is
described via strings and parametrized bands [11]. On the other hand,
2-Calabi–Yau (2-CY for short) tilted algebras are generalization of the con-
cept of cluster-tilted algebras. A cluster-tilted algebra is the endomorphism
algebra of a cluster-tilting object in the cluster category of a hereditary
algebra, 2-CY tilted algebras are obtained by replacing the cluster cat-
egory by a 2-CY triangulated category. These algebras are Goresntein
of dimension at most one [21]. Cluster categories and cluster-tilted alge-
bras were introduced in [9, 10, 12]. Jacobian algebras were defined in [14],
these algebras are defined by a quiver with potential (Q,W ). In [1] were
introduced 2-CY categories C(Q,W ) associated to quivers with potential,
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in such way that Jacobian algebras are obtained as 2-CY tilted algebras
arising from C(Q,W ).

A well known class of gentle 2-CY tilted algebras is the Jacobian
algebras arising from unpunctured surfaces defined in [3]. This family
includes the cluster-tilted algebras of type A and Ã.

Two related families of gentle algebras appeared recently in the litera-
ture:

1) Jacobian algebras from triangulation of a polygon with an orb-
ifold [25].

2) m-cluster-tilted algebras of types A and Ã [5,19,27]. These algebras
have a geometric realization via partitions of unpunctured surfaces.

In Section 2, we characterize gentle 2-CY tilted k-algebras in the case
chark 6= 3.

Theorem 1. Let Λ = kQ/I be a gentle algebra of Gorenstein dimension
at most one and such that Ω2τM ≃M for all M ∈ CM(Λ). Then (Q, I)
is obtained via block decomposition, matching blocks of type I, II and
loop:

• •

•

• •

•.

Immediately, we obtain the next result.

Corollary 1. Let k be an algebracailly closed field and chark 6= 3. If
kQ/I is a gentle 2-CY tilted algebra then kQ/I is Jacobian.

These algebras include those arising from triangulations of a polygon
with an orbifold.

In Section 3, we prove a result generalizing the formula that charac-
terizes the modules in the singularity category of 2-CY tilted algebras, in
the context of gentle m-cluster tilted algebras.

Theorem 2. Assume that Λ is an m-cluster tilted algebra of one of the
types A and Ã.

1) Λ is Gorenstein of dimension d 6 m.
2) N ∈ CM(Λ) if and only if Ωm+1τN = N .

The paper is organized as follows. In Section 1, we recall basic facts
about gentle algebras, 2-CY tilted algebras and m-cluster-tilted algebras.
Section 2 is devoted to our characterization of gentle 2-Calabi–Yau tilted
algebras. The study of the modules in singularity categories over m-cluster-
tilted algebras is given in Section 3.
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1. Preliminaries

Throughout these notes, let k be an algebraically closed field and let
Q = (Q0, Q1) be a finite quiver, where Q0 is the set of vertices and Q1 the
set of arrows. Let s, t : Q1 → Q0 be the functions that indicate the source
and the target of each arrow, respectively. We will only consider finite-

dimensional basic k-algebras. Every finite- dimensional basic k-algebra is
isomorphic to a quotient kQ/I, where I is an admissible ideal. The pair
(Q, I) is called a bound quiver. For more details, see [4, Chapter III].

1.1. Gentle algebras

We recall the definition of gentle algebra and results due to Geiss and
Reiten [18], and Kalck [20]. See also [4, Section IX.6].

Definition 1.1. A k-algebra Λ = kQ/I is gentle if

(G1) For each vertex x0 ∈ Q0 there are at most two arrows such that x0
is their source, and at most two arrows such that x0 is their target.

(G2) The ideal I is generated by paths of length 2.
(G3) For each arrow β there is at most one arrow α and at most one

arrow γ such that αβ ∈ I and βγ ∈ I.
(G4) For each arrow β there is at most one arrow α and at most one

arrow γ such that αβ /∈ I and βγ /∈ I.

We will often refer to the generators in I as zero-relations.

Definition 1.2. Let Λ = kQ/I be a gentle algebra.

(a) A cycle x1
α1−→ · · · → xn

αn−−→ x1 is saturated if αiαi+1 ∈ I, for i an
integer modulo n. In particular, a saturated loop is an arrow δ such
that s(δ) = t(δ) and δ2 ∈ I.

(b) An arrow β is gentle if there is no other arrow α such that αβ ∈ I.
(c) A path α1 . . . αn is formed by consecutive relations if αiαi+1 ∈ I for

1 6 i < n.
(d) A path α1 . . . αn is critical if it is formed by consecutive relations

and α1 is a gentle arrow.

When there is no gentle arrow, we set n(Λ) = 0. When there is a
gentle arrow, let n(Λ) be the maximal length computed over all critical
paths. This number is bounded, since Q is finite.

Let Ω be the usual syzygy operator, τ the Auslander-Reiten (AR)
translation [4, Section IV.2], and D = Homk(−, k).
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Definition 1.3. A k-algebra Λ is Gorenstein if

inj.dimΛ = proj.dimD(Λop) = d

for some non-negative integer d. In this case we say that Λ is Gorenstein
of dimension d.

Theorem 1.4. [18] Let Λ = kQ/I be a gentle algebra with n(Λ) the max-
imum length of critical paths. Then inj.dimΛ = n(Λ) = proj.dimD(Λop) if
n(Λ) > 0, and inj.dimΛ = proj.dimD(Λop) 6 1 if n(Λ) = 0. In particular,
Λ is Gorenstein.

An algebra Λ = kQ/I where I is generated by paths and (Q, I)
satisfies the two conditions (G1) and (G4) is called a string algebra, thus
every gentle algebra is a string algebra. A string in Λ is by definition a
reduced walk w in Q avoiding the zero-relations, thus w is a sequence
x1

α1←→ x2
α2←→ · · ·

αn←→ xn+1 where the xi are vertices of Q and each αi

is an arrow between the vertices xi and xi+1 in either direction such that

there is no
β
−→

β
←−, and no

β1
←− · · ·

βt
←− or

β1
−→ · · ·

βt
−→ with β1 . . . βt ∈ I.

If the first and the last vertex of w coincide, then the string is cyclic. A
band is a cyclic string b such that each power bn is a cyclic string but b is
not a power of some string. The classification of indecomposable modules
over a string algebra Λ = kQ/I is given by Butler and Ringel in terms
of strings and bands in (Q, I). Each string w defines an indecomposable
module M(w), called a string module, and each band b defines a family of
indecomposable modules M(b, λ, n), called band modules, with parameters
λ ∈ k and n ∈ N. We refer to [11] for the definition of string and band
modules.

Consider the subcategory of maximal Cohen-Macaulay modules (also
called Gorenstein projective modules) defined by

CM(Λ) = {M : ExtiΛ(M,Λ) = 0 for all i > 0}.

The stable category CM(Λ) = CM(Λ)/(P), where (P) denotes the ideal
of morphisms factoring through a projective Λ-module, is the singularity

category of Λ. Let x1
α1−→ · · ·

αn−1

−−−→ xn
αn−−→ x1 be a saturated cycle, the

indecomposable proyective module P (xi) and the indecomposable injective
module I(xi) are string modules given by P (xi) = M(u−1

i αiui+1) and
I(xi) = M(vi−1αi−1v

−1
i ) (see Figure 1).

Remark 1.5. For a Gorenstein algebra Λ of dimension d, a Λ-module M
is Cohen-Macaulay if and only if M is a d-th syzygy, see [6, Proposition
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xi xi+1 xi+2

vi vi+1 vi+2

αi

ui

αi+1

ui+1 ui+2

Figure 1. Local situation for a saturated cycle. The path ui is the maximal
path starting at the vertex xi and the path vi is the maximal path ending at xi.

6.20]. In this case each Λ-module either has infinite projective dimension
or has projective dimension at most d.

We are interested in computing projective resolutions and AR trans-
lations of the modules in CM(Λ). For that reason, we need the next
result.

Theorem 1.6. [20, Theorem 2.5] Let Λ = kQ/I be a gentle algebra. Let

x1
α1−→ · · ·

αn−1

−−−→ xn
αn−−→ x1 be a saturated cycle. The string module M(ui),

where ui is the string starting at xi as in Figure 1, is Cohen-Macaulay.
Moreover, all indecomposable modules in CM(Λ) are obtained in such
manner.

1.2. 2-CY tilted algebras and Jacobian algebras

A triangulated k-category C, Hom-finite with split idempotents, is
d-Calabi–Yau (d-CY for short) if there is a bifunctorial isomorphism

HomC(X,Y ) ≃ DHomC(Y,X[d]), for all X, Y ∈ C.

Let C be a 2-CY category, an object T is cluster-tilting if it is basic and

addT = {X ∈ C : HomC(X,T [1]) = 0}.

Definition 1.7. The endomorphism algebra of a cluster-tilting object,
EndC(T ), is called a 2-CY tilted algebra.

Examples of 2-CY tilted algebras are the cluster-tilted algebras defined
in [10]. We will need a result due to Keller and Reiten.

Proposition 1.8. [21] Let Λ be a 2-CY tilted algebra, Λ is Gorenstein
of dimension less than or equal to one.

We will also need the next result.
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Theorem 1.9. [17] Let Λ be a 2-CY tilted algebra. Then, M ∈ CM(Λ)
if and only if Ω2τM ≃M .

Quivers with potential were introduced in [14]. A potential W is a
(possibly infinite) linear combination of cycles in Q, up to cyclic equivalence.
Given an arrow α and a cycle α1 . . . αl, the cyclic derivative ∂α is defined
by

∂α(α1 . . . αl) =
l∑

k+1

δααk
αk+1 . . . αlα1 . . . αk−1,

where δααk
is the Kronecker delta, and ∂α extends by linearity. Notice

that the cycle α1 . . . αl may have repetitions. Let R〈〈Q〉〉 be the complete
path algebra consisting of all (possibly infinite) linear combinations of
paths in Q. Let (Q,W ) be a quiver with potential, the Jacobian algebra

is defined to be Jac(Q,W ) = R〈〈Q〉〉/〈∂αW,α ∈ Q1〉.

Amiot [1, Sec. 3] showed that Jacobian algebras are 2-CY tilted
constructing a 2-CY category C(Q,W ), the result just asks Jac(Q,W ) to
be Jacobi-finite, this means that Jac(Q,W ) is finite-dimensional as a k-
algebra. In [2], Amiot asked whether all 2-CY tilted algebras are Jacobian
algebras. In section 2 we study gentle algebras and prove that the answer
is affirmative when chark 6= 3.

1.3. m-cluster categories and m-cluster tilted algebras

The cluster category CQ associated to Q was introduced in [9] as the
quotient category Db(modkQ) over the functor F = τ−1[1]. The m-cluster

category associated to Q, that we denote by CmQ , was defined in [27] as

the quotient category Db(modkQ) over the functor Fm = τ−1[m]. The
category CmQ is triangulated.

A basic object T in CmQ is called m-cluster tilting if

∗ ExtiCm
Q
(T, T ′) = 0 for all T, T ′ ∈ addT , for i = 1, . . . ,m

∗ if X ∈ CmQ is such that ExtiCm
Q
(X,T ) = 0 for all T ∈ addT , and for

i = 1, . . . ,m, then X ∈ addT .

Remark 1.10. We follow the notation in [27]. It is important to recall
that CmQ is an example of (m+ 1)-CY category and the category addT ,
were T is an m-cluster tilting object, is an example of (m + 1)-cluster
tilting subcategory in the sense of [7, 21,22].

Any m-cluster-tilting object has |Q0| summands, [27, Theorem 2].
The endomorphism algebra Λ = EndCm

Q
(T ) is called an m-cluster tilted
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algebra, and it is a case of (m + 1)-Calabi–Yau tilted algebra. If Q is
such that its underlying graph ∆Q is a Dynkin or euclidean graph, we
say that Λ = EndCm

Q
(T ) is an m-cluster tilted algebra of type ∆Q. When

∆Q is of type A or Ã, the m-cluster categories and their corresponding
m-cluster tilting objects were realized geometrically and studied in [5, 26],
and [19, 28], respectively. These geometric realizations generalize those
from [3,8, 12] in the case of the unpunctured disc and the annulus.

The case A: LetΠ be a disk with nm+2 marked points (or equivalently
a nm+2-gon). A m-diagonal is a diagonal dividing Π into an (mj+2)-gon
and an (m(n− j)+2)-gon for some 1 6 j 6 n−1/2. A (m+2)-angulation
is a collection of non-intersecting m-diagonals that form a partition of Π
into (m+ 2)-gons. There are bijections:

m-diagonals in Π ↔ indecomposable objects in Cm
A

(m+ 2)-angulations of Π ↔ m-cluster tilting objects in Cm
A

The case Ã: While in [19,28] the authors use an annulus with marked
points, we will use the universal cover given by the strip Σ, having copies
of the mp, and mq, marked points on the boundary components that we
denote Bp, and Bq, respectively. The points having the same label in a fixed
boundary are considered up to equivalence given by congruence modulo
mp and mq. There are (isotopy classes of) arcs on Σ, called m-diagonals.
Each m-diagonal belongs to a family:

∗ Transjective: an arc α having an endpoint x in Bp and the other
endpoint y in Bq. The labels in x and y are congruent modulo m.
(See Figure 2 - right)
∗ Regular on a p-tube: an arc α having both endpoints over Bp, starting

at u going in positive direction counting u + km + 1 steps, with
k > 1.
∗ Regular on a q-tube: analogous to the previous case.

As in the previous case, there are bijections

m-diagonals in Σ ↔ indecomposable rigid objects in Cm
Ã

(m+ 2)-angulations of Σ ↔ m-cluster tilting objects in Cm
Ã

Given a (m+2)-angulation T of Π or Σ, the bound quiver (QT , IT ) of
the m-cluster tilted algebra ΛT defined by the associated m-cluster tilting
object is obtained form the geometric configuration, see [19,26]. We recall
this bound quiver construction in the following example.
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Figure 2. 4-angulation of Π (left) and 5-angulation of Σ (right), and bound
quivers defined by them. The labels at the endpoints of transjective arcs are
congruent modulo 3. The arrows defining IT are connected by a dotted arc.

Example 1.11. In Figure 2, we show the bound quiver defined by a
4-angulation of Π (left) that corresponds to a 2-cluster tilting object in
Cm
A6

, and a 5-angulation of Σ (right) that corresponds to a 3-cluster tilting
object in Cm

Ã
where p = 3 and q = 2. In both cases, the vertices in QT are

in one-to-one correspondence with the elements in T . For any two vertices
i, j ∈ QT , there is an arrow i→ j when the corresponding m-diagonals
xi and xj share a vertex, they are edges of the same (m+ 2)-gon and xi

follows xj clockwise. Given consecutive arrows i
α
−→ j

β
−→ k, then αβ ∈ IT

if and only if xi, xj and xk are edges in the same (m+ 2)-gon.

2. Gentle 2-CY tilted algebras

Throughout this section, we work with gentle algebras Λ = kQ/I.
First we gather information about the zero-relations and saturated cycles
in (Q, I) in order to find all the possible configurations for a 2-CY tilted
algebra. After that, we will consider blocks, as it was done in [15], to
describe all the possible bound quivers that can define a 2-CY tilted
algebra.

Lemma 2.1. Let Λ = kQ/I be a gentle algebra of Gorenstein dimension
at most one, and such that Ω2τM ≃M for all M in CM(Λ). Then,

1) each zero-relation lies in a saturated cycle.
2) all saturated cycles have length three or are saturated loops.

Proof. (1) Let uv be a zero-relation that is not part of a saturated cycle.
If u is a gentle arrow, then uv is a critical path of length two, so n(Λ) > 2
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and Λ is Gorenstein of dimension at least two. Absurd, by Proposition 1.8.
If the arrow u is not gentle, the there is an arrow u1 such that u1u and
uv are zero-relations. Since uv is not part of a saturated cycle there is
a maximal critical path ut . . . u1 such that ut . . . u1uv is a critical path,
because Q is finite and none of these arrows can be in a saturated cycle.
Then we have n(Λ) > 2, again it is not possible by Proposition 1.8. Thus
uv must lay in a saturated cycle.

(2) Let x1
α1−→ · · ·

αn−1

−−−→ xn
αn−−→ x1 be a saturated cycle. The non-zero

paths starting and ending at the vertices xi determine the indecomposable
projective and injective modules P (xi) = M(u−1

i αiui+1) and I(xi) =
M(vi−1αi−1v

−1
i ). See Figure 1. By Theorem 1.6, M(ui) is in CM. By

Theorem 1.9, we have an isomorphism Ω2τM(ui) = M(ui). We start
computing τM(ui), first we need a minimal projective presentation.

M(u−1
i+1αi+1ui+2)

f
//

** **

M(u−1
i αiui+1) // M(ui) // 0.

M(ui+2)
'

� 44

M(ui+1)
'

� 44

We apply the Nakayama functor ν = DHomΛ(−,Λ),

0 // M(vi+1)
�

�

// M(viαiv
−1
i+1)

νf
//

�

u

''

M(vi−1αi−1v
−1
i ) // // M(vi−1)

M(vi)

66 66

the kernel of νf is τM(ui) = M(vi+1).

yi+1

xi xi+1 xi+2

vi+1

wi+1

αi αi+1

ui+2

Figure 3. Local information needed to compute the projective cover of
M(vi+1)

Now we computeΩM(vi+1). LetS(yi+1) = topM(vi+1). The projective
cover of M(vi+1) is P (yi+1) = M(w−1

i+1vi+1αi+2ui+2). Then, ΩM(vi+1) =
M(w′

i+1)⊕M(ui+2), where M(w′
i+1) is the maximal sumbmodule of the

uniserial M(wi+1) and is at the same time a direct summand of radP (yi+1).
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Therefore Ω2τM(ui) = Ω(M(w′
i+1)⊕M(ui+2)) = ΩM(w′

i+1)⊕ΩM(ui+2).
It is easy to see that ΩM(ui+2) = M(ui+3) 6= 0. Therefore, by hypothesis,
it must be ΩM(w′

i+1) = 0 and M(ui+3) = M(ui), thus topM(ui+3) =
S(xi+3) = topM(ui) = S(xi), for all i ∈ {1, . . . , n}. The only possible

long saturated cycles satisfying this condition are of length three x1
α1−→

x2
α2−→ x3

α3−→ x1 where x1, x2, x3 are different vertices. Indeed, if there
were only two different vertices, let •α1 be a saturated cycle such that
αiαi+1 ∈ I for i index modulo 3, then by the gentleness α2

1 /∈ I so this will

define an infinite dimensional algebra. If the saturated cycle is •
α2

⇄
α1

•, then

the condition topM(ui) = topM(ui+3) does not hold. The last possibility
is considering loops. Notice that two different loops attached to a vertex

•δ1 δ2 would define an infinite dimensional algebra. The last option
is using a single loop •δ such that δ2 ∈ I, besides the 3-cycle with
three vertices, this is the only configuration allowing both conditions:
M(ui+3) = M(ui) and Λ is finite dimensional.

The algebras arising from surface triangulations ΛT = kQT /IT (m =
1) were defined in [3]. Following [15, Sec. 13], the quiver QT can be
constructed matching directed graphs, or blocks, of type I (a single arrow),
and type II (3-cycle).

• •λ
•

• •

αγ

β

In view of Lemma 2.1, in the following subsection we will add a new block
•δ . We call this block type loop.

2.1. Block decomposition

Consider the blocks type I, II and loop mentioned above. The blocks
contain also the information
(R1) For a block of type II, αβ = βγ = γα = 0.
(R2) For a block of type loop, δ2 = 0.
All the vertices in the blocks are outlet vertices. A bound quiver (Q, I)
is gentle-block-decomposable if it can be obtained from a collection of
disjoint blocks by the following procedure. Take a partial matching of the
combined set of outlets.

1) Matching an outlet to itself or to another outlet from the same block
is not allowed.
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2) Matching two outlets corresponding to different blocks type loop is
not allowed.

Identify (or glue) the vertices within each pair of the matching. After
the gluing , having a pair of arrows connecting the same pair of vertices
but going in opposite directions is not allowed. The next is the main result
of this section.

Theorem 2.2. Let Λ = kQ/I be a gentle algebra of Gorenstein dimension
at most one and such that Ω2τM ≃ M for all M ∈ CM(Λ). Then, the
bound quiver (Q, I) is gentle-block-decomposable.

Proof. By Lemma 2.1, the only zero-relations allowed are δ2 = 0, when
δ is a loop, and those in a saturated 3-cycle. All gentle bound quivers
satisfying these conditions can be built matching blocks of type I, II and
loop.

Remark 2.3. The block decomposition for Q may include blocks of type
loop, in order to interpret (Q, I) as a Jacobian algebras we also need that
chark 6= 3. The reason is that we use the quiver •δ with potential
W = δ3 and, in this case, the ideal for the Jacobian algebra is generated
by ∂δ(δ

3) = δδ + δδ + δδ = 3δ2.

Corollary 2.4. Let k be algebraically closed and chark 6= 3. If kQ/I is
a gentle 2-CY tilted algebra, then kQ/I is Jacobian.

Proof. By Proposition 1.8 and Theorem 1.9, kQ/I is Gorenstein dimension
at most one and Ω2τM ≃ M for all M ∈ CM(Λ), so we are under the
hypothesis of Theorem 2.2. Then (Q, I) is gentle-block-decomposable. We
can express kQ/I as a Jacobian algebra Jac(Q,W ). The potential is the
sum

W =
∑

i

αiβiγi +
∑

j

δ3j ,

where the index i runs over all the 3-cycles αiβiγi and the index j runs
over all the loops. Since chark 6= 3 the zero-relation 3δ2 = 0 remains, and
is equivalent to δ2 = 0.

The previous result is written with the restriction k is not of char-
acteristic 3. A hyperpotential on a quiver Q is a collection of elements
(ρα)α∈Q1

over the complete algebra R〈〈Q〉〉 such that for α : i→ j, ρα is a
(possibly infinite) linear combination of paths j  i and

∑
α∈Q1

[α, ρα] = 0.

The Jacobian algebra of a hyperpotential is the quotient R〈〈Q〉〉/〈ρα〉, see
[23, Proposition 1]. In view of this, if we admit hyperpotentials, the last
result extends to algebraically closed fields of any positive characteristic.
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Example 2.5. Let Q be the quiver in Figure 4, and consider the potential
W = δ31 +

∑3
i=1 αiβiγi. Then Jac(Q,W ) is a gentle 2-CY tilted algebra

and Q is a matching of two blocks of type I, three blocks of type II and a
block of type loop.

7 2 6

8 4 1 3 5

β3

α3

α1
γ2

λ1

γ3

λ2 β1

γ1
β2

α2
δ1

Figure 4. Gentle bound quiver (Q, I), Example 2.5

Corollary 2.6. Let (Q, I) be a bound quiver such that kQ/I is a gentle
2-CY tilted algebra and Q has no loops. Then kQ/I is a Jacobian algebra
arising from an unpunctured surface in the sense of [3].

3. Gentle m-cluster tilted algebras

In this section we study gentle algebras kQT /IT arising from (m+ 2)-
angulations, m > 1. One can generalize the definition of (QT , IT ), given in
Example 1.11, to (m+ 2)-angulations of unpunctured Riemann surfaces.

The following properties were observed in [26, Rem. 2.18] and [19, Sec.
7] in the case of the disc and annulus, and they can be easily proved in
the context of gentle algebras arising from (m+ 2)-angulations.

Proposition 3.1. Let (QT , IT ) be a bound quiver arising from a (m+2)-
angulation.

1) ΛT = kQT /IT is a gentle algebra.
2) The only possible saturated cycles in (QT , IT ) are (m+ 2)-cycles.
3) There can be at most m− 1 consecutive zero-relations not lying in

a saturated cycle.

Immediately, we have the following observation.

Lemma 3.2. Let ΛT = kQT /IT be an algebra arising from a (m+ 2)-
angulation. Then, ΛT is Gorenstein of dimension d 6 m.

Proof. The case m = 1 follows from Proposition 1.8, and also from
[3, Lemma 2.6]. Let m > 2. Since ΛT is gentle, we can apply Theorem 1.4.
First assume that there is no gentle arrow in (QT , IT ), then n(ΛT ) = 0,
so d is zero or one and d 6 m. The statement follows.
Now, assume there are gentle arrows in (QT , IT ), and let α1 be one of
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them. It follows that α1 is not part of a saturated cycle. Let α1 . . . αr be
a critical path, since α1 is not part of a saturated cycle, then none of the
arrows αi for 1 6 i 6 r is part of a saturated cycle. By Proposition 3.1 (3),
the maximal number of consecutive zero-relations outside of a saturated
cycle is m− 1. Therefore, r 6 m, and by Theorem 1.4, ΛT is Gorenstein
of dimension d 6 m.

Most of the arguments in the following lemma can be found also in
[20, Section 4].

Lemma 3.3. Let Λ = kQ/I be a gentle algebra of Gorenstein dimension
d > 1. Let x ∈ Q0, and let N be an indecomposable direct summand of
radP (x). Then,

(a) N ∈ CM(Λ), or
(b) proj.dimN 6 d− 1.

Proof. If N is projective, we are in case (b). Let N be non projective. Let
P (x) = M(u−1α−1βw) be the indecomposable projective and N = M(u)
so that S(t(α)) = topM(u). We study the cases:

(i) α is part of a saturated cycle x1 → · · · → xi
α
−→ xi+1 · · · → x1.

(ii) α is not part of a saturated cycle.

(i) Let xi
α
−→ xi+1, then M(u) is a direct summand of radP (xi). By

Theorem 1.6, M(u) ∈ CM(Λ).
(ii) Since N = M(u) is not projective, there exists an arrow δ1 such that
αδ1 ∈ I. Also δ1 is not part of a saturated cycle, if it were the case also α
would be part of the saturated cycle. Let P (t(α)) = M(c−1δ−1

1 u), then
there is an exact sequence

0→M(c)→ P (t(α))→M(u)→ 0. (1)

If the string module M(c) is not projective, then it satisfies the same
conditions as M(u), so we can construct a new exact sequence

0→M(c1)→ P (t(δ1))→M(c)→ 0. (2)

Recursively, we obtain a path αδ1 · · · δn such that each quadratic factor
belongs to I. This process has to finish after a finite number of steps, being
the direct summand M(cn) of P (t(δn−1)) a projective module. If there
were not finite steps and M(cn) was not projective, we would find new
arrows δn+1, . . . and form a path αδ1 · · · δn · · · such that each quadratic
factor is in I. The quiver Q is finite, so the only way to construct an infinite
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path αδ1 · · · δn · · · is reaching a saturated cycle. By the gentleness, if one
of the arrows δi is in a saturated cycle, then all α, δ1, . . . , δn are in the
saturated cycle, this contradicts the condition imposed on α. Therefore
the procedure to find the short exact sequences in Equations (1), (2),
stops. The short exact sequences are the steps needed to find a minimal
projective resolution for M(u), that is finite, so proj.dimM(u) <∞. By
Remark 1.5, we have proj.dimM(u) 6 d. Now, we can also express M(u)
as M(u) = ΩM(βw). If we had proj.dimM(u) = d, then we would have
proj.dimM(βw) = d + 1 and this is impossible by Remark 1.5. Thus,
proj.dimM(u) 6 d− 1.

To complete the previous lemma, observe that if Λ is selfinjective (that
is Λ is Gorenstein of dimension zero) then every indecomposable module
is either projective or CM.

The next theorem is the main result of this section.

Theorem 3.4. Let ΛT = QT /IT be an algebra arising from a (m+ 2)-
angulation and let N be a ΛT -module. Then, N ∈ CM(ΛT ) if and only if
Ωm+1τN ≃ N .

Proof. Let M be an indecomposable module in CM(ΛT ), by Theorem 1.6,
M = M(ui) where ui is the maximal non-zero path starting at xi.

xi xi+1 xi+2

vi vi+1 vi+2

αi

ui

αi+1

ui+1 ui+2

We compute a minimal projective presentation of M(ui), as we did in
Lemma 2.1.

M(u−1
i+1αi+1ui+2)

p1
//

** **

M(u−1
i αiui+1) // M(ui) // 0.

M(ui+2)
'

� 44

M(ui+1)
'

� 44

Observe that ΩtM(ui) = M(ui+t), where t is an integer considered modulo
m+ 2. Applying Nakayama functor we get

0 // M(vi+1)
�

�

// M(viαiv
−1
i+1)

νp1
//

�

u

''

M(vi−1αi−1v
−1
i ) // // M(vi−1).

M(vi)

66 66
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Then, τM(ui) = ker νp1 = M(vi+1). As in Lemma 2.1, let S(yi+1) =
topM(vi+1). Let P (yi+1) = M(w−1

i+1vi+1αi+1ui+2) be the projective cover
of M(vi+1).

yi+1

xi xi+1 xi+2

vi+1

wi+1

αi αi+1

ui+2

Therefore, ΩM(vi+1) = M(w′
i+1)⊕M(ui+2), where M(w′

i+1) is the maxi-
mal submodule of M(wi+1). The syzygy functor is additive, then

Ωm+1τM(ui) = Ωm+1M(vi+1) = ΩmM(w′
i+1)⊕ ΩmM(ui+2).

Since ΩtM(ui) = M(ui+t), we have

ΩmM(w′
i+1)⊕ ΩmM(ui+2) = ΩmM(w′

i+1)⊕M(ui).

Now, we only need to prove that ΩmM(w′
i+1) = 0. Observe that M(w′

i+1)
is a direct summand of radP (yi+1).

We know, by Lemma 3.2 that ΛT is Gorenstein of dimension d 6 m.
By Lemma 3.3 one of the following holds:

1) proj.dimM(w′
i+1) 6 m− 1, or

2) M(w′
i+1) ∈ CM(ΛT ).

If (1) holds, then ΩmM(w′
i+1) = 0 and we are done.

We assume (2) holds, so M(w′
i+1) ∈ CM(ΛT ) and prove that this leads

to a contradiction. Let zi+1 be the vertex such that topM(w′
i+1) = S(zi+1).

By the description in Theorem 1.6, the vertex zi+1 is a target of an arrow
γ in a saturated (m+ 2)-cycle and γw′

i+1 6= 0.

(2a) If the arrow γ is yi+1
γ
−→ zi+1, see the figure bellow (left), then

there is an arrow aj in the saturated (m+ 2)-cycle, such that ajγ ∈ IT .
Then, ajvi+1 6= 0 and this contradicts that I(xi+1) = M(viαiv

−1
i+1) is the

indecomposable injective associated to xi. Absurd.

yi+1 zi+1

aj

γ

vi+1 w′

i+1

aj+2

yi+1 zi+1

aj γ

aj+1

vi+1

bj+2

w′

i+1
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(2b) If the arrow γ in a saturated cycle is such that s(γ) 6= yi+1,
see figure above (right), there is an arrow bj+2 following the saturated
cycle such that γbj+2 ∈ IT . Thus, we have γw′

i+1 6= 0 and by gentleness,
aj+1bj+2 /∈ IT . But recall that w′

i+1 is a submodule of radP (yi+1), so bj+2

has to be the first arrow in the string w′
i+1 such that M(w′

i+1) ∈ CM(ΛT ).
Absurd.

Thus, M(w′
i+1) /∈ CM(ΛT ) and case (1) is the only possibility so

Ωm+1τM(ui) = M(ui). As Ω and τ are additive functors, if N ∈ CM(ΛT ),
then Ωm+1τN = N .

The converse affirmation can be proved easily. If N = Ωm+1τN , and
N 6= 0 is not a projective ΛT -module, then N is a m-th syzygy. By
Remark 1.5 this module is in CM(ΛT ).

As a corollary, we obtain the next result that generalizes the properties
known for cluster-tilted algebras: Proposition 1.8 and Theorem 1.9.

Theorem 3.5. Let Λ be an m-cluster tilted algebra of type A or Ã. Then,

1) Λ is Gorenstein of dimension d 6 m.
2) N ∈ CM(Λ) if and only if Ωm+1τN = N .

Proof. Part (1) follows from Lemma 3.2. Part (2) follows from Theorem 3.4.

3.1. On the Gorenstein property

It is known that Theorem 3.5 does not hold in general for d-CY tilted
algebras. In [21, Section 5.3] there is an example (due to Iyama) of a d-CY
tilted algebra that is not Gorenstein. Moreover, a recent preprint [24] says
that all finite dimensional k-algebras are d-CY tilted for some d > 2.

Still, there are results in this subject due to Keller and Reiten [22,
Section 4.6], and Beligiannis [7, Theorem 6.4]. Both results ask addT to
be corigid in some degree, that is there exist a non negative integer u
such that HomC(addT, addT [−t]) = 0 for all 1 6 t 6 u, to conclude that
EndC(T ) is Gorenstein.

The m-cluster categories CmQ of types A and Ã are special cases of
triangulated (m+1)-CY categories and the subcategories addT are (m+1)-
cluster tilting subcategories, as we pointed out in Remark 1.10. It is easy
to see that the subcategory addT might not be corigid already in some
examples of Dynkin type, hence this result is independent of the mentioned
above.
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Example 3.6. Let C2Q be the 2-cluster category, where Q is of type A4

and T is in Figure 5.

Figure 5. 2-cluster tilting object in C2Q.

The subcategory addT in Example 3.6 is not corigid since
Hom(T3, T1[−1]) ≃ Hom(T3[1], T1) 6= 0. By Theorem 3.5 the 2-cluster
tilted algebra End(T ) is Gorenstein of dimension at most two. In fact, in
this example the algebra is of global dimension two, given by the quiver
bellow and bounded by βα = 0.

1 2 3 4α β

Remark 3.7. In a forthcoming paper [16] the Corollary 1 of Section 1 is
generalized to monomial algebras, a family that contains gentle algebras,
but using more recent results. Moreover, the computations in the last
section are revisited and a new approach is proposed in [16, Appendix].
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