Generalizations of semicoprime preradicals Ahmad Yousefian Darani and Hojjat Mostafanasab

Communicated by R. Wisbauer

ABSTRACT. This article introduces the notions quasi-co*n*-absorbing preradicals and semi-co-*n*-absorbing preradicals, generalizing the concept of semicoprime preradicals. We study the concepts quasi-co-*n*-absorbing submodules and semi-co-*n*-absorbing submodules and their relations with quasi-co-*n*-absorbing preradicals and semi-co-*n*-absorbing preradicals using the lattice structure of preradicals.

1. Introduction

The notion of 2-absorbing ideals of commutative rings was introduced by Badawi in [2], where a proper ideal I of a commutative ring R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. Anderson and Badawi [1] generalized the concept of 2-absorbing ideals to n-absorbing ideals. According to their definition, a proper ideal I of R is called an n-absorbing (resp. strongly n-absorbing) ideal if whenever $x_1 \cdots x_{n+1} \in I$ for $x_1, \ldots, x_{n+1} \in R$ (resp. $I_1 \cdots I_{n+1} \subseteq I$ for ideals I_1, \ldots, I_{n+1} of R), then there are n of the x_i 's (resp. n of the I_i 's) whose product is in I. In [24], the concept of 2-absorbing ideals was generalized to submodules of a module over a commutative ring. A proper submodule N of an R-module M is said to be a 2-absorbing submodule of M if whenever $a, b \in R$ and $m \in M$ with $abm \in N$, then $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$. For more studies concerning

²⁰¹⁰ MSC: 16N99, 16S99, 06C05, 16N20.

Key words and phrases: lattice, preradical, quasi-co-n-absorbing, semi-co-n-absorbing.

2-absorbing (submodules) ideals we refer to [3], [9], [24], [25]. In [13], Raggi et al. introduced the concepts of prime preradicals and prime submodules over noncommutative rings, and Raggi, Ríos and Wisbauer [18], studied the dual notions of these, coprime preradicals and coprime submodules. A generalization of prime preradicals and submodules, "2-absorbing preradicals and submodules" was investigated by Yousefian and Mostafanasab in [23]. In [14], Raggi et al. defined and investigated semiprime preradicals, and Mostafanasab and Yousefian [10], studied the concepts of quasi-nabsorbing and semi-n-absorbing preradicals. Raggi et al. [11] defined the notions of semicoprime preradicals and submodules. In this paper, we introduce the concepts of "quasi-co-n-absorbing preradicals" and "semico-n-absorbing preradicals". As well we investigate"quasi-co-n-absorbing submodules" in this paper.

2. Preliminaries

Throughout this paper R is an associative ring with nonzero identity, and *R*-Mod denotes the category of all the unitary left *R*-modules. We denote by *R*-simp a complete set of representatives of isomorphism classes of simple left R-modules. For $M \in R$ -Mod, we denote by E(M) the injective hull of M. Let $U, N \in R$ -Mod, we say that N is generated by U (or N is U-generated) if there exists an epimorphism $U^{(\Lambda)} \to N$ for some index set Λ . Dually, we say that N is cogenerated by U (or N is *U*-cogenerated) if there exists a monomorphism $N \to U^{\Lambda}$ for some index set A. Also, we say that an R-module X is subgenerated by M (or X is *M*-subgenerated) if X is a submodule of an *M*-generated module. The category of *M*-subgenerated modules (the Wisbauer category) is denoted $\sigma[M]$ (see [21]). A preradical over the ring R is a subfunctor of the identity functor on R-Mod. Denote by R-pr the class of all preradicals over R. There is a natural partial ordering in R-pr given by $\sigma \preceq \tau$ if $\sigma(M) \leq \tau(M)$ for every $M \in R$ -Mod. It is proved in [15] that with this partial ordering, R-pr is an atomic and co-atomic big lattice. The smallest and the largest elements of R-pr are denoted, respectively, 0 and 1.

Let $M \in R$ -Mod. Recall ([5] or [15]) that a submodule N of M is called *fully invariant* if $f(N) \leq N$ for each R-homomorphism $f: M \to M$. In this paper, the notation $N \leq_{fi} M$ means that "N is a fully invariant submodule of M". Obviously the submodule K of M is fully invariant if and only if there exists a preradical τ of R-Mod such that $K = \tau(M)$. If $N \leq M$, then the preradicals α_N^M and ω_N^M are defined as follows: For $K \in R$ -Mod,

1) $\alpha_N^M(K) = \sum \{f(N) | f \in \operatorname{Hom}_R(M, K)\}.$ 2) $\omega_N^M(K) = \bigcap \{f^{-1}(N) | f \in \operatorname{Hom}_R(K, M)\}.$

Notice that for $\sigma \in R$ -pr and $M, N \in R$ -Mod we have that $\sigma(M) = N$ if and only if $N \leq_{fi} M$ and $\alpha_N^M \preceq \sigma \preceq \omega_N^M$. We have also that if $K \leq N \leq M$ with K, $N \leq_{fi} M$, then $\alpha_K^M \leq \alpha_N^M$ and $\omega_K^M \leq \omega_N^M$.

The atoms and coatoms of *R*-pr are, respectively, $\{\alpha_S^{E(S)} \mid S \in R\text{-simp}\}\$ and $\{\omega_I^R \mid I \text{ is a maximal ideal of } R\}$ (See [15, Theorem 7]).

There are four classical operations in *R*-pr, namely, \land , \lor , \cdot and : which are defined as follows. For $\sigma, \tau \in R$ -pr and $M \in R$ -Mod:

- 1) $(\sigma \wedge \tau)(M) = \sigma M \cap \tau M$,
- 2) $(\sigma \lor \tau)(M) = \sigma M + \tau M$.
- 3) $(\sigma \tau)(M) = \sigma(\tau M)$ and

4) $(\sigma:\tau)(M)$ is determined by $(\sigma:\tau)(M)/\sigma M = \tau(M/\sigma M)$.

The meet \wedge and join \vee can be defined for arbitrary families of preradicals as in [15]. The operation defined in (3) is called *product*, and the operation defined in (4) is called *coproduct*. It is easy to show that for σ , $\tau \in R$ -pr, $\sigma\tau \preceq \sigma \land \tau \preceq \sigma \lor \tau \preceq (\sigma : \tau)$. It is clear that in *R*-pr the operations (1)-(3) are associative, and in [22] it was shown that the coproduct ":" is associative. Notice the fact that coproduct of preradicals preserves order on both sides, see [8, Remark 2.1]. We denote $\sigma\sigma\cdots\sigma$ (*n* times) by σ^n and $(\sigma: \sigma: \cdots: \sigma)$ (*n* times) by $\sigma_{[n]}$. Recall that $\sigma \in R$ -pr is an *idempotent* if $\sigma^2 = \sigma$, while σ is a radical if $\sigma_{[2]} = \sigma$. Note that σ is a radical if and only if, $\sigma(M/\sigma(M)) = 0$ for each $M \in R$ -Mod. We say that σ is *nilpotent* if $\sigma^n = 0$ for some $n \ge 1$, while σ is unipotent if $\sigma_{[n]} = 1$ for some $n \ge 1$.

Using the preradical ω_N^M , in the papers [6], [7] and [18], the following operation was introduced and studied:

 ω -coproduct of submodules $K, N \leq M : (K:_M N) = (\omega_K^M : \omega_N^M)(M).$

Henceforward, for brevity, (K:N) is written instead of $(K:_M N)$. For any $\sigma \in R$ -pr, we will use the following class of *R*-modules:

$$\mathbb{T}_{\sigma} = \{ M \in R - \text{Mod} \mid \sigma(M) = M \}.$$

Let $\sigma \in R$ -pr. By [18, Theorem 8.2], the following classes of modules are closed under taking arbitrary meets and arbitrary joins:

$$\mathcal{A}_e = \{ \tau \in R \text{-pr} \mid \tau \sigma = \sigma \} \text{ and } \mathcal{A}_t = \{ \tau \in R \text{-pr} \mid (\sigma : \tau) = 1 \}.$$

As in [16], we define, for $\sigma \in R$ -pr, the following preradicals:

• $e(\sigma) = \bigwedge \{ \tau \in \mathcal{A}_e \}$ the equalizer of σ ;

• $t(\sigma) = \bigwedge \{ \tau \in \mathcal{A}_t \}$ the totalizer of σ .

Clearly $e(\sigma)\sigma = \sigma$ and $(\sigma : t(\sigma)) = 1$. For undefined notions we refer the reader to [13, 15–17].

In [18], Raggi et al. defined the notions of coprime preradicals and coprime submodules as follows:

Let $\sigma \in R$ -pr. σ is called *coprime in* R-pr if $\sigma \neq 0$ and for any τ , $\eta \in R$ -pr, $\sigma \preceq (\tau : \eta)$ implies that $\sigma \preceq \tau$ or $\sigma \preceq \eta$. Let $M \in R$ -Mod and let $N \leq M$ be a nonzero fully invariant submodule of M. The submodule N is said to be *coprime in* M if whenever K, L are fully invariant submodules of M with $N \leq (K : L)$, then $N \leq K$ or $N \leq L$. Also, Raggi et al. [11] defined a preradical σ semicoprime in R-pr if $\sigma \neq 0$ and for any $\tau \in R$ -pr, $\sigma \preceq (\tau : \tau)$ implies that $\sigma \preceq \tau$. They said that a nonzero fully invariant submodule N of M is semicoprime in M if whenever K is a fully invariant submodule of M with $N \leq (K : K)$, then $N \leq K$. In special case, M is called a *coprime (resp. semicoprime) module* if M is a coprime (resp. semicoprime) submodule of itself.

Yousefian and Mostafanasab in [22] defined the notions of co-2-absorbing preradicals and co-2-absorbing submodules. The preradical $\sigma \in R$ -pr is called *co-2-absorbing* if $\sigma \neq 0$ and, for each $\eta, \mu, \nu \in R$ -pr, $\sigma \preceq (\eta : \mu : \nu)$ implies that $\sigma \preceq (\eta : \mu)$ or $\sigma \preceq (\eta : \nu)$ or $\sigma \preceq (\mu : \nu)$. More generally, a preradical $0 \neq \sigma$ in *R*-pr is said to be a *co-n-absorbing preradical* if whenever $\sigma \leq (\eta_1 : \eta_2 : \cdots : \eta_{n+1})$ for $\eta_1, \eta_2, \ldots, \eta_{n+1} \in R$ -pr, there are $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, n+1\}$ such that $i_1 < i_2 < \cdots < i_n$ and $\sigma \preceq (\eta_{i_1} : \eta_{i_2} : \cdots : \eta_{i_n})$. They denoted by *R*-co-ass the class of all *R*-modules *M* that the operation ω -coproduct is associative over fully invariant submodules of M, i.e., for any fully invariant submodules K, N, Lof M, ((K:N):L) = (K:(N:L)). Let $M \in R$ -co-ass and K be a fully invariant submodule of M. Then $(K : K : \cdots : K)$ (n times) is simply denoted by $K_{[n]}$. By Proposition 5.4 of [7], we can see that if an R-module M is injective and artinian, then $M \in R$ -co-ass. Let $M \in R$ -co-ass and N a nonzero fully invariant submodule of M. The submodule N is said to be co-2-absorbing in M if whenever J, K, L are fully invariant submodules of M with $N \leq (J:K:L)$, then $N \leq (J:K)$ or $N \leq (J:L)$ or $N \leq (K:L)$. The generalization of co-2-absorbing submodules is that, the submodule N is said co-n-absorbing in M if whenever $N \leq (K_1 : K_2 : \cdots : K_{n+1})$ for fully invariant submodules $K_1, K_2, \ldots, K_{n+1}$ of M, there are $i_1, i_2, \ldots, i_n \in \{1, 2, \ldots, n+1\}$ such that $i_1 < i_2 < \cdots < i_n$ and $N \leq (K_{i_1} : K_{i_2} : \cdots : K_{i_n})$. An *R*-module *M* is called a *co-n-absorbing module* if M is a co-*n*-absorbing submodule of itself.

We say that a preradical $0 \neq \sigma \in R$ -pr is called a quasi-co-n-absorbing preradical if whenever $\sigma \preceq (\mu_{[n]} : \nu)$ for $\mu, \nu \in R$ -pr, then $\sigma \preceq \mu_{[n]}$ or $\sigma \preceq (\mu_{[n-1]} : \nu)$. A preradical $0 \neq \sigma \in R$ -pr is called a semi-co-n-absorbing preradical if whenever $\sigma \preceq \mu_{[n+1]}$ for $\mu \in R$ -pr, then $\sigma \preceq \mu_{[n]}$. Let $M \in R$ co-ass. We say that a nonzero fully invariant submodule N of M is quasico-n-absorbing in M if for every fully invariant submodules K, L of M, $N \leq (K_{[n]} : L)$ implies that $N \leq K_{[n]}$ or $N \leq (K_{[n-1]} : L)$. A nonzero fully invariant submodule N of M is called semi-co-n-absorbing in M if for every fully invariant submodule K of M, $N \leq K_{[n+1]}$ implies that $N \leq K_{[n]}$. An R-module M satisfies the ω -property if $(\tau(M) :_M \eta(M)) = (\tau : \eta)(M)$ for every τ , $\eta \in R$ -pr, see [22].

We recall the definition of relative epi-projectivity (see [20]). Let M and N be modules. N is said to be *epi-M-projective* if, for any submodule K of M, any epimorphism $f: N \to \frac{M}{K}$ can be lifted to a homomorphism $g: N \to M$

Proposition 1 ([22, Proposition 2.9 (1)]). Let $M \in R$ -Mod. If for any fully invariant submodule K of M, $\frac{M}{K}$ is epi-M-projective, then M has the ω -property.

In the next sections we frequently use the following proposition.

Proposition 2 ([12, Proposition 1.2]). Let $\{M_{\gamma}\}_{\gamma \in I}$ and $\{N_{\gamma}\}_{\gamma \in I}$ be families of modules in *R*-Mod such that for each $\gamma \in I$, $N_{\gamma} \leq M_{\gamma}$. Let $N = \bigoplus_{\gamma \in I} N_{\gamma}, M = \bigoplus_{\gamma \in I} M_{\gamma}, N' = \prod_{\gamma \in I} N_{\gamma} \text{ and } M' = \prod_{\gamma \in I} M_{\gamma}.$ (1) If $N \leq_{fi} M$, then for each $\gamma \in I$, $N_{\gamma} \leq_{fi} M_{\gamma}$ and $\alpha_N^M = \bigvee_{\gamma \in I} \alpha_{N_{\gamma}}^{M_{\gamma}}.$ (2) If $N' \leq_{fi} M'$, then for each $\gamma \in I$, $N_{\gamma} \leq_{fi} M_{\gamma}$ and $\omega_{N'}^{M'} = \bigwedge_{\gamma \in I} \omega_{N_{\gamma}}^{M_{\gamma}}.$

3. Quasi-co-*n*-absorbing preradicals

Suppose that m, n are positive integers with n > m. A preradical $\sigma \neq 0$ is called a *quasi-co-(n,m)-absorbing preradical* if whenever $\sigma \preceq (\mu_{[n-1]}:\nu)$ for $\mu, \nu \in R$ -pr, then $\sigma \preceq \mu_{[m]}$ or $\sigma \preceq (\mu_{[m-1]}:\nu)$.

Proposition 3. Let $\sigma \in R$ -pr and let m > 0. The following conditions are equivalent:

- (1) σ is quasi-co-(n,m)-absorbing for every n > m;
- (2) σ is quasi-co-(n,m)-absorbing for some n > m;
- (3) σ is quasi-co-m-absorbing.

Proof. $(1) \Rightarrow (2)$ Is trivial.

(2) \Rightarrow (3) Assume that σ is quasi-co-(n, m)-absorbing for some n > m. Let $\sigma \preceq (\mu_{[m]} : \nu)$ for some $\mu, \nu \in R$ -pr. Since $m \leq n-1$, then $(\mu_{[m]} : \nu) \preceq (\mu_{[n-1]} : \nu)$ and so $\sigma \preceq (\mu_{[n-1]} : \nu)$. Therefore $\sigma \preceq \mu_{[m]}$ or $\sigma \preceq (\mu_{[m-1]} : \nu)$. Consequently σ is quasi-co-*m*-absorbing.

 $(3) \Rightarrow (1)$ Suppose that σ is quasi-co-*m*-absorbing and get n > m. Let $\sigma \preceq (\mu_{[n-1]} : \nu)$ for some $\mu, \nu \in R$ -pr. Therefore $\sigma \preceq (\mu_{[m]} : (\mu_{[n-1-m]} : \nu))$. Hence $\sigma \preceq \mu_{[m]}$ or $\sigma \preceq (\mu_{[m-1]} : (\mu_{[n-1-m]} : \nu)) = (\mu_{[n-2]} : \nu)$. Repeating this method implies that $\sigma \preceq \mu_{[m]}$ or $\sigma \preceq (\mu_{[m-1]} : \nu)$. Thus σ is quasi-co-(n, m)-absorbing.

Remark 1. Let $\sigma \in R$ -pr.

- (1) σ is coprime if and only if σ is quasi-co-1-absorbing if and only if σ is co-1-absorbing.
- (2) If σ is quasi-co-*n*-absorbing, then it is quasi-co-*i*-absorbing for all $i \ge n$.
- (3) If σ is coprime, then it is quasi-co-*n*-absorbing for all $n \ge 1$.
- (4) If σ is quasi-co-*n*-absorbing for some $n \ge 1$, then there exists the least $n_0 \ge 1$ such that σ is quasi-co- n_0 -absorbing. In this case, σ is quasi-co-*n*-absorbing for all $n \ge n_0$ and it is not quasi-co-*i*-absorbing for $n_0 > i > 0$.

Proposition 4. Let C be a family of coprime preradicals. Then $\bigvee_{\sigma \in C} \sigma$ is a quasi-co-i-absorbing preradical for every $i \ge 2$.

Proof. Let $\tau = \bigvee_{\sigma \in \mathcal{C}} \sigma$. By Remark 1(2), it is sufficient to show that τ is a quasi-co-2-absorbing preradical. Suppose that $\tau \preceq (\mu_{[2]} : \nu)$ for some $\mu, \nu \in R$ -pr. Since every $\sigma \in \mathcal{C}$ is coprime and $\sigma \preceq (\mu_{[2]} : \nu)$, then $\sigma \preceq \mu$ or $\sigma \preceq \nu$. Hence $\tau \preceq (\mu : \nu)$, and so we conclude that τ is a quasi-co-2-absorbing preradical.

Let $\zeta = \bigvee \{\alpha_S^S \mid S \in R\text{-simp}\}$. Note that for every *R*-module *M*, $\zeta(M) = \operatorname{Soc}(M)$. As in [14], ζ is called the socle preradical. Also, let $\kappa = \{\alpha_{R/I}^{R/I} \mid I \text{ a maximal ideal of } R\}$. We call κ the ultrasocle preradical, see [11].

As a direct consequence of Proposition 4 we have the following result.

Proposition 5. ζ , κ are quasi-co-i-absorbing preradicals for every $i \ge 2$.

Proof. By [18, p. 57], for each simple *R*-module *S*, α_S^S is coprime. Also, for every maximal ideal *I* of *R*, $\alpha_{R/I}^{R/I}$ is a coprime preradical, [11, Remark 6]. Then by Proposition 4, the claim holds.

Proposition 6. If R is a semisimple Artinian ring, then every nonzero preradical $\sigma \in R$ -pr is a quasi-co-i-absorbing preradical for every $i \ge 2$.

Proof. Suppose that R is a semisimple Artinian ring. According to [18, Proposition 3.2], every atom $\alpha_S^{E(S)}$ is a coprime preradical. On the other hand [15, Theorem 11] implies that $\sigma = \bigvee \{ \alpha_S^{E(S)} \mid S \in R\text{-simp}, \alpha_S^{E(S)} \leq \sigma \}$. Therefore every nonzero preradical σ in R-pr is quasi-co-*i*-absorbing for every $i \geq 2$, by Proposition 4.

Remark 2. Let $S_1, S_2, \ldots, S_{n+1} \in R$ -simp be distinct. Then by Proposition 4, $\alpha_{S_1}^{S_1} \lor \alpha_{S_2}^{S_2} \lor \cdots \lor \alpha_{S_{n+1}}^{S_{n+1}}$ is a quasi-co-*i*-absorbing preradical in *R*-pr for every $i \ge 2$. But, [22, Proposition 3.6] implies that $\alpha_{S_1}^{S_1} \lor \alpha_{S_2}^{S_2} \lor \cdots \lor \alpha_{S_{n+1}}^{S_{n+1}}$ is not a co-*n*-absorbing preradical. This remark shows that the two concepts of quasi-co-*n*-absorbing preradicals and of co-*n*-absorbing preradicals are different in general.

Corollary 1. If R is a ring such that every quasi-co-n-absorbing preradical in R-pr is co-n-absorbing, then $|R\text{-simp}| \leq n$.

Notice the fact that coproduct of preradicals preserves order on both sides.

Proposition 7. Let R be a ring. The following statements are equivalent:

- (1) for every $\mu, \nu \in R$ -pr, $(\mu_{[n]} : \nu) = \mu_{[n]}$ or $(\mu_{[n]} : \nu) = (\mu_{[n-1]} : \nu)$;
- (2) for every $\sigma_1, \sigma_2, \ldots, \sigma_{n+1} \in R$ -pr,

$$(\sigma_1:\sigma_2:\cdots:\sigma_{n+1}) \preceq (\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_n)_{[n]}$$

or

$$(\sigma_1:\sigma_2:\cdots:\sigma_{n+1}) \preceq ((\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_n)_{[n-1]}:\sigma_{n+1});$$

(3) every preredical $0 \neq \sigma \in R$ -pr is quasi-co-n-absorbing.

Proof. (1) \Rightarrow (2) If $\sigma_1, \sigma_2, \ldots, \sigma_{n+1} \in R$ -pr, then by part (1) we have that,

$$(\sigma_1:\sigma_2:\cdots:\sigma_{n+1}) \preceq ((\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_n)_{[n]}:\sigma_{n+1})$$
$$= (\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_n)_{[n]},$$

or

$$(\sigma_1:\sigma_2:\cdots:\sigma_{n+1}) \preceq ((\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_n)_{[n]}:\sigma_{n+1})$$

= $((\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_n)_{[n-1]}:\sigma_{n+1}).$

(2) \Rightarrow (1) For preradicals $\mu, \nu \in R$ -pr, we have from (2),

$$(\mu_{[n]}:\nu) \preceq (\overbrace{\mu \vee \cdots \vee \mu}^{n \text{ times}})_{[n]} = \mu_{[n]}$$

or

$$(\mu_{[n]}:\nu) \preceq ((\overbrace{\mu \vee \cdots \vee \mu}^{n \text{ times}})_{[n-1]}:\nu) = (\mu_{[n-1]}:\nu).$$

Thus we have that $(\mu_{[n]}:\nu) = \mu_{[n]}$ or $(\mu_{[n]}:\nu) = (\mu_{[n-1]}:\nu)$. $(1) \Leftrightarrow (3)$ Is evident.

In the next proposition we use $(\mu_1 : \cdots : \hat{\mu_i} : \cdots : \mu_{n+1})$ when the *i*-th term is excluded from $(\mu_1 : \cdots : \mu_{n+1})$.

Proposition 8. Let $0 \neq \sigma \in R$ -pr be an idempotent radical.

(1) If σ is such that for any $\mu, \nu \in R$ -pr, we have

$$\mu \lor \nu \preceq \sigma \preceq (\mu_{[n]} : \nu) \Rightarrow [\sigma \preceq \mu_{[n]} \text{ or } \sigma \preceq (\mu_{[n-1]} : \nu)],$$

then σ is quasi-co-n-absorbing.

(2) If σ is such that for any $\mu_1, \mu_2, \ldots, \mu_{n+1} \in R$ -pr, we have

$$\mu_1 \lor \mu_2 \lor \cdots \lor \mu_{n+1} \preceq \sigma \preceq (\mu_1 : \mu_2 : \cdots : \mu_{n+1}) \Rightarrow$$

$$[\sigma \preceq (\mu_1 : \cdots : \widehat{\mu_i} : \cdots : \mu_{n+1}), \text{ for some } 1 \leq i \leq n+1],$$

then σ is a co-n-absorbing preradical.

Proof. (1) Let $\sigma \neq 0$ be an idempotent radical that satisfies the hypothesis in part (1). Let $\sigma \preceq (\tau_{[n]} : \lambda)$ for some $\tau, \lambda \in R$ -pr. Then, by [15, Theorem 8(3)] we have

$$\tau \sigma \lor \lambda \sigma \preceq \sigma = \sigma^2 \preceq (\tau_{[n]} : \lambda) \sigma = (\tau_{[n]} \sigma : \lambda \sigma) = ((\tau \sigma)_{[n]} : \lambda \sigma).$$

So, by hypothesis we have $\sigma \preceq (\tau \sigma)_{[n]} = \tau_{[n]} \sigma \preceq \tau_{[n]}$ or $\sigma \preceq ((\tau \sigma)_{[n-1]})$: $\lambda \sigma$) = $(\tau_{[n-1]} : \lambda) \sigma \preceq (\tau_{[n-1]} : \lambda)$. Therefore σ is quasi-co-*n*-absorbing.

(2) The proof is similar to that of (1).

Proposition 9. Let C be a chain of quasi-co-n-absorbing preradicals, that is, a subclass of quasi-co-n-absorbing preradicals which is linearly ordered. Then $\bigvee_{\sigma \in \mathcal{C}} \sigma$ is a quasi-co-n-absorbing preradical.

Proof. Let $\tau = \bigvee_{\sigma \in \mathcal{C}} \sigma$ and assume that $\tau \preceq (\mu_{[n]} : \nu)$ for some $\mu, \nu \in R$ pr. If $\sigma \preceq \mu_{[n]}$ for each $\sigma \in \mathcal{C}$, then $\tau \preceq \mu_{[n]}$. If there exists $\sigma_0 \in \mathcal{C}$ such that $\sigma_0 \not\preceq \mu_{[n]}$, then $\sigma \not\preceq \mu_{[n]}$ for each $\sigma_0 \preceq \sigma$. Since all preradicals in \mathcal{C} are quasi-co-*n*-absorbing, it follows that $\sigma \preceq (\mu_{[n-1]} : \nu)$ for each $\sigma_0 \preceq \sigma$. Thus $\sigma \preceq (\mu_{[n-1]} : \nu)$ for each $\sigma \in \mathcal{C}$, so that $\tau \preceq (\mu_{[n-1]} : \nu)$. Consequently, we deduce that τ is a quasi-co-*n*-absorbing preradical. \Box

Proposition 10. If σ_i is a quasi-co- n_i -absorbing preradical in *R*-pr for every $1 \leq i \leq k$, then $\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_k$ is a quasi-co-n-absorbing preradical for $n = n_1 + \cdots + n_k$.

Proof. For k = 1 there is nothing to prove. Then, suppose that k > 1. Assume that $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_k \preceq (\mu_{[n]} : \nu)$ for some $\mu, \nu \in R$ -pr. Notice that for every $1 \leq i \leq k$, $\sigma_i \preceq (\mu_{[n]} : \nu) = (\mu_{[n_i]} : \mu_{[n-n_i]} : \nu)$. Then, for every $1 \leq i \leq k$, either $\sigma_i \preceq \mu_{[n_i]}$ or $\sigma_i \preceq (\mu_{[n_i-1]} : \mu_{[n-n_i]} : \nu) = (\mu_{[n-1]} : \nu)$, because σ_i is quasi-co- n_i -absorbing. On the other hand, for every $1 \leq i \leq k$, $\mu_{[n_i]} \preceq \mu_{[n-1]}$ and so $\mu_{[n_i]} \preceq (\mu_{[n-1]} : \nu)$. Hence $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_k \preceq (\mu_{[n-1]} : \nu)$ which shows that $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_k$ is a quasi-co-n-absorbing prevadical.

Proposition 11. Let $\sigma_1, \sigma_2, \ldots, \sigma_t \in R$ -pr.

- (1) If σ_1 is a quasi-co-n-absorbing preradical and σ_2 is a quasi-co-mabsorbing preradical for $m \leq n$, then $\sigma_1 \vee \sigma_2$ is a quasi-co-(n + 1)absorbing preradical.
- (2) If $\sigma_1, \sigma_2, \ldots, \sigma_t$ are quasi-co-n-absorbing preradicals, then $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_t$ is a quasi-co-(n + t 1)-absorbing preradical.
- (3) If σ_i is a quasi-co- n_i -absorbing preradical for every $1 \leq i \leq t$ with $n_1 < n_2 < \cdots < n_t$ and t > 2, then $\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_t$ is a quasi-co- $(n_t + 1)$ -absorbing preradical.

Proof. (1) Let $\mu, \nu \in R$ -pr be such that $\sigma_1 \vee \sigma_2 \preceq (\mu_{[n+1]} : \nu)$. Since σ_1 is quasi-co-*n*-absorbing and $\sigma_1 \preceq (\mu_{[n]} : \mu : \nu)$, then either $\sigma_1 \preceq \mu_{[n]}$ or $\sigma_1 \preceq (\mu_{[n-1]} : \mu : \nu) = (\mu_{[n]} : \nu)$. Also, σ_2 is quasi-co-*m*-absorbing and $\sigma_2 \preceq (\mu_{[m]} : \mu_{[n+1-m]} : \nu)$, so either $\sigma_2 \preceq \mu_{[m]}$ or $\sigma_2 \preceq (\mu_{[m-1]} : \mu_{[n+1-m]} : \nu) = (\mu_{[n]} : \nu)$. There are four cases.

Case 1. Assume that $\sigma_1 \leq \mu_{[n]}$ and $\sigma_2 \leq \mu_{[m]}$. Then $\sigma_1 \vee \sigma_2 \leq \mu_{[n]}$. Case 2. Assume that $\sigma_1 \leq \mu_{[n]}$ and $\sigma_2 \leq (\mu_{[n]} : \nu)$. Then $\sigma_1 \vee \sigma_2 \leq (\mu_{[n]} : \nu)$. Case 3. Assume that $\sigma_1 \leq (\mu_{[n]} : \nu)$ and $\sigma_2 \leq \mu_{[m]}$. Then $\sigma_1 \vee \sigma_2 \leq (\mu_{[n]} : \nu)$. Case 4. Assume that $\sigma_1 \leq (\mu_{[n]} : \nu)$ and $\sigma_2 \leq (\mu_{[n]} : \nu)$. Then $\sigma_1 \vee \sigma_2 \leq (\mu_{[n]} : \nu)$. Hence $\sigma_1 \vee \sigma_2$ is quasi-co-(n + 1)-absorbing. (2) We use induction on t. For t = 1 there is nothing to prove. Let t > 1 and assume that for t-1 the claim holds. Then $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_{t-1}$ is quasi-co-(n + t - 2)-absorbing. Since σ_t is quasi-co-n-absorbing, then it is quasi-co-(n + t - 2)-absorbing, by Remark 1(2). Therefore $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_t$ is quasi-co-(n + t - 1)-absorbing, by part (1).

(3) Induction on t: For t = 3 apply parts (1) and (2). Let t > 3 and suppose that for t - 1 the claim holds. Hence $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_{t-1}$ is quasi-co- $(n_{t-1} + 1)$ -absorbing. We consider the following cases:

Case 1. Let $n_{t-1} + 1 < n_t$. In this case $\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_t$ is quasi-co- $(n_t + 1)$ -absorbing, by part (1).

Case 2. Let $n_{t-1} + 1 = n_t$. Thus $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_t$ is quasi-co- $(n_t + 1)$ -absorbing, by part (2).

Case 3. Let $n_{t-1} + 1 > n_t$. Then $\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_t$ is quasi-co- $(n_{t-1} + 2)$ -absorbing, by part (1). Since $n_{t-1} + 2 \leq n_t + 1$, then $\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_t$ is quasi-co- $(n_t + 1)$ -absorbing.

Proposition 12. Let $\sigma \in R$ -pr be a radical. If σ is quasi-co-n-absorbing, then $e(\sigma)$ is quasi-co-n-absorbing.

Proof. Assume that σ is quasi-co-*n*-absorbing, and let $e(\sigma) \leq (\mu_{[n]} : \nu)$ for some $\mu, \nu \in R$ -pr. Then $\sigma = e(\sigma)\sigma \leq (\mu_{[n]} : \nu)\sigma \leq ((\mu\sigma)_{[n]} : \nu\sigma)$. Since σ is quasi-co-*n*-absorbing and radical, [15, Theorem 8(3)] implies that either $\sigma \leq (\mu\sigma)_{[n]} = \mu_{[n]}\sigma \leq \mu_{[n]}$ or $\sigma \leq ((\mu\sigma)_{[n-1]} : \nu\sigma) = (\mu_{[n-1]} : \nu)\sigma \leq (\mu_{[n-1]} : \nu)$. Consequently $e(\sigma)$ is quasi-co-*n*-absorbing.

Definition 1. For τ , $\rho \in R$ -pr define the totalizer of ρ relative to τ as $t_{\tau}(\rho) = \bigwedge \{\eta \in R \text{-pr} | (\rho : \eta) \succeq \tau \}$. Note that $t_1(\rho) = t(\rho)$.

Proposition 13. Let $\tau \in R$ -pr. If τ is quasi-co-2-absorbing, then for each $\lambda \in R$ -pr, either $\tau \preceq \lambda_{[n]}$ or $t_{\tau}(\lambda_{[n]}) = t_{\tau}(\lambda_{[n-1]})$. In particular, if 1 is a quasi-co-2-absorbing preradical, then for each $\lambda \in R$ -pr, either $\lambda_{[n]} = 1$ or $t(\lambda_{[n]}) = t(\lambda_{[n-1]})$.

Proof. Suppose that τ is quasi-co-2-absorbing and let $\lambda \in R$ -pr such that $\tau \not\preceq \lambda_{[n]}$. If $\nu \in R$ -pr is such that $\tau \preceq (\lambda_{[n]} : \nu)$, then $\tau \preceq (\lambda_{[n-1]} : \nu)$, since σ is quasi-co-2-absorbing. Therefore $t_{\tau}(\lambda_{[n-1]}) \preceq t_{\tau}(\lambda_{[n]})$. On the other hand $\lambda_{[n-1]} \preceq \lambda_{[n]}$ and so $t_{\tau}(\lambda_{[n]}) \preceq t_{\tau}(\lambda_{[n-1]})$. Consequently $t_{\tau}(\lambda_{[n]}) = t_{\tau}(\lambda_{[n-1]})$.

4. Semi-co-*n*-absorbing preradicals

Suppose that m, n are positive integers with n > m. A more general concept than semi-co-n-absorbing preradicals is the concept of semi-co-(n, m)-absorbing preradicals. A preradical $\sigma \neq 0$ is called a *semi-co-(n, m)-absorbing preradical* if whenever $\sigma \leq \mu_{[n]}$ for $\mu \in R$ -pr, then $\sigma \leq \mu_{[m]}$.

Note that a semicoprime preradical is just a semi-co-1-absorbing preradical.

Theorem 1. Let $\sigma \in R$ -pr and m, n be positive integers with n > m.

- (1) If σ is quasi-co-m-absorbing, then it is semi-co-(k, m)-absorbing for every k > m.
- (2) If σ is semi-co-(n, m)-absorbing, then it is semi-co-(i, m)-absorbing for every m < i < n, in particular it is semi-co-m-absorbing.
- (3) σ is semi-co-(n,m)-absorbing if and only if σ is semi-co-(n,k)absorbing for each $n > k \ge m$ if and only if σ is semi-co-(i,j)absorbing for each $n \ge i > j \ge m$.
- (4) If σ is semi-co-(n, m)-absorbing, then it is semi-co-(nk, mk)-absorbing for every positive integer k.
- (5) If σ is semi-co-(n, m)-absorbing and semi-co-(r, s)-absorbing for some positive integers r > s, then it is semi-co-(nr, ms)-absorbing.

Proof. (1) Is trivial.

- (2) Is easy.
- (3) Straightforward.

(4) Suppose that σ is semi-co-(n, m)-absorbing. Let $\mu \in R$ -pr and let k be a positive integer such that $\sigma \preceq \mu_{[nk]}$. Then $\sigma \preceq (\mu_{[k]})_{[n]}$. Since σ is semi-co-(n, m)-absorbing, $\sigma \preceq (\mu_{[k]})_{[m]} = \mu_{[mk]}$, and so σ is semi-co-(nk, mk)-absorbing.

(5) Assume that σ is semi-co-(n, m)-absorbing and semi-co-(r, s)absorbing for some positive integers r > s. Let $\sigma \preceq \mu_{[nr]}$. Since σ is semi-co-(n, m)-absorbing, then $\sigma \preceq \mu_{[mr]}$; and since σ is semi-co-(r, s)absorbing, $\sigma \preceq \mu_{[ms]}$. Hence σ is semi-co-(nr, ms)-absorbing. \Box

Corollary 2. Let $\sigma \in R$ -pr and n be a positive integer.

- (1) If σ is quasi-co-n-absorbing, then it is semi-co-n-absorbing.
- (2) Let $t \leq n$ be an integer. If σ is semi-co-(n + 1, t)-absorbing, then it is semi-co-(nk + i, tk)-absorbing for all $k \geq i \geq 1$.
- (3) If σ is semi-co-n-absorbing, then it is semi-co-(nk+i, nk)-absorbing for all $k \ge i \ge 1$.

- (4) If σ is semi-co-n-absorbing, then it is semi-co-(nk + j)-absorbing for all $k > j \ge 0$.
- (5) If σ is semi-co-n-absorbing, then it is semi-co-(nk)-absorbing for every positive integer k.
- (6) If σ is semicoprime, then it is semi-co-k-absorbing for every positive integer k.
- (7) If σ is semicoprime, then for every $k \ge 1$ and every $\mu \in R$ -pr, $\sigma \preceq \mu_{[k]}$ implies that $\sigma \preceq \mu$.
- (8) If σ is semi-co-n-absorbing, then it is semi-co- $((n+1)^t, n^t)$ -absorb -ing for all $t \ge 1$.
- (9) If σ is semicoprime, then it is quasi-co-k-absorbing for every k > 1.

Proof. (1) By parts (1), (2) of Theorem 1.

(2) Let σ be semi-co-(n + 1, t)-absorbing. Then by Theorem 1(4), σ is semi-co-(nk + k, tk)-absorbing, for every positive integer k. Hence by Theorem 1(2), σ is semi-co-(nk + i, tk)-absorbing for every $k \ge i \ge 1$.

- (3) In part (2) get t = n.
- (4) By part (3).
- (5) Is a special case of (4).
- (6) Is a direct consequence of (5).
- (7) By part (6).
- (8) By Theorem 1(5).

(9) Assume that σ is semicoprime. Let $\sigma \leq (\mu_{[k]} : \nu)$ for some $\mu, \nu \in R$ -pr and some k > 1. Then $\sigma \leq (\mu_{[k]} : \nu) \leq (\mu : \nu)_{[k]}$. Therefore $\sigma \leq (\mu : \nu)$, by part (7). So σ is quasi-co-k-absorbing.

In the following remark we prove Proposition 4 in another way.

Remark 3. Clearly, an arbitrary join of a family of semicoprime (coprime) preradicals is semicoprime, and so it is quasi-co-k-absorbing for every k > 1, by Corollary 2(9).

Proposition 14. Let $\sigma_1, \sigma_2, \ldots, \sigma_n \in R$ -pr. If for every $1 \leq i \leq n$, σ_i is a semicoprime preradical, then $(\sigma_1 : \sigma_2 : \cdots : \sigma_n)$ is a semi-co-n-absorbing preradical. In particular, if σ is a semicoprime preradical, then $\sigma_{[n]}$ is a semi-co-n-absorbing preradical.

Proof. Apply Corollary 2(7).

Lemma 1. Let $\sigma \in R$ -pr. If $\sigma_{[n+1]}$ is a semi-co-n-absorbing preradical, then $\sigma_{[n+1]} = \sigma_{[n]}$. In particular, if $\sigma_{[2]}$ is a semicoprime preradical, then σ is radical.

Proposition 15. Let $\sigma \in R$ -pr, $\sigma \neq 0$ be an idempotent radical. If σ is such that for any $\mu \in R$ -pr, we have $\mu \preceq \sigma \preceq \mu_{[n+1]} \Rightarrow \sigma \preceq \mu_{[n]}$, then σ is semi-co-n-absorbing.

Proof. The proof is similar to that of Proposition 8(1).

Proposition 16. Let $\sigma_1, \sigma_2, \ldots, \sigma_n \in R$ -pr be semi-co-2-absorbing preradicals. Then $(\sigma_1 : \sigma_2 : \cdots : \sigma_n)$ is a semi-co- (3^n-1) -absorbing preradical.

Proof. Suppose that $(\sigma_1 : \sigma_2 : \cdots : \sigma_n) \preceq \mu_{[3^n]}$ for some $\mu \in R$ -pr. For every $1 \leq i \leq n, \sigma_i \preceq \mu_{[3^n]} = (\mu_{[3^{n-1}]})_{[3]}$ and σ_i is semi-co-2-absorbing, then $\sigma_i \preceq (\mu_{[3^{n-1}]})_{[2]} = \mu_{[2\cdot3^{n-1}]} = (\mu_{[2\cdot3^{n-2}]})_{[3]}$. Again, since σ_i is semico-2-absorbing, we conclude that $\sigma_i \preceq \mu_{[2^2\cdot3^{n-2}]}$. Repeating this method implies that $\sigma_i \preceq \mu_{[2^n]}$. So $(\sigma_1 : \sigma_2 : \cdots : \sigma_n) \preceq \mu_{[n2^n]}$. On the other hand $n2^n \leq 3^n - 1$. So $(\sigma_1 : \sigma_2 : \cdots : \sigma_n) \preceq \mu_{[3^n-1]}$ which shows that $(\sigma_1 : \sigma_2 : \cdots : \sigma_n)$ is semi-co- $(3^n - 1)$ -absorbing. \Box

Proposition 17. If σ_i is a semi-co- n_i -absorbing preradical in R-pr for every $1 \leq i \leq k$, then $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_k$ is a semi-co-(n-1)-absorbing preradical for $n = \prod_{i=1}^{k} (n_i + 1)$.

Proof. Let $\mu \in R$ -pr be such that $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_k \preceq \mu_{[n]}$. Thus for every $1 \leq i \leq k, \ \sigma_i \preceq \left(\mu_{[m]}\right)_{[n_i+1]}$, where $m = \prod_{\substack{j=1, \ j \neq i}}^k (n_j+1)$. Since σ_i 's are semi-co- n_i -absorbing, then, for each $1 \leq i \leq k, \ \sigma_i \preceq \mu_{[n_im]}$. Note that for every $1 \leq i \leq k$,

$$n_i m \leq \prod_{i=1}^k (n_i + 1) - 1 = n - 1.$$

So we have $\sigma_i \leq \mu_{[n-1]}$ for every $1 \leq i \leq k$. Hence $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_k \leq \mu_{[n-1]}$ which implies that $\sigma_1 \vee \sigma_2 \vee \cdots \vee \sigma_k$ is a semi-co-(n-1)-absorbing preradical.

Proposition 18. Let $\sigma_1, \sigma_2 \in R$ -pr and m, n be positive integers.

- (1) If σ_1 is quasi-co-m-absorbing and σ_2 is semi-co-n-absorbing, then $(\sigma_1:\sigma_2)$ is semi-co-(n(m+1)+m)-absorbing.
- (2) If σ_1 is quasi-co-(2m)-absorbing and σ_2 is semi-co-m-absorbing, then $(\sigma_1 : \sigma_2)$ is semi-co- $(m^2 + 2m)$ -absorbing.

Proof. (1) Suppose that $(\sigma_1 : \sigma_2) \preceq \mu_{[(n+1)(m+1)]}$ for some $\mu \in R$ -pr. Since σ_1 is quasi-co-*m*-absorbing and $\sigma_1 \preceq \mu_{[(n+1)(m+1)]}$, then $\sigma_1 \preceq \mu_{[m]}$. On the other hand σ_2 is semi-co-*n*-absorbing and $\sigma_2 \leq \mu_{[(n+1)(m+1)]}$, then $\sigma_2 \leq \mu_{[n(m+1)]}$. Consequently $(\sigma_1 : \sigma_2) \leq \mu_{[n(m+1)+m]}$, and so $(\sigma_1 : \sigma_2)$ is semi-co-(n(m+1)+m)-absorbing.

(2) Suppose that $(\sigma_1 : \sigma_2) \preceq \mu_{[(m+1)^2]}$ for some $\mu \in R$ -pr. Since σ_1 is quasi-co-(2m)-absorbing and $\sigma_1 \preceq \mu_{[(m+1)^2]}$, then $\sigma_1 \preceq \mu_{[2m]}$. Since σ_2 is semi-co-*m*-absorbing and $\sigma_2 \preceq \mu_{[(m+1)^2]}$, then $\sigma_2 \preceq \mu_{[m^2]}$. Hence $(\sigma_1 : \sigma_2) \preceq \mu_{[m^2+2m]}$ which shows that $(\sigma_1 : \sigma_2)$ is semi-co- $(m^2 + 2m)$ -absorbing.

Proposition 19. Let R be a ring. The following statements are equivalent:

(1) for every preradical $\sigma \in R$ -pr, $\sigma_{[n+1]} = \sigma_{[n]}$;

(2) for all preradicals $\sigma_1 \sigma_2, \ldots, \sigma_{n+1} \in R$ -pr we have

$$(\sigma_1:\sigma_2:\cdots:\sigma_{n+1}) \preceq (\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_{n+1})_{[n]};$$

(3) every preredical $0 \neq \sigma \in R$ -pr is semi-co-n-absorbing.

Proof. (1) \Rightarrow (2) If $\sigma_1, \sigma_2, \ldots, \sigma_{n+1} \in R$ -pr, then we get from (1),

$$(\sigma_1:\sigma_2:\cdots:\sigma_{n+1}) \preceq (\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_{n+1})_{[n+1]} = (\sigma_1 \lor \sigma_2 \lor \cdots \lor \sigma_{n+1})_{[n]}.$$

 $(2) \Rightarrow (1)$ For a preradical $\sigma \in R$ -pr, we have from (2),

$$\sigma_{[n+1]} \preceq (\overbrace{\sigma \lor \cdots \lor \sigma}^{n+1 \text{ times}})_{[n]} = \sigma_{[n]}.$$

So we have that $\sigma_{[n+1]} = \sigma_{[n]}$. (1) \Leftrightarrow (3) Is clear.

Remark 4. Let $\{\sigma_{\alpha}\}_{\alpha \in I} \subseteq R$ -pr. If σ_{α} is semi-co-*n*-absorbing for every $\alpha \in I$, then $\bigvee_{\alpha \in I} \sigma_{\alpha}$ is semi-co-*n*-absorbing.

Proposition 20. Let $\sigma \in R$ -pr be radical. If σ is semi-co-n-absorbing, then $e(\sigma)$ is semi-co-n-absorbing.

Proof. Is similar to the proof of Proposition 12.

In Proposition 23 of [11], it was shown that $\sigma^0 := \bigvee \{ \sigma \in R \text{-pr} \mid \sigma \text{ is semicoprime} \}$ is the unique greatest semicoprime preradical.

Proposition 21. There exists in *R*-pr a unique greatest semi-co-nabsorbing preradical.

Proof. Set $\sigma_{(n)}^0 = \bigvee \{ \sigma \in R \text{-pr} \mid \sigma \text{ is semi-co-}n\text{-absorbing} \}$. By Remark 4, $\sigma_{(n)}^0$ is the greatest semi-co-n-absorbing preradical.

By notation in the the proof of the previous proposition we have that $\sigma_{(1)}^0 = \sigma^0$.

Remark 5. As $\zeta \leq \kappa \leq \sigma^0$ are semicoprime preradicals, then $\zeta_{[n]}, \kappa_{[n]}, \sigma_{[n]}^0$ are semi-co-*n*-absorbing preradicals, by Proposition 14. Therefore $\zeta_{[n]} \leq \kappa_{[n]} \leq \sigma_{[n]}^0 \leq \sigma_{(n)}^0$.

Proposition 22. The following statements hold:

(1) $\sigma^0 = \bigwedge_{n \ge 1} \sigma^0_{(n)}.$ (2) $\sigma^0_{(n)} \preceq \sigma^0_{[nk]}$ for every positive integer k. (3) $\sigma_{[n]} \preceq \sigma^0_{(n)}$ for every semicoprime preradical σ .

Proof. (1) By Corollary 2(6) every semicoprime preradical is semi-co-*n*-absorbing for every $n \ge 1$. Then $\sigma^0 \preceq \sigma^0_{(n)}$ for every $n \ge 1$.

- (2) By Corollary 2(5).
- (3) By Proposition 14.

In Proposition 26 of [11] it was shown that $\sigma^0 \leq \nu_0$, where $\nu_0 = \bigwedge \{ \tau \mid \tau \in R \text{-pr}, \tau \text{ is unipotent} \}.$

The following proposition is straightforward.

Proposition 23. Suppose that $\nu_0^{(n)} := \bigwedge \{\tau_{[n]} \mid \tau \in R\text{-}pr, \ \tau_{[n+1]} = 1\}.$ Then:

(1) $\sigma_{(n)}^0 \leq \nu_0^{(n)};$ (2) $\nu_0 \leq \nu_0^{(1)}.$

Corollary 3. The following statements hold:

(1) If $\zeta_{[n+1]} = 1$, then $\zeta_{[n]} = \kappa_{[n]} = \sigma_{[n]}^0 = \sigma_{(n)}^0 = \nu_0^{(n)}$; (2) If $\zeta_{[2]} = 1$, then $\zeta = \kappa = \sigma^0 = \nu_0 = \nu_0^{(1)}$.

Proof. (1) By Remark 5 and Proposition 23 we have that $\zeta_{[n]} \leq \kappa_{[n]} \leq \sigma_{[n]}^0 \leq \sigma_{(n)}^0 \leq \nu_0^{(n)}$. If $\zeta_{[n+1]} = 1$, then $\nu_0^{(n)} \leq \zeta_{[n]}$, and so $\zeta_{[n]} = \kappa_{[n]} = \sigma_{[n]}^0 = \sigma_{(n)}^0 = \nu_0^{(n)}$. (2) By part (1) and [11, Corollary 27].

Proposition 24. For a ring R the following statements are equivalent: (1) For every $\mu \in R$ -pr, $\mu_{[n+1]} = 1$ implies that $\mu_{[n]} = 1$;

 \square

(2) 1 is a semi-co-n-absorbing preradical; (3) $\sigma_{(n)}^0 = 1;$ (4) $\nu_0^{(n)} = 1.$

Proof. Is easy.

For $\tau \in R$ -pr define

 $C^{(n)}(\tau) = \bigvee \{ \sigma \in R \text{-pr} \mid \sigma \preceq \tau, \ \sigma \text{ semi-co-}n\text{-absorbing} \},\$

which is the unique greatest semi-co-*n*-absorbing preradical less than or equal to τ . Notice that in [11], $C^{(1)}$ is denoted by C.

Proposition 25. Let R be a ring.

(1)
$$\sigma_{(n)}^0 = C^{(n)}(1) = \bigvee_{\tau \in R \text{-}pr} C^{(n)}(\tau)$$

- (2) For each $\tau \in R$ -pr, $C^{(n)}(\tau) \preceq \tau$.
- (3) For each $\tau, \sigma \in R$ -pr we have $\tau \preceq \sigma \Rightarrow C^{(n)}(\tau) \preceq C^{(n)}(\sigma)$.
- (4) For each $\tau \in R$ -pr, $C^{(n)}(\tau_{[n+1]}) = C^{(n)}(\tau_{[n]})$.
- (5) For each $\tau \in R$ -pr, τ is semi-co-n-absorbing if and only if $\tau = C^{(n)}(\tau)$.
- (6) $\{\tau \in R \text{-} pr \mid \tau \text{ is semi-co-}n\text{-}absorbing\} = Im C^{(n)} = \{C^{(n)}(\sigma) \mid \sigma \in R \text{-} pr\}.$
- (7) $\left[C^{(n)}\right]^2 = C^{(n)}$. Thus, $C^{(n)}$ is a closure operator on R-pr.
- (8) For each family $\{\tau_{\alpha}\}_{\alpha \in I} \subseteq R$ -pr, we have

$$C^{(n)}(\bigwedge_{\alpha\in I}\tau_{\alpha}) = C^{(n)}(\bigwedge_{\alpha\in I}C^{(n)}(\tau_{\alpha})).$$

(9)
$$C^{(n)} = \bigwedge_{k \ge 1} C^{(nk)}$$
, in particular $C = \bigwedge_{k \ge 1} C^{(k)}$

(10)
$$C^{(n)}(\sigma_{[n+1]}) = C^{(n)}(\sigma_{[n]}) = \sigma_{[n]}$$
 for any semicoprime preradical σ .

Proof. The proofs of (1), (2), (3), (5) and (6) is easy.

(4) For any $\tau \in R$ -pr, part (3) implies that $C^{(n)}(\tau_{[n]}) \preceq C^{(n)}(\tau_{[n+1]})$. Since $C^{(n)}(\tau_{[n+1]})$ is semi-co-*n*-absorbing (by Remark 4) and $C^{(n)}(\tau_{[n+1]})$ $\preceq \tau_{[n+1]}$, then $C^{(n)}(\tau_{[n+1]}) \preceq \tau_{[n]}$. Hence $C^{(n)}(\tau_{[n+1]}) \preceq C^{(n)}(\tau_{[n]})$. So the equality holds.

- (7) Is a direct consequence of part (5).
- (8) The proof is similar to that of [11, Proposition 31](5).
- (9) By Corollary 2(5).
- (10) Apply Proposition 14 and parts (4), (5).

Now consider the operator $\overline{(-)}$ in *R*-pr that assigns to each preradical σ the least radical over σ (see [19, p. 137]).

Lemma 2. Let $\sigma, \tau \in R$ -pr be such that σ is radical and τ is semi-co-nabsorbing. Then:

(1) $C^{(n)}(\sigma) \preceq \overline{C^{(n)}(\sigma)} \preceq \sigma.$ (2) $C^{(n)}(\sigma) = C^{(n)}(\overline{C^{(n)}(\sigma)}).$ (3) $\tau \preceq \underline{C^{(n)}(\overline{\tau})} \preceq \overline{\tau}.$

(4) $\overline{\tau} = \overline{C^{(n)}(\overline{\tau})}.$

Proof. Similar to the proof of [11, Lemma 32].

Proposition 26. Let R be a ring.

- (1) The operator $C^{(n)}(-)$ defines an interior operator on the ordered class of radicals.
- (2) The operator $C^{(n)}(\overline{(-)})$ defines a closure operator on the ordered class of semi-co-n-absorbing preradicals.

Notice that the "open" radicals associated with the interior operator $\overline{C^{(n)}(_)}$ are

 $\mathcal{O}_{rad}^{(n)} = \{ \sigma \text{ radical } | \sigma = \overline{\tau} \text{ for some semi-co-}n\text{-absorbing } \tau \}.$

The "closed" semi-co-*n*-absorbing preradicals associated with the closure operator $C^{(n)}(\overline{(-)})$ are

 $\mathcal{C}_{sca}^{(n)} = \{\tau \text{ semi-co-}n\text{-absorbing} \mid \tau = C^{(n)}(\sigma) \text{ for some radical } \sigma\}.$

The following result is immediate.

Corollary 4. For a ring R the operators $C^{(n)}(_)$ and $\overline{(_)}$ restrict to mutually inverse maps between $\mathcal{O}_{rad}^{(n)}$ and $\mathcal{C}_{sca}^{(n)}$.

Definition 2. Let $\tau \in R$ -pr. Define

$$C_1^{(n)}(\tau) = \bigwedge \{ \sigma_{[n]} \mid \sigma \in R\text{-}\mathrm{pr}, \tau \preceq \sigma_{[n+1]} \}.$$

Proposition 27. For a ring R the following conditions hold:

- (1) For each $\tau \in R$ -pr, $C_1^{(n)}(\tau) \preceq \tau_{[n]}$.
- (2) For each $\tau \in R$ -pr, τ is semi-co-n-absorbing if and only if $\tau \preceq C_1^{(n)}(\tau)$.
- (3) 1 is a semi-co-n-absorbing preradical if and only if $C_1^{(n)}(1) = 1$.

- (4) Let τ , $\sigma \in R$ -pr. If $\tau \preceq \sigma$, then $C_1^{(n)}(\tau) \preceq C_1^{(n)}(\sigma)$.
- (5) For each family $\{\tau_{\alpha}\}_{\alpha \in I} \subseteq R\text{-}pr, C_{1}^{(n)}(\bigwedge_{\alpha \in I} \tau_{\alpha}) \preceq \bigwedge_{\alpha \in I} C_{1}^{(n)}(\tau_{\alpha}) \text{ and } \bigvee_{\alpha \in I} C_{1}^{(n)}(\tau_{\alpha}) \preceq C_{1}^{(n)}(\bigvee_{\alpha \in I} \tau_{\alpha}).$

Proof. The assertions have straightforward verifications.

We apply an "Amitsur construction" to $C_1^{(n)}$ as follows:

Definition 3. Let $\tau \in R$ -pr. We define recursively the preradical $C_{\lambda}^{(n)}(\tau)$ for each ordinal λ as follows:

- (1) $C_0^{(n)}(\tau) = \tau.$ (2) $C_{\lambda+1}^{(n)}(\tau) = C_1^{(n)}(C_{\lambda}^{(n)}(\tau)).$
- (3) If λ is a limit ordinal, then $C_{\lambda}^{(n)}(\tau) = \bigwedge_{\beta \in \lambda} C_{\beta}^{(n)}(\tau)$.

(4)
$$C_{\Omega}^{(n)}(\tau) = \bigwedge_{\lambda \text{ ordinal}} C_{\lambda}^{(n)}(\tau).$$

Proposition 28. Let $\tau \in R$ -pr. Then the following statements are equivalent:

- (1) τ is semi-co-n-absorbing;
- (2) For each ordinal $\lambda, \tau \preceq C_{\lambda}^{(n)}(\tau);$
- (3) $C_{\Omega}^{(n)}(\tau) = \tau$.

Proof. By Proposition 27 and using transfinite induction we have the claim. \Box

As is the case with $C_1^{(n)}$, all of the operators $C_{\lambda}^{(n)}$ preserve order between preradicals.

Proposition 29. Let τ , $\sigma \in R$ -pr be such that $\tau \preceq \sigma$. Then:

- (1) For each ordinal λ , $C_{\lambda}^{(n)}(\tau) \preceq C_{\lambda}^{(n)}(\sigma)$.
- (2) $C_{\Omega}^{(n)}(\tau) \preceq C_{\Omega}^{(n)}(\sigma).$

Proposition 30. For each $\tau \in R$ -pr, $C^{(n)}(\tau) \preceq C^{(n)}_{\Omega}(\tau)$.

Proof. Let $\tau \in R$ -pr. We use transfinite induction. First, note that $C^{(n)}(\tau) \leq \tau = C_0^{(n)}(\tau)$. Assume that λ is an ordinal such that $C^{(n)}(\tau) \leq C_{\lambda}^{(n)}(\tau)$. Since $C^{(n)}(\tau)$ is semi-co-*n*-absorbing, $C^{(n)}(\tau) \leq C_1^{(n)}(C^{(n)}(\tau)) \leq C_{\lambda+1}^{(n)}(\tau)$, by parts (2) and (4) of Proposition 27. If λ is a limit ordinal and $C^{(n)}(\tau) \leq C_{\beta}^{(n)}(\tau)$ for each $\beta < \lambda$, then $C^{(n)}(\tau) \leq \bigwedge_{\beta < \lambda} C_{\beta}^{(n)}(\tau) = C_{\lambda}^{(n)}(\tau)$.

In the following result we give equivalent conditions for the equality $C_{\Omega}^{(n)}(\tau) = C^{(n)}(\tau).$

Proposition 31. For each $\tau \in R$ -pr the following statements are equivalent:

- (1) $C_{\Omega}^{(n)}(\tau)$ is semi-co-n-absorbing; (2) $C_{\Omega}^{(n)}(\tau) \preceq C_{1}^{(n)}(C_{\Omega}^{(n)}(\tau));$
- (3) For each ordinal λ we have $C_{\Omega}^{(n)}(\tau) \preceq C_{\lambda}^{(n)}(C_{\Omega}^{(n)}(\tau));$
- (4) $C_{\Omega}^{(n)}(C_{\Omega}^{(n)}(\tau)) = C_{\Omega}^{(n)}(\tau);$
- (5) $C_{\Omega}^{(n)}(\tau) = C^{(n)}(\tau).$

Proof. $(1) \Rightarrow (2)$ By Proposition 27(2).

- $(2) \Rightarrow (3)$ It follows by using transfinite induction on λ .
- $(3) \Rightarrow (4)$ Is easy.
- $(4) \Rightarrow (1)$ By Proposition 28.

(1) \Rightarrow (5) Assume that $C_{\Omega}^{(n)}(\tau)$ is semi-co-*n*-absorbing. Since $C_{\Omega}^{(n)}(\tau) \preceq \tau$, the definition of $C^{(n)}(\tau)$ implies that $C_{\Omega}^{(n)}(\tau) \preceq C^{(n)}(\tau)$. On the other hand $C^{(n)}(\tau) \preceq C_{\Omega}^{(n)}(\tau)$, by Proposition 30. So the equality holds.

 $(5) \Rightarrow (1)$ Is straightforward.

5. Quasi-co-*n*-absorbing and semi-co-*n*-absorbing submodules

Remark 6. Let $M \in R$ -co-ass and N be a nonzero fully invariant submodule of M. Then we have:

- (1) N is co-n-absorbing in $M \Rightarrow N$ is quasi-co-n-absorbing in $M \Rightarrow N$ is semi-co-n-absorbing in M.
- (2) N is a quasi-co-1-absorbing submodule of M if and only if N is a coprime submodule of M.
- (3) N is a semi-co-1-absorbing submodule of M if and only if N is a semicoprime submodule of M.

Proposition 32. Let $\sigma \in R$ -pr. If for every $M \in R$ -Mod, $\sigma(M)$ is a semicoprime submodule of M, then σ is a semicoprime preradical.

Proof. By hypothesis, [11, Proposition 19] implies that $\alpha_{\sigma(M)}^{M}$ is a semicoprime preradical. So $\sigma = \bigvee \{ \alpha_{\sigma(M)}^M \mid M \in R\text{-Mod} \}$ (see [17, Remark 1]) is a semicoprime preradical.

Corollary 5. Let R be a ring. If every nonzero R-module is semicoprime. then 1 is a semicoprime preradical in R-pr.

Lemma 3 ([7, Lemma 2.5]). Let $M \in R$ -Mod. Then for any submodules $N, K \text{ of } M, \alpha_{N+K}^M = \alpha_N^M \lor \alpha_K^M$.

Proposition 33. Let $M \in R$ -Mod. Suppose that $\{N_i\}_{i \in I}$ is a family of semicoprime submodules of M. Then $N = \sum_{i \in I} N_i$ is a semicoprime submodule of M.

Proof. Let $\{N_i\}_{i \in I}$ be a family of semicoprime submodules of M. Then, by [11, Proposition 19], $\alpha_{N_j}^M$'s are semicoprime preradicals. Thus $\alpha_N^M = \bigvee_{i \in I} \alpha_{N_i}^M$ is a semicoprime preradical. Again by [11, Proposition 19], $N = \sum_{i \in I} N_i$ is a semicoprime submodule of M.

Proposition 34. Let R be a ring and $\{M_i\}_{i \in I}$ be a family of semicoprime R-modules. Then $M = \bigoplus_{i \in I} M_i$ is a semicoprime R-module.

Proof. Since for every $i \in I$, M_i is a semicoprime *R*-module, then for every $i \in I$, $\alpha_{M_i}^{M_i}$ is a semicoprime preradical, by [11, Proposition 19]. Therefore $\bigvee_{i \in I} \alpha_{M_i}^{M_i} = \alpha_M^M$ is a semicoprime preradical, and so again by [11, Proposition 19], $M = \bigoplus_{i \in I} M_i$ is a semicoprime *R*-module. \Box

Proposition 35. For a ring R the following statements are equivalent:

- (1) R is a finite product of simple rings;
- (2) $\kappa = 1;$
- (3) 1 is a semicoprime preradical;
- (4) $_{R}R$ is a semicoprime R-module;
- (5) There exists a semicoprime R-module that is a generator in R-Mod.
- *Proof.* $(1) \Leftrightarrow (2)$ By [11, Theorem 10].

 $(1) \Leftrightarrow (3)$ By [11, Theorem 29].

(3) \Leftrightarrow (4) Notice the fact that an *R*-module *G* is a generator in *R*-Mod if and only if $\alpha_G^G = 1$. Since *R* is a generator in *R*-Mod, then $\alpha_R^R = 1$. Now, use [11, Proposition 19].

 $(4) \Rightarrow (5)$ Is trivial.

 $(5) \Rightarrow (3)$ See the proof of $(3) \Leftrightarrow (4)$.

Theorem 2. Let $M \in R$ -co-ass and N a fully invariant submodule of M. Consider the following statements.

- (a) N is co-n-absorbing in M.
- (b) α_N^M is a co-n-absorbing preradical.

Then $(b) \Rightarrow (a)$, and if M satisfies the ω -property, then $(a) \Rightarrow (b)$.

Proof. The proof is similar to that of [22, Theorem 4.2].

Theorem 3. Let $M \in R$ -co-ass and N a fully invariant submodule of M. Consider the following statements:

(1) N is quasi-co-n-absorbing (resp. semi-co-n-absorbing) in M.

(2) α_N^M is a quasi-co-n-absorbing (resp. semi-co-n-absorbing) preradical. Then (2) \Rightarrow (1), and if M satisfies the ω -property, then (1) \Rightarrow (2).

Proof. (1) \Rightarrow (2) Assume that N is quasi-co-n-absorbing in M and that $(\eta(M):\mu(M)) = (\eta:\mu)(M)$ for every $\eta, \ \mu \in R$ -pr. Since $N \neq 0$ we have $\alpha_N^M \neq 0$. Now let $\eta, \mu \in R$ -pr be such that $\alpha_N^M \preceq (\eta_{[n]}:\mu)$. In this case we have

$$N = \alpha_N^M(M) \leqslant (\eta_{[n]} : \mu)(M) = (\eta(M)_{[n]} : \mu(M)).$$

Since N is quasi-co-n-absorbing in M, by hypothesis we have that $N \leq \eta(M)_{[n]} = \eta_{[n]}(M)$ or $N \leq (\eta(M)_{[n-1]} : \mu(M)) = (\eta_{[n-1]} : \mu)(M)$. It follows from [15, Proposition 5] that $\alpha_N^M \preceq \alpha_{\eta_{[n]}(M)}^M \preceq \eta_{[n]}$ or $\alpha_N^M \preceq \alpha_{(\eta_{[n-1]}:\mu)(M)}^M \preceq (\eta_{[n-1]}:\mu)$, and so α_N^M is quasi-co-n-absorbing.

 $(2) \Rightarrow (1)$ Assume that α_N^M is a quasi-co-*n*-absorbing preradical. Since $\alpha_N^M \neq 0$, we have $N \neq 0$. Suppose that J, K are fully invariant submodules of M such that $N \leq (J_{[n]}: K)$. Then we have $N \leq ((\omega_J^M)_{[n]}: \omega_K^M)(M)$. By [15, Proposition 5], we get

$$\alpha_N^M \preceq \alpha_{\left(\left(\omega_J^M\right)_{[n]}:\omega_K^M\right)(M)}^M \preceq \left(\left(\omega_J^M\right)_{[n]}:\omega_K^M\right).$$

Since α_N^M is quasi-co-*n*-absorbing, we have $\alpha_N^M \preceq (\omega_J^M)_{[n]}$ or $\alpha_N^M \preceq ((\omega_J^M)_{[n]} : \omega_K^M)$. Therefore $N = \alpha_N^M(M) \preceq ((\omega_J^M)_{[n]}(M) = J_{[n]}$ or $N = \alpha_N^M(M) \preceq ((\omega_J^M)_{[n]} : \omega_K^M) (M) = (J_{[n-1]} : K)$. Hence N is a quasi-co-n-absorbing submodule. A similar proof can be stated for semi-co-n-absorbing preradicals.

Remark 7. Note that in Theorem 3, for the case n = 2 we can omit the condition $M \in R$ -co-ass, by the definition of quasi-co-2-absorbing (semi-co-2-absorbing) submodules.

Definition 4. Let $M \in R$ -co-ass. We say that M is a quasi-co-n-absorbing (resp. semi-co-n-absorbing) module if M is a quasi-co-n-absorbing (resp. semi-co-n-absorbing) submodule of itself.

Corollary 6. Let M_1, M_2, \ldots, M_t be injective Artinian R-modules. Suppose that M_i 's are quasi-co-n-absorbing modules that satisfy the ω -property. Then $M = \bigoplus_{i=1}^{t} M_i$ is a quasi-co-(n + t - 1)-absorbing R-module.

Proof. Let M_1, M_2, \ldots, M_t be quasi-co-*n*-absorbing *R*-modules. Then, by Theorem 3, $\alpha_{M_1}^{M_1}, \alpha_{M_2}^{M_2}, \ldots, \alpha_{M_t}^{M_t}$ are quasi-co-*n*-absorbing preradicals, and so $\alpha_M^M = \alpha_{M_1}^{M_1} \vee \alpha_{M_2}^{M_2} \vee \cdots \vee \alpha_{M_t}^{M_t}$ is a quasi-co-(n + t - 1)-absorbing preradical, by Proposition 11(2). Again by Theorem 3, $M = \bigoplus_{i=1}^t M_i$ is a quasi-co-(n + t - 1)-absorbing *R*-module.

Corollary 7. Let R be a ring. The following statements hold:

- (1) If the preradical 1 is quasi-co-2-absorbing (resp. semi-co-2-absorbing), then every generator R-module is a quasi-co-2-absorbing (resp. semico-2-absorbing) R-module.
- (2) If R is a semisimple Artinian ring, then every R-module is quasico-i-absorbing for every $i \ge 2$.

Proof. (1) Suppose that 1 is a quasi-co-2-absorbing (resp. semi-co-2-absorbing) preradical and G is a generator R-module. Since $\alpha_G^G = 1$, the result follows from Theorem 3.

(2) By Proposition 6 and Theorem 3.

Example 1. Let R be a semisimple Artinian ring and $S_1, S_2, \ldots, S_{n+1} \in R$ -simp be distinct. Then the injective Artinian R-module $\bigoplus_{i=1}^{n+1} S_i$ is quasi-co-n-absorbing, by Corollary 7(2). But note that, by [22, Proposition 3.6] and Theorem 2, $\bigoplus_{i=1}^{n+1} S_i$ is not co-n-absorbing. This example shows that the two concepts of quasi-co-n-absorbing modules and of co-n-absorbing modules are different in general.

The following two propositions can be proved similar to [22, Proposition 4.10] and [22, Theorem 4.11], respectively.

Proposition 36. Let $N, H \in R$ -co-ass such that H be a fully invariant submodule of N and N be self-injective. For a fully invariant submodule K of H,

- (1) If K is quasi-co-n-absorbing in N, then K is quasi-co-n-absorbing in H.
- (2) If K is quasi-co-n-absorbing in N and $K \in R$ -co-ass, then K is a quasi-co-n-absorbing module.
- (3) If α_K^N is a quasi-co-n-absorbing preradical and N satisfies the ω -property, then α_K^H is a quasi-co-n-absorbing preradical.

Proposition 37. Let N, $Q \in R$ -co-ass such that N be a fully invariant submodule of Q and Q be self-injective. Then N is a quasi-co-n-absorbing module if and only if N is quasi-co-n-absorbing in Q.

Theorem 4. Let $M \in R$ -co-ass that satisfies the ω -property. The following statements are equivalent:

- (1) M is quasi-co-n-absorbing;
- (2) α_M^M is quasi-co-n-absorbing;
- (3) For each $\tau, \eta \in R$ -pr, $M \in \mathbb{T}_{(\tau_{[n]}:\eta)} \Rightarrow M \in \mathbb{T}_{\tau_{[n]}}$ or $M \in \mathbb{T}_{(\tau_{[n-1]}:\eta)}$.

Proof. (1) \Leftrightarrow (2) Is clear by Theorem 3.

(2) \Rightarrow (3) Suppose that α_M^M is quasi-co-*n*-absorbing. Let $\tau, \eta \in R$ -pr such that $M \in \mathbb{T}_{(\tau_{[n]}:\eta)}$. Then $(\tau_{[n]}:\eta)(M) = M$, and so $\alpha_M^M \preceq (\tau_{[n]}:\eta)$. Therefore $\alpha_M^M \preceq \tau_{[n]}$ or $\alpha_M^M \preceq (\tau_{[n-1]} : \eta)$. Hence $\tau_{[n]}(M) = M$ or $(\tau_{[n-1]}:\eta)(M) = M$. Consequently $M \in \mathbb{T}_{\tau_{[n]}}$ or $M \in \mathbb{T}_{(\tau_{[n-1]}:\eta)}$.

 $(3) \Rightarrow (2)$ has a routine verification.

Similarly we can prove the following theorem.

Theorem 5. Let $M \in R$ -co-ass that satisfies the ω -property. The following statements are equivalent:

- (1) M is semi-co-n-absorbing;
- (2) α_M^M is semi-co-n-absorbing;
- (3) For each $\tau \in R$ -pr, $M \in \mathbb{T}_{\tau_{[n+1]}} \Rightarrow M \in \mathbb{T}_{\tau_{[n]}}$.

Theorem 6. Let $M \in R$ -Mod be such that, for each pair K, L of fully invariant submodules of M, we have $\left(\omega_K^M:\omega_L^M\right)=\omega_{(K;L)}^M$. Then, for each quasi-co-n-absorbing (resp. semi-co-n-absorbing) preradical σ such that $\sigma(M) \neq 0$, we have that $\sigma(M)$ is quasi-co-n-absorbing (resp. semi-co-nabsorbing) in M.

Proof. By hypothesis $M \in R$ -co-ass, [22, Lemma 4.12]. Let σ be a quasico-n-absorbing preradical such that $\sigma(M) \neq 0$. If K, L are fully invariant submodules of M such that $\sigma(M) \leq (K_{[n]}:L)$, then

$$\sigma \preceq \omega_{\sigma(M)}^{M} \preceq \omega_{(K_{[n]}:L)}^{M} = \left((\omega_{K}^{M})_{[n]} : \omega_{L}^{M} \right).$$

Since σ is quasi-co-*n*-absorbing, then

$$\sigma \preceq (\omega_K^M)_{[n]} \text{ or } \sigma \preceq \left((\omega_K^M)_{[n-1]} : \omega_L^M \right).$$

In the first case we have $\sigma(M) \leq (\omega_K^M)_{[n]}(M) = K_{[n]}$; in the second case we have $\sigma(M) \leq \left((\omega_K^M)_{[n-1]} : \omega_L^M \right) (M) = (K_{[n-1]} : L)$. Consequently $\sigma(M)$ is quasi-co-*n*-absorbing.

Acknowledgement

The authors would like to thank the referee for the careful reading of the manuscript and all the suggestions that improved the paper.

References

- D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646–1672.
- [2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417–429.
- [3] A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, *Houston J. Math.* **39** (2013), 441–452.
- [4] L. Bican, P. Jambor, T. Kepka and P. Nemec, Preradicals, Comment. Math. Univ. Carolinae 15(1) (1974) 75–83.
- [5] L. Bican, T. Kepka, and P. Nemec, *Rings, Modules and Preradicals* (Marcel Dekker, New York, 1982).
- [6] A. I. Kashu, On partial inverse operations in the lattice of submodules. Bulet. A. Ş. M. Mathematica, 2(69) (2012) 59-73.
- [7] A. I. Kashu, On some operations in the lattice of submodules determined by preradicals, Bull. Acad. Stiinte Repub. Mold. Mat. 2(66) (2011) 5–16.
- [8] M. Luísa Galvão, Preradicals of associative algebras and their connections with preradicals of modules. *Modules and Comodules. Trends in Mathematics. Birkhäuser*, (2008) 203–225.
- [9] H. Mostafanasab, E. Yetkin, U. Tekir and A. Yousefian Darani, On 2-absorbing primary submodules of modules over commutative rings, An. St. Univ. Ovidius Constanta, 24(1) (2016) 335–351.
- [10] H. Mostafanasab and A. Yousefian Darani, Quasi-n-absorbing and semi-nabsorbing preradicals, submitted.
- [11] F. Raggi, J. Ríos, S. Gavito, H. Rincón and R. Fernández-Alonso, Semicoprime preradicals, J. Algebra Appl. 11(6) (2012) 1250115 (12 pages).
- [12] F. Raggi, J. Ríos, H. Rincón and R. Fernández-Alonso, Basic preradicals and main injective modules, J. Algebra Appl. 8(1) (2009) 1–16.
- [13] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, Prime and irreducible preradicals, J. Algebra Appl. 4(4) (2005) 451–466.
- [14] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, Semiprime preradicals, *Comm. Algebra* 37 (2009) 2811–2822.
- [15] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice structure of preradicals, *Comm. Algebra* 30(3) (2002) 1533–1544.
- [16] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice structure of preradicals II: partitions, J. Algebra Appl. 1(2) (2002) 201–214.
- [17] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice structure of preradicals III: operators, J. Pure and Applied Algebra 190 (2004) 251–265.

- [18] F. Raggi, J. Ríos and R. Wisbauer, Coprime preradicals and modules, J. Pure Appl. Algebra, 200 (2005) 51–69.
- [19] B. Stenström, *Rings of Quotients*, Die Grundlehren der Mathematischen Wissenschaften, Band 217 (Springer Verlag, Berlin, 1975).
- [20] D. K. Tütüncü, and Y. Kuratomi, On generalized epi-projective modules. Math. J. Okayama Univ., 52 (2010) 111-122.
- [21] R. Wisbauer, *Foundations of Module and Ring Theory* (Gordon and Breach, Philadelphia, 1991).
- [22] A. Yousefian Darani, and H. Mostafanasab, Co-2-absorbing preradicals and submodules, J. Algebra Appl. 14(7) (2015) 1550113 (23 pages).
- [23] A. Yousefian Darani and H. Mostafanasab, On 2-absorbing preradicals, J. Algebra Appl. 14(2) (2015) 1550017 (22 pages)
- [24] A. Yousefian Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, *Thai J. Math.* 9(3) (2011) 577–584.
- [25] A. Yousefian Darani and F. Soheilnia, On n-absorbing submodules, Math. Comm., 17 (2012), 547-557.

CONTACT INFORMATION

A. Yousefian	Department of Mathematics and Applications,
Darani,	University of Mohaghegh Ardabili, P. O. Box
H. Mostafanasab	179, Ardabil, Iran
	E-Mail(s): yousefian@uma.ac.ir,
	h.mostafanasab@gmail.com
	Web-page(s): www.yousefiandarani.com

Received by the editors: 21.09.2015 and in final form 27.11.2015.