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Abstract. This article introduces the notions quasi-co-
n-absorbing preradicals and semi-co-n-absorbing preradicals, gen-
eralizing the concept of semicoprime preradicals. We study the
concepts quasi-co-n-absorbing submodules and semi-co-n-absorbing
submodules and their relations with quasi-co-n-absorbing preradi-
cals and semi-co-n-absorbing preradicals using the lattice structure
of preradicals.

1. Introduction

The notion of 2-absorbing ideals of commutative rings was introduced
by Badawi in [2], where a proper ideal I of a commutative ring R is called
a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I
or ac ∈ I or bc ∈ I. Anderson and Badawi [1] generalized the concept of
2-absorbing ideals to n-absorbing ideals. According to their definition, a
proper ideal I of R is called an n-absorbing (resp. strongly n-absorbing)
ideal if whenever x1 · · · xn+1 ∈ I for x1, . . . , xn+1 ∈ R (resp. I1 · · · In+1 ⊆ I
for ideals I1, . . . , In+1 of R), then there are n of the xi’s (resp. n of the
Ii’s) whose product is in I. In [24], the concept of 2-absorbing ideals
was generalized to submodules of a module over a commutative ring.
A proper submodule N of an R-module M is said to be a 2-absorbing
submodule of M if whenever a, b ∈ R and m ∈ M with abm ∈ N , then
ab ∈ (N :R M) or am ∈ N or bm ∈ N . For more studies concerning
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2-absorbing (submodules) ideals we refer to [3],[9],[24],[25]. In [13], Raggi
et al. introduced the concepts of prime preradicals and prime submodules
over noncommutative rings, and Raggi, Ríos and Wisbauer [18], studied
the dual notions of these, coprime preradicals and coprime submodules. A
generalization of prime preradicals and submodules, “2-absorbing preradi-
cals and submodules” was investigated by Yousefian and Mostafanasab in
[23]. In [14], Raggi et al. defined and investigated semiprime preradicals,
and Mostafanasab and Yousefian [10], studied the concepts of quasi-n-
absorbing and semi-n-absorbing preradicals. Raggi et al. [11] defined the
notions of semicoprime preradicals and submodules. In this paper, we
introduce the concepts of “quasi-co-n-absorbing preradicals” and “semi-
co-n-absorbing preradicals”. As well we investigate“quasi-co-n-absorbing
submodules” and “semi-co-n-absorbing submodules” in this paper.

2. Preliminaries

Throughout this paper R is an associative ring with nonzero identity,
and R-Mod denotes the category of all the unitary left R-modules. We
denote by R-simp a complete set of representatives of isomorphism classes
of simple left R-modules. For M ∈ R-Mod, we denote by E(M) the
injective hull of M . Let U, N ∈ R-Mod, we say that N is generated by
U (or N is U -generated) if there exists an epimorphism U (Λ) → N for
some index set Λ. Dually, we say that N is cogenerated by U (or N is
U -cogenerated) if there exists a monomorphism N → UΛ for some index
set Λ. Also, we say that an R-module X is subgenerated by M (or X is
M -subgenerated) if X is a submodule of an M -generated module. The
category of M -subgenerated modules (the Wisbauer category) is denoted
σ[M ] (see [21]). A preradical over the ring R is a subfunctor of the identity
functor on R-Mod. Denote by R-pr the class of all preradicals over R.
There is a natural partial ordering in R-pr given by σ � τ if σ(M) 6 τ(M)
for every M ∈ R-Mod. It is proved in [15] that with this partial ordering,
R-pr is an atomic and co-atomic big lattice. The smallest and the largest
elements of R-pr are denoted, respectively, 0 and 1.

Let M ∈ R-Mod. Recall ([5] or [15]) that a submodule N of M is
called fully invariant if f(N) 6 N for each R-homomorphism f : M → M .
In this paper, the notation N 6fi M means that “N is a fully invariant
submodule of M”. Obviously the submodule K of M is fully invariant if
and only if there exists a preradical τ of R-Mod such that K = τ(M).
If N 6 M , then the preradicals αM

N and ωM
N are defined as follows: For

K ∈ R-Mod,
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1) αM
N (K) =

∑
{f(N)|f ∈ HomR(M, K)}.

2) ωM
N (K) =

⋂
{f−1(N)|f ∈ HomR(K, M)}.

Notice that for σ ∈ R-pr and M, N ∈ R-Mod we have that σ(M) = N
if and only if N 6fi M and αM

N � σ � ωM
N . We have also that if

K 6 N 6 M with K, N 6fi M , then αM
K � αM

N and ωM
K � ωM

N .

The atoms and coatoms of R-pr are, respectively, {α
E(S)
S | S ∈ R-simp}

and {ωR
I | I is a maximal ideal of R} (See [15, Theorem 7]).

There are four classical operations in R-pr, namely, ∧, ∨, · and : which
are defined as follows. For σ, τ ∈ R-pr and M ∈ R-Mod:

1) (σ ∧ τ)(M) = σM ∩ τM ,
2) (σ ∨ τ)(M) = σM + τM ,
3) (στ)(M) = σ(τM) and
4) (σ : τ)(M) is determined by (σ : τ)(M)/σM = τ(M/σM).

The meet ∧ and join ∨ can be defined for arbitrary families of preradicals
as in [15]. The operation defined in (3) is called product, and the operation
defined in (4) is called coproduct. It is easy to show that for σ, τ ∈ R-pr,
στ � σ ∧ τ � σ ∨ τ � (σ : τ). It is clear that in R-pr the operations
(1)-(3) are associative, and in [22] it was shown that the coproduct “ :′′ is
associative. Notice the fact that coproduct of preradicals preserves order
on both sides, see [8, Remark 2.1]. We denote σσ · · · σ (n times) by σn and
(σ : σ : · · · : σ) (n times) by σ[n]. Recall that σ ∈ R-pr is an idempotent
if σ2 = σ, while σ is a radical if σ[2] = σ. Note that σ is a radical if and
only if, σ(M/σ(M)) = 0 for each M ∈ R-Mod. We say that σ is nilpotent
if σn = 0 for some n > 1, while σ is unipotent if σ[n] = 1 for some n > 1.

Using the preradical ωM
N , in the papers [6], [7] and [18], the following

operation was introduced and studied:

ω-coproduct of submodules K, N 6 M : (K :M N) = (ωM
K : ωM

N )(M).

Henceforward, for brevity, (K : N) is written instead of (K :M N).
For any σ ∈ R-pr, we will use the following class of R-modules:

Tσ = {M ∈ R − Mod | σ(M) = M}.

Let σ ∈ R-pr. By [18, Theorem 8.2], the following classes of modules
are closed under taking arbitrary meets and arbitrary joins:

Ae = {τ ∈ R-pr | τσ = σ} and At = {τ ∈ R-pr | (σ : τ) = 1}.

As in [16], we define, for σ ∈ R-pr, the following preradicals:
• e(σ) =

∧
{τ ∈ Ae} the equalizer of σ;
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• t(σ) =
∧

{τ ∈ At} the totalizer of σ.
Clearly e(σ)σ = σ and (σ : t(σ)) = 1. For undefined notions we refer

the reader to [13,15–17].
In [18], Raggi et al. defined the notions of coprime preradicals and

coprime submodules as follows:
Let σ ∈ R-pr. σ is called coprime in R-pr if σ 6= 0 and for any

τ, η ∈ R-pr, σ � (τ : η) implies that σ � τ or σ � η. Let M ∈ R-Mod
and let N 6 M be a nonzero fully invariant submodule of M . The
submodule N is said to be coprime in M if whenever K, L are fully
invariant submodules of M with N 6 (K : L), then N 6 K or N 6 L.
Also, Raggi et al. [11] defined a preradical σ semicoprime in R-pr if σ 6= 0
and for any τ ∈ R-pr, σ � (τ : τ) implies that σ � τ . They said that
a nonzero fully invariant submodule N of M is semicoprime in M if
whenever K is a fully invariant submodule of M with N 6 (K : K),
then N 6 K. In special case, M is called a coprime (resp. semicoprime)
module if M is a coprime (resp. semicoprime) submodule of itself.

Yousefian and Mostafanasab in [22] defined the notions of co-2-absorb-
ing preradicals and co-2-absorbing submodules. The preradical σ ∈ R-pr
is called co-2-absorbing if σ 6= 0 and, for each η, µ, ν ∈ R-pr, σ � (η : µ : ν)
implies that σ � (η : µ) or σ � (η : ν) or σ � (µ : ν). More generally,
a preradical 0 6= σ in R-pr is said to be a co-n-absorbing preradical if
whenever σ � (η1 : η2 : · · · : ηn+1) for η1, η2, . . . , ηn+1 ∈ R-pr, there
are i1, i2, . . . , in ∈ {1, 2, . . . , n + 1} such that i1 < i2 < · · · < in and
σ � (ηi1 : ηi2 : · · · : ηin). They denoted by R-co-ass the class of all
R-modules M that the operation ω-coproduct is associative over fully
invariant submodules of M , i.e., for any fully invariant submodules K, N, L
of M , ((K : N) : L) = (K : (N : L)). Let M ∈ R-co-ass and K be a
fully invariant submodule of M . Then (K : K : · · · : K) (n times)
is simply denoted by K[n]. By Proposition 5.4 of [7], we can see that
if an R-module M is injective and artinian, then M ∈ R-co-ass. Let
M ∈ R-co-ass and N a nonzero fully invariant submodule of M . The
submodule N is said to be co-2-absorbing in M if whenever J, K, L are
fully invariant submodules of M with N 6 (J : K : L), then N 6 (J : K)
or N 6 (J : L) or N 6 (K : L). The generalization of co-2-absorbing
submodules is that, the submodule N is said co-n-absorbing in M if
whenever N 6 (K1 : K2 : · · · : Kn+1) for fully invariant submodules
K1, K2, . . . , Kn+1 of M , there are i1, i2, . . . , in ∈ {1, 2, . . . , n + 1} such
that i1 < i2 < · · · < in and N 6 (Ki1 : Ki2 : · · · : Kin). An R-module M
is called a co-n-absorbing module if M is a co-n-absorbing submodule of
itself.
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We say that a preradical 0 6= σ ∈ R-pr is called a quasi-co-n-absorbing
preradical if whenever σ � (µ[n] : ν) for µ, ν ∈ R-pr, then σ � µ[n] or
σ � (µ[n−1] : ν). A preradical 0 6= σ ∈ R-pr is called a semi-co-n-absorbing
preradical if whenever σ � µ[n+1] for µ ∈ R-pr, then σ � µ[n]. Let M ∈ R-
co-ass. We say that a nonzero fully invariant submodule N of M is quasi-
co-n-absorbing in M if for every fully invariant submodules K, L of M ,
N 6 (K[n] : L) implies that N 6 K[n] or N 6 (K[n−1] : L). A nonzero fully
invariant submodule N of M is called semi-co-n-absorbing in M if for every
fully invariant submodule K of M , N 6 K[n+1] implies that N 6 K[n].
An R-module M satisfies the ω-property if (τ(M) :M η(M)) = (τ : η)(M)
for every τ, η ∈ R-pr, see [22].

We recall the definition of relative epi-projectivity (see [20]). Let M
and N be modules. N is said to be epi-M -projective if, for any submodule
K of M , any epimorphism f : N → M

K can be lifted to a homomorphism
g : N → M

Proposition 1 ([22, Proposition 2.9 (1)]). Let M ∈ R-Mod. If for any
fully invariant submodule K of M , M

K is epi-M-projective, then M has
the ω-property.

In the next sections we frequently use the following proposition.

Proposition 2 ([12, Proposition 1.2]). Let {Mγ}γ∈I and {Nγ}γ∈I be
families of modules in R-Mod such that for each γ ∈ I, Nγ 6 Mγ. Let
N =

⊕
γ∈I Nγ, M =

⊕
γ∈I Mγ, N ′ =

∏
γ∈I Nγ and M ′ =

∏
γ∈I Mγ.

(1) If N 6fi M , then for each γ ∈ I, Nγ 6fi Mγ and αM
N =

∨
γ∈I α

Mγ

Nγ
.

(2) If N ′ 6fi M ′, then for each γ ∈ I, Nγ 6fi Mγ and ωM ′

N ′ =
∧

γ∈I ω
Mγ

Nγ
.

3. Quasi-co-n-absorbing preradicals

Suppose that m, n are positive integers with n > m. A preradical
σ 6= 0 is called a quasi-co-(n, m)-absorbing preradical if whenever σ �
(µ[n−1] : ν) for µ, ν ∈ R-pr, then σ � µ[m] or σ � (µ[m−1] : ν).

Proposition 3. Let σ ∈ R-pr and let m > 0. The following conditions
are equivalent:

(1) σ is quasi-co-(n, m)-absorbing for every n > m;
(2) σ is quasi-co-(n, m)-absorbing for some n > m;
(3) σ is quasi-co-m-absorbing.

Proof. (1)⇒(2) Is trivial.
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(2)⇒(3) Assume that σ is quasi-co-(n, m)-absorbing for some n > m.
Let σ � (µ[m] : ν) for some µ, ν ∈ R-pr. Since m 6 n−1, then (µ[m] : ν) �
(µ[n−1] : ν) and so σ � (µ[n−1] : ν). Therefore σ � µ[m] or σ � (µ[m−1] : ν).
Consequently σ is quasi-co-m-absorbing.

(3)⇒(1) Suppose that σ is quasi-co-m-absorbing and get n > m. Let
σ � (µ[n−1] : ν) for some µ, ν ∈ R-pr. Therefore σ � (µ[m] : (µ[n−1−m] :
ν)). Hence σ � µ[m] or σ � (µ[m−1] : (µ[n−1−m] : ν)) = (µ[n−2] : ν).
Repeating this method implies that σ � µ[m] or σ � (µ[m−1] : ν). Thus σ
is quasi-co-(n, m)-absorbing.

Remark 1. Let σ ∈ R-pr.

(1) σ is coprime if and only if σ is quasi-co-1-absorbing if and only if σ
is co-1-absorbing.

(2) If σ is quasi-co-n-absorbing, then it is quasi-co-i-absorbing for all
i > n.

(3) If σ is coprime, then it is quasi-co-n-absorbing for all n > 1.
(4) If σ is quasi-co-n-absorbing for some n > 1, then there exists the

least n0 > 1 such that σ is quasi-co-n0-absorbing. In this case, σ is
quasi-co-n-absorbing for all n > n0 and it is not quasi-co-i-absorbing
for n0 > i > 0.

Proposition 4. Let C be a family of coprime preradicals. Then
∨

σ∈C σ
is a quasi-co-i-absorbing preradical for every i > 2.

Proof. Let τ =
∨

σ∈C σ. By Remark 1(2), it is sufficient to show that
τ is a quasi-co-2-absorbing preradical. Suppose that τ � (µ[2] : ν) for
some µ, ν ∈ R-pr. Since every σ ∈ C is coprime and σ � (µ[2] : ν), then
σ � µ or σ � ν. Hence τ � (µ : ν), and so we conclude that τ is a
quasi-co-2-absorbing preradical.

Let ζ =
∨

{αS
S | S ∈ R-simp}. Note that for every R-module M ,

ζ(M) = Soc(M). As in [14], ζ is called the socle preradical. Also, let

κ = {α
R/I
R/I | I a maximal ideal of R}. We call κ the ultrasocle preradical,

see [11].

As a direct consequence of Proposition 4 we have the following result.

Proposition 5. ζ, κ are quasi-co–i-absorbing preradicals for every i > 2.

Proof. By [18, p. 57], for each simple R-module S, αS
S is coprime. Also, for

every maximal ideal I of R, α
R/I
R/I is a coprime preradical, [11, Remark 6].

Then by Proposition 4, the claim holds.
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Proposition 6. If R is a semisimple Artinian ring, then every nonzero
preradical σ ∈ R-pr is a quasi-co-i-absorbing preradical for every i > 2.

Proof. Suppose that R is a semisimple Artinian ring. According to [18,

Proposition 3.2], every atom α
E(S)
S is a coprime preradical. On the other

hand [15, Theorem 11] implies that σ =
∨

{α
E(S)
S | S ∈R-simp, α

E(S)
S � σ}.

Therefore every nonzero preradical σ in R-pr is quasi-co-i-absorbing for
every i > 2, by Proposition 4.

Remark 2. Let S1, S2, . . . , Sn+1 ∈ R-simp be distinct. Then by Proposi-

tion 4, αS1
S1

∨αS2
S2

∨· · ·∨α
Sn+1

Sn+1
is a quasi-co-i-absorbing preradical in R-pr for

every i > 2. But, [22, Proposition 3.6] implies that αS1
S1

∨αS2
S2

∨· · ·∨α
Sn+1

Sn+1
is

not a co-n-absorbing preradical. This remark shows that the two concepts
of quasi-co-n-absorbing preradicals and of co-n-absorbing preradicals are
different in general.

Corollary 1. If R is a ring such that every quasi-co-n-absorbing prerad-
ical in R-pr is co-n-absorbing, then |R-simp| 6 n.

Notice the fact that coproduct of preradicals preserves order on both
sides.

Proposition 7. Let R be a ring. The following statements are equivalent:

(1) for every µ, ν ∈ R-pr, (µ[n] : ν) = µ[n] or (µ[n] : ν) = (µ[n−1] : ν);
(2) for every σ1, σ2, . . . , σn+1 ∈ R-pr,

(σ1 : σ2 : · · · : σn+1) � (σ1 ∨ σ2 ∨ · · · ∨ σn)[n]

or

(σ1 : σ2 : · · · : σn+1) � ((σ1 ∨ σ2 ∨ · · · ∨ σn)[n−1] : σn+1);

(3) every preredical 0 6= σ ∈ R-pr is quasi-co-n-absorbing.

Proof. (1)⇒(2) If σ1, σ2, . . . , σn+1 ∈ R-pr, then by part (1) we have that,

(σ1 : σ2 : · · · : σn+1) � ((σ1 ∨ σ2 ∨ · · · ∨ σn)[n] : σn+1)

= (σ1 ∨ σ2 ∨ · · · ∨ σn)[n],

or

(σ1 : σ2 : · · · : σn+1) � ((σ1 ∨ σ2 ∨ · · · ∨ σn)[n] : σn+1)

= ((σ1 ∨ σ2 ∨ · · · ∨ σn)[n−1] : σn+1).
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(2)⇒(1) For preradicals µ, ν ∈ R-pr, we have from (2),

(µ[n] : ν) � (

n times︷ ︸︸ ︷
µ ∨ · · · ∨ µ)[n] = µ[n]

or

(µ[n] : ν) � ((

n times︷ ︸︸ ︷
µ ∨ · · · ∨ µ)[n−1] : ν) = (µ[n−1] : ν).

Thus we have that (µ[n] : ν) = µ[n] or (µ[n] : ν) = (µ[n−1] : ν).

(1)⇔(3) Is evident.

In the next proposition we use (µ1 : · · · : µ̂i : · · · : µn+1) when the i-th
term is excluded from (µ1 : · · · : µn+1).

Proposition 8. Let 0 6= σ ∈ R-pr be an idempotent radical.

(1) If σ is such that for any µ, ν ∈ R-pr, we have

µ ∨ ν � σ � (µ[n] : ν) ⇒ [σ � µ[n] or σ � (µ[n−1] : ν)],

then σ is quasi-co-n-absorbing.
(2) If σ is such that for any µ1, µ2, . . . , µn+1 ∈ R-pr, we have

µ1 ∨ µ2 ∨ · · · ∨ µn+1 � σ � (µ1 : µ2 : · · · : µn+1) ⇒

[σ � (µ1 : · · · : µ̂i : · · · : µn+1), for some 1 6 i 6 n + 1],

then σ is a co-n-absorbing preradical.

Proof. (1) Let σ 6= 0 be an idempotent radical that satisfies the hypothesis
in part (1). Let σ � (τ[n] : λ) for some τ, λ ∈ R-pr. Then, by [15,
Theorem 8(3)] we have

τσ ∨ λσ � σ = σ2 � (τ[n] : λ)σ = (τ[n]σ : λσ) = ((τσ)[n] : λσ).

So, by hypothesis we have σ � (τσ)[n] = τ[n]σ � τ[n] or σ � ((τσ)[n−1] :
λσ) = (τ[n−1] : λ)σ � (τ[n−1] : λ). Therefore σ is quasi-co-n-absorbing.

(2) The proof is similar to that of (1).

Proposition 9. Let C be a chain of quasi-co-n-absorbing preradicals, that
is, a subclass of quasi-co-n-absorbing preradicals which is linearly ordered.
Then

∨
σ∈C σ is a quasi-co-n-absorbing preradical.
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Proof. Let τ =
∨

σ∈C σ and assume that τ � (µ[n] : ν) for some µ, ν ∈ R-
pr. If σ � µ[n] for each σ ∈ C, then τ � µ[n]. If there exists σ0 ∈ C
such that σ0 � µ[n], then σ � µ[n] for each σ0 � σ. Since all preradicals
in C are quasi-co-n-absorbing, it follows that σ � (µ[n−1] : ν) for each
σ0 � σ. Thus σ � (µ[n−1] : ν) for each σ ∈ C, so that τ � (µ[n−1] : ν).
Consequently, we deduce that τ is a quasi-co-n-absorbing preradical.

Proposition 10. If σi is a quasi-co-ni-absorbing preradical in R-pr for
every 1 6 i 6 k, then σ1 ∨σ2 ∨· · ·∨σk is a quasi-co-n-absorbing preradical
for n = n1 + · · · + nk.

Proof. For k = 1 there is nothing to prove. Then, suppose that k > 1.
Assume that σ1 ∨ σ2 ∨ · · · ∨ σk � (µ[n] : ν) for some µ, ν ∈ R-pr. Notice
that for every 1 6 i 6 k, σi � (µ[n] : ν) = (µ[ni] : µ[n−ni] : ν). Then,
for every 1 6 i 6 k, either σi � µ[ni] or σi � (µ[ni−1] : µ[n−ni] : ν) =
(µ[n−1] : ν), because σi is quasi-co-ni-absorbing. On the other hand,
for every 1 6 i 6 k, µ[ni] � µ[n−1] and so µ[ni] � (µ[n−1] : ν). Hence
σ1 ∨ σ2 ∨ · · · ∨ σk � (µ[n−1] : ν) which shows that σ1 ∨ σ2 ∨ · · · ∨ σk is a
quasi-co-n-absorbing preradical.

Proposition 11. Let σ1, σ2, . . . , σt ∈ R-pr.

(1) If σ1 is a quasi-co-n-absorbing preradical and σ2 is a quasi-co-m-
absorbing preradical for m 6 n, then σ1 ∨ σ2 is a quasi-co-(n + 1)-
absorbing preradical.

(2) If σ1, σ2, . . . , σt are quasi-co-n-absorbing preradicals, then σ1 ∨ σ2 ∨
· · · ∨ σt is a quasi-co-(n + t − 1)-absorbing preradical.

(3) If σi is a quasi-co-ni-absorbing preradical for every 1 6 i 6 t with
n1 < n2 < · · · < nt and t > 2, then σ1 ∨ σ2 ∨ · · · ∨ σt is a quasi-co-
(nt + 1)-absorbing preradical.

Proof. (1) Let µ, ν ∈ R-pr be such that σ1 ∨ σ2 � (µ[n+1] : ν). Since σ1

is quasi-co-n-absorbing and σ1 � (µ[n] : µ : ν), then either σ1 � µ[n] or
σ1 � (µ[n−1] : µ : ν) = (µ[n] : ν). Also, σ2 is quasi-co-m-absorbing and
σ2 � (µ[m] : µ[n+1−m] : ν), so either σ2 � µ[m] or σ2 � (µ[m−1] : µ[n+1−m] :
ν) = (µ[n] : ν). There are four cases.

Case 1. Assume that σ1 � µ[n] and σ2 � µ[m]. Then σ1 ∨ σ2 � µ[n].

Case 2. Assume that σ1 �µ[n] and σ2 �(µ[n] : ν). Then σ1 ∨ σ2 � (µ[n] : ν).

Case 3. Assume that σ1 �(µ[n] : ν) and σ2 �µ[m]. Then σ1 ∨ σ2 � (µ[n] : ν).

Case 4. Assume that σ1 � (µ[n] : ν) and σ2 � (µ[n] : ν). Then σ1 ∨ σ2 �
(µ[n] : ν). Hence σ1 ∨ σ2 is quasi-co-(n + 1)-absorbing.
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(2) We use induction on t. For t = 1 there is nothing to prove. Let
t > 1 and assume that for t−1 the claim holds. Then σ1 ∨σ2 ∨· · ·∨σt−1 is
quasi-co-(n + t − 2)-absorbing. Since σt is quasi-co-n-absorbing, then it is
quasi-co-(n+ t−2)-absorbing, by Remark 1(2). Therefore σ1 ∨σ2 ∨· · ·∨σt

is quasi-co-(n + t − 1)-absorbing, by part (1).

(3) Induction on t: For t = 3 apply parts (1) and (2). Let t > 3
and suppose that for t − 1 the claim holds. Hence σ1 ∨ σ2 ∨ · · · ∨ σt−1 is
quasi-co-(nt−1 + 1)-absorbing. We consider the following cases:

Case 1. Let nt−1 +1 < nt. In this case σ1 ∨σ2 ∨· · ·∨σt is quasi-co-(nt +1)-
absorbing, by part (1).

Case 2. Let nt−1 + 1 = nt. Thus σ1 ∨ σ2 ∨ · · · ∨ σt is quasi-co-(nt + 1)-
absorbing, by part (2).

Case 3. Let nt−1 + 1 > nt. Then σ1 ∨ σ2 ∨ · · · ∨ σt is quasi-co-(nt−1 + 2)-
absorbing, by part (1). Since nt−1 + 2 6 nt + 1, then σ1 ∨ σ2 ∨ · · · ∨ σt is
quasi-co-(nt + 1)-absorbing.

Proposition 12. Let σ ∈ R-pr be a radical. If σ is quasi-co-n-absorbing,
then e(σ) is quasi-co-n-absorbing.

Proof. Assume that σ is quasi-co-n-absorbing, and let e(σ) � (µ[n] : ν) for
some µ, ν ∈ R-pr. Then σ = e(σ)σ � (µ[n] : ν)σ � ((µσ)[n] : νσ). Since σ
is quasi-co-n-absorbing and radical, [15, Theorem 8(3)] implies that either
σ � (µσ)[n] = µ[n]σ � µ[n] or σ � ((µσ)[n−1] : νσ) = (µ[n−1] : ν)σ �
(µ[n−1] : ν). Consequently e(σ) is quasi-co-n-absorbing.

Definition 1. For τ, ρ ∈ R-pr define the totalizer of ρ relative to τ as
tτ (ρ) =

∧
{η ∈ R-pr| (ρ : η) � τ}. Note that t1(ρ) = t(ρ).

Proposition 13. Let τ ∈ R-pr. If τ is quasi-co-2-absorbing, then for
each λ ∈ R-pr, either τ � λ[n] or tτ (λ[n]) = tτ (λ[n−1]). In particular,
if 1 is a quasi-co-2-absorbing preradical, then for each λ ∈ R-pr, either
λ[n] = 1 or t(λ[n]) = t(λ[n−1]).

Proof. Suppose that τ is quasi-co-2-absorbing and let λ ∈ R-pr such that
τ � λ[n]. If ν ∈ R-pr is such that τ � (λ[n] : ν), then τ � (λ[n−1] : ν), since
σ is quasi-co-2-absorbing. Therefore tτ (λ[n−1]) � tτ (λ[n]). On the other
hand λ[n−1] � λ[n] and so tτ (λ[n]) � tτ (λ[n−1]). Consequently tτ (λ[n]) =
tτ (λ[n−1]).
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4. Semi-co-n-absorbing preradicals

Suppose that m, n are positive integers with n > m. A more general
concept than semi-co-n-absorbing preradicals is the concept of semi-co-
(n, m)-absorbing preradicals. A preradical σ 6= 0 is called a semi-co-(n, m)-
absorbing preradical if whenever σ � µ[n] for µ ∈ R-pr, then σ � µ[m].

Note that a semicoprime preradical is just a semi-co-1-absorbing
preradical.

Theorem 1. Let σ ∈ R-pr and m, n be positive integers with n > m.

(1) If σ is quasi-co-m-absorbing, then it is semi-co-(k, m)-absorbing for
every k > m.

(2) If σ is semi-co-(n, m)-absorbing, then it is semi-co-(i, m)-absorbing
for every m < i < n, in particular it is semi-co-m-absorbing.

(3) σ is semi-co-(n, m)-absorbing if and only if σ is semi-co-(n, k)-
absorbing for each n > k > m if and only if σ is semi-co-(i, j)-
absorbing for each n > i > j > m.

(4) If σ is semi-co-(n, m)-absorbing, then it is semi-co-(nk, mk)-absorb-
ing for every positive integer k.

(5) If σ is semi-co-(n, m)-absorbing and semi-co-(r, s)-absorbing for
some positive integers r > s, then it is semi-co-(nr, ms)-absorbing.

Proof. (1) Is trivial.

(2) Is easy.

(3) Straightforward.

(4) Suppose that σ is semi-co-(n, m)-absorbing. Let µ ∈ R-pr and let

k be a positive integer such that σ � µ[nk]. Then σ �
(
µ[k]

)
[n]

. Since σ

is semi-co-(n, m)-absorbing, σ �
(
µ[k]

)
[m]

= µ[mk], and so σ is semi-co-

(nk, mk)-absorbing.

(5) Assume that σ is semi-co-(n, m)-absorbing and semi-co-(r, s)-
absorbing for some positive integers r > s. Let σ � µ[nr]. Since σ is
semi-co-(n, m)-absorbing, then σ � µ[mr]; and since σ is semi-co-(r, s)-
absorbing, σ � µ[ms]. Hence σ is semi-co-(nr, ms)-absorbing.

Corollary 2. Let σ ∈ R-pr and n be a positive integer.

(1) If σ is quasi-co-n-absorbing, then it is semi-co-n-absorbing.
(2) Let t 6 n be an integer. If σ is semi-co-(n + 1, t)-absorbing, then it

is semi-co-(nk + i, tk)-absorbing for all k > i > 1.
(3) If σ is semi-co-n-absorbing, then it is semi-co-(nk + i, nk)-absorbing

for all k > i > 1.
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(4) If σ is semi-co-n-absorbing, then it is semi-co-(nk + j)-absorbing
for all k > j > 0.

(5) If σ is semi-co-n-absorbing, then it is semi-co-(nk)-absorbing for
every positive integer k.

(6) If σ is semicoprime, then it is semi-co-k-absorbing for every positive
integer k.

(7) If σ is semicoprime, then for every k > 1 and every µ ∈ R-pr,
σ � µ[k] implies that σ � µ.

(8) If σ is semi-co-n-absorbing, then it is semi-co-((n + 1)t, nt)-absorb
-ing for all t > 1.

(9) If σ is semicoprime, then it is quasi-co-k-absorbing for every k > 1.

Proof. (1) By parts (1), (2) of Theorem 1.
(2) Let σ be semi-co-(n + 1, t)-absorbing. Then by Theorem 1(4), σ

is semi-co-(nk + k, tk)-absorbing, for every positive integer k. Hence by
Theorem 1(2), σ is semi-co-(nk + i, tk)-absorbing for every k > i > 1.

(3) In part (2) get t = n.
(4) By part (3).
(5) Is a special case of (4).
(6) Is a direct consequence of (5).
(7) By part (6).
(8) By Theorem 1(5).
(9) Assume that σ is semicoprime. Let σ � (µ[k] : ν) for some µ, ν ∈

R-pr and some k > 1. Then σ � (µ[k] : ν) � (µ : ν)[k]. Therefore
σ � (µ : ν), by part (7). So σ is quasi-co-k-absorbing.

In the following remark we prove Proposition 4 in another way.

Remark 3. Clearly, an arbitrary join of a family of semicoprime (coprime)
preradicals is semicoprime, and so it is quasi-co-k-absorbing for every
k > 1, by Corollary 2(9).

Proposition 14. Let σ1, σ2, . . . , σn ∈ R-pr. If for every 1 6 i 6 n, σi is
a semicoprime preradical, then (σ1 : σ2 : · · · : σn) is a semi-co-n-absorbing
preradical. In particular, if σ is a semicoprime preradical, then σ[n] is a
semi-co-n-absorbing preradical.

Proof. Apply Corollary 2(7).

Lemma 1. Let σ ∈ R-pr. If σ[n+1] is a semi-co-n-absorbing preradical,
then σ[n+1] = σ[n]. In particular, if σ[2] is a semicoprime preradical, then
σ is radical.
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Proposition 15. Let σ ∈ R-pr, σ 6= 0 be an idempotent radical. If σ is
such that for any µ ∈ R-pr, we have µ � σ � µ[n+1] ⇒ σ � µ[n], then σ
is semi-co-n-absorbing.

Proof. The proof is similar to that of Proposition 8(1).

Proposition 16. Let σ1, σ2, . . . , σn ∈ R-pr be semi-co-2-absorbing pre-
radicals. Then (σ1 : σ2 : · · · : σn) is a semi-co-(3n−1)-absorbing preradical.

Proof. Suppose that (σ1 : σ2 : · · · : σn) � µ[3n] for some µ ∈ R-pr. For
every 1 6 i 6 n, σi � µ[3n] =

(
µ[3n−1]

)
[3]

and σi is semi-co-2-absorbing,

then σi �
(
µ[3n−1]

)
[2]

= µ[2·3n−1] =
(
µ[2·3n−2]

)
[3]

. Again, since σi is semi-

co-2-absorbing, we conclude that σi � µ[22·3n−2]. Repeating this method
implies that σi � µ[2n]. So (σ1 : σ2 : · · · : σn) � µ[n2n]. On the other
hand n2n 6 3n − 1. So (σ1 : σ2 : · · · : σn) � µ[3n−1] which shows that
(σ1 : σ2 : · · · : σn) is semi-co-(3n − 1)-absorbing.

Proposition 17. If σi is a semi-co-ni-absorbing preradical in R-pr for
every 1 6 i 6 k, then σ1 ∨ σ2 ∨ · · · ∨ σk is a semi-co-(n − 1)-absorbing

preradical for n =
k∏

i=1
(ni + 1).

Proof. Let µ ∈ R-pr be such that σ1 ∨ σ2 ∨ · · · ∨ σk � µ[n]. Thus for every

1 6 i 6 k, σi �
(
µ[m]

)
[ni+1]

, where m =
k∏

j=1, j 6=i
(nj + 1). Since σi’s are

semi-co-ni-absorbing, then, for each 1 6 i 6 k, σi � µ[nim]. Note that for
every 1 6 i 6 k,

nim 6

k∏

i=1

(ni + 1) − 1 = n − 1.

So we have σi � µ[n−1] for every 1 6 i 6 k. Hence σ1∨σ2∨· · ·∨σk � µ[n−1]

which implies that σ1 ∨ σ2 ∨ · · · ∨ σk is a semi-co-(n − 1)-absorbing
preradical.

Proposition 18. Let σ1, σ2 ∈ R-pr and m, n be positive integers.

(1) If σ1 is quasi-co-m-absorbing and σ2 is semi-co-n-absorbing, then
(σ1 : σ2) is semi-co-(n(m + 1) + m)-absorbing.

(2) If σ1 is quasi-co-(2m)-absorbing and σ2 is semi-co-m-absorbing,
then (σ1 : σ2) is semi-co-(m2 + 2m)-absorbing.

Proof. (1) Suppose that (σ1 : σ2) � µ[(n+1)(m+1)] for some µ ∈ R-pr.
Since σ1 is quasi-co-m-absorbing and σ1 � µ[(n+1)(m+1)], then σ1 � µ[m].
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On the other hand σ2 is semi-co-n-absorbing and σ2 � µ[(n+1)(m+1)], then
σ2 � µ[n(m+1)]. Consequently (σ1 : σ2) � µ[n(m+1)+m], and so (σ1 : σ2) is
semi-co-(n(m + 1) + m)-absorbing.

(2) Suppose that (σ1 : σ2) � µ[(m+1)2] for some µ ∈ R-pr. Since σ1

is quasi-co-(2m)-absorbing and σ1 � µ[(m+1)2], then σ1 � µ[2m]. Since
σ2 is semi-co-m-absorbing and σ2 � µ[(m+1)2], then σ2 � µ[m2]. Hence
(σ1 : σ2) � µ[m2+2m] which shows that (σ1 : σ2) is semi-co-(m2 + 2m)-
absorbing.

Proposition 19. Let R be a ring. The following statements are equiva-
lent:

(1) for every preradical σ ∈ R-pr, σ[n+1] = σ[n];
(2) for all preradicals σ1σ2, . . . , σn+1 ∈ R-pr we have

(σ1 : σ2 : · · · : σn+1) � (σ1 ∨ σ2 ∨ · · · ∨ σn+1)[n];

(3) every preredical 0 6= σ ∈ R-pr is semi-co-n-absorbing.

Proof. (1)⇒(2) If σ1, σ2, . . . , σn+1 ∈ R-pr, then we get from (1),

(σ1 : σ2 : · · · : σn+1) � (σ1 ∨σ2 ∨· · ·∨σn+1)[n+1] = (σ1 ∨σ2 ∨· · ·∨σn+1)[n].

(2)⇒(1) For a preradical σ ∈ R-pr, we have from (2),

σ[n+1] � (

n+1 times︷ ︸︸ ︷
σ ∨ · · · ∨ σ)[n] = σ[n].

So we have that σ[n+1] = σ[n].

(1)⇔(3) Is clear.

Remark 4. Let {σα}α∈I ⊆ R-pr. If σα is semi-co-n-absorbing for every
α ∈ I, then

∨
α∈I σα is semi-co-n-absorbing.

Proposition 20. Let σ ∈ R-pr be radical. If σ is semi-co-n-absorbing,
then e(σ) is semi-co-n-absorbing.

Proof. Is similar to the proof of Proposition 12.

In Proposition 23 of [11], it was shown that σ0 :=
∨

{σ ∈ R-pr | σ is
semicoprime} is the unique greatest semicoprime preradical.

Proposition 21. There exists in R-pr a unique greatest semi-co-n-
absorbing preradical.
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Proof. Set σ0
(n) =

∨
{σ ∈ R-pr | σ is semi-co-n-absorbing}. By Remark 4,

σ0
(n) is the greatest semi-co-n-absorbing preradical.

By notation in the the proof of the previous proposition we have that
σ0

(1) = σ0.

Remark 5. As ζ � κ � σ0 are semicoprime preradicals, then ζ[n], κ[n],
σ0

[n] are semi-co-n-absorbing preradicals, by Proposition 14. Therefore

ζ[n] � κ[n] � σ0
[n] � σ0

(n).

Proposition 22. The following statements hold:
(1) σ0 =

∧
n>1

σ0
(n).

(2) σ0
(n) � σ0

[nk] for every positive integer k.

(3) σ[n] � σ0
(n) for every semicoprime preradical σ.

Proof. (1) By Corollary 2(6) every semicoprime preradical is semi-co-n-
absorbing for every n > 1. Then σ0 � σ0

(n) for every n > 1.

(2) By Corollary 2(5).
(3) By Proposition 14.

In Proposition 26 of [11] it was shown that σ0 � ν0, where ν0 =∧
{τ | τ ∈ R-pr, τ is unipotent}.

The following proposition is straightforward.

Proposition 23. Suppose that ν
(n)
0 :=

∧
{τ[n] | τ ∈ R-pr, τ[n+1] = 1}.

Then:
(1) σ0

(n) � ν
(n)
0 ;

(2) ν0 � ν
(1)
0 .

Corollary 3. The following statements hold:

(1) If ζ[n+1] = 1, then ζ[n] = κ[n] = σ0
[n] = σ0

(n) = ν
(n)
0 ;

(2) If ζ[2] = 1, then ζ = κ = σ0 = ν0 = ν
(1)
0 .

Proof. (1) By Remark 5 and Proposition 23 we have that ζ[n] � κ[n] �

σ0
[n] � σ0

(n) � ν
(n)
0 . If ζ[n+1] = 1, then ν

(n)
0 � ζ[n], and so ζ[n] = κ[n] =

σ0
[n] = σ0

(n) = ν
(n)
0 .

(2) By part (1) and [11, Corollary 27].

Proposition 24. For a ring R the following statements are equivalent:
(1) For every µ ∈ R-pr, µ[n+1] = 1 implies that µ[n] = 1;
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(2) 1 is a semi-co-n-absorbing preradical;
(3) σ0

(n) = 1;

(4) ν
(n)
0 = 1.

Proof. Is easy.

For τ ∈ R-pr define

C(n)(τ) =
∨

{σ ∈ R-pr | σ � τ, σ semi-co-n-absorbing},

which is the unique greatest semi-co-n-absorbing preradical less than or
equal to τ . Notice that in [11], C(1) is denoted by C.

Proposition 25. Let R be a ring.
(1) σ0

(n) = C(n)(1) =
∨

τ∈R-pr
C(n)(τ).

(2) For each τ ∈ R-pr, C(n)(τ) � τ .
(3) For each τ, σ ∈ R-pr we have τ � σ ⇒ C(n)(τ) � C(n)(σ).
(4) For each τ ∈ R-pr, C(n)(τ[n+1]) = C(n)(τ[n]).
(5) For each τ ∈ R-pr, τ is semi-co-n-absorbing if and only if τ =

C(n)(τ).
(6) {τ ∈ R-pr | τ is semi-co-n-absorbing} = Im C(n) = {C(n)(σ) | σ ∈

R-pr}.

(7)
[
C(n)

]2
= C(n). Thus, C(n) is a closure operator on R-pr.

(8) For each family {τα}α∈I ⊆ R-pr, we have

C(n)(
∧

α∈I

τα) = C(n)(
∧

α∈I

C(n)(τα)).

(9) C(n) =
∧

k>1
C(nk), in particular C =

∧
k>1

C(k).

(10) C(n)(σ[n+1]) = C(n)(σ[n]) = σ[n] for any semicoprime preradical σ.

Proof. The proofs of (1), (2), (3), (5) and (6) is easy.
(4) For any τ ∈ R-pr, part (3) implies that C(n)(τ[n]) � C(n)(τ[n+1]).

Since C(n)(τ[n+1]) is semi-co-n-absorbing (by Remark 4) and C(n)(τ[n+1])

� τ[n+1], then C(n)(τ[n+1]) � τ[n]. Hence C(n)(τ[n+1]) � C(n)(τ[n]). So the
equality holds.

(7) Is a direct consequence of part (5).
(8) The proof is similar to that of [11, Proposition 31](5).
(9) By Corollary 2(5).
(10) Apply Proposition 14 and parts (4), (5).
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Now consider the operator (−) in R-pr that assigns to each preradical
σ the least radical over σ (see [19, p. 137]).

Lemma 2. Let σ, τ ∈ R-pr be such that σ is radical and τ is semi-co-n-
absorbing. Then:

(1) C(n)(σ) � C(n)(σ) � σ.

(2) C(n)(σ) = C(n)(C(n)(σ)).
(3) τ � C(n)(τ) � τ .

(4) τ = C(n)(τ).

Proof. Similar to the proof of [11, Lemma 32].

Proposition 26. Let R be a ring.
(1) The operator C(n)(−) defines an interior operator on the ordered

class of radicals.
(2) The operator C(n)((−)) defines a closure operator on the ordered

class of semi-co-n-absorbing preradicals.

Notice that the “open” radicals associated with the interior operator
C(n)(−) are

O
(n)
rad = {σ radical | σ = τ for some semi-co-n-absorbing τ}.

The “closed” semi-co-n-absorbing preradicals associated with the closure
operator C(n)((−)) are

C(n)
sca = {τ semi-co-n-absorbing | τ = C(n)(σ) for some radical σ}.

The following result is immediate.

Corollary 4. For a ring R the operators C(n)(−) and (−) restrict to

mutually inverse maps between O
(n)
rad and C

(n)
sca.

Definition 2. Let τ ∈ R-pr. Define

C
(n)
1 (τ) =

∧
{σ[n] | σ ∈ R-pr, τ � σ[n+1]}.

Proposition 27. For a ring R the following conditions hold:

(1) For each τ ∈ R-pr, C
(n)
1 (τ) � τ[n].

(2) For each τ ∈ R-pr, τ is semi-co-n-absorbing if and only if τ �

C
(n)
1 (τ).

(3) 1 is a semi-co-n-absorbing preradical if and only if C
(n)
1 (1) = 1.



A. Yousefian Darani, H. Mostafanasab 231

(4) Let τ, σ ∈ R-pr. If τ � σ, then C
(n)
1 (τ) � C

(n)
1 (σ).

(5) For each family {τα}α∈I ⊆ R-pr, C
(n)
1 (

∧
α∈I

τα) �
∧

α∈I
C

(n)
1 (τα) and

∨
α∈I

C
(n)
1 (τα) � C

(n)
1 (

∨
α∈I

τα).

Proof. The assertions have straightforward verifications.

We apply an “Amitsur construction” to C
(n)
1 as follows:

Definition 3. Let τ ∈ R-pr. We define recursively the preradical C
(n)
λ (τ)

for each ordinal λ as follows:
(1) C

(n)
0 (τ) = τ .

(2) C
(n)
λ+1(τ) = C

(n)
1 (C

(n)
λ (τ)).

(3) If λ is a limit ordinal, then C
(n)
λ (τ) =

∧
β<λ

C
(n)
β (τ).

(4) C
(n)
Ω (τ) =

∧
λ ordinal

C
(n)
λ (τ).

Proposition 28. Let τ ∈ R-pr. Then the following statements are equiv-
alent:

(1) τ is semi-co-n-absorbing;

(2) For each ordinal λ, τ � C
(n)
λ (τ);

(3) C
(n)
Ω (τ) = τ .

Proof. By Proposition 27 and using transfinite induction we have the
claim.

As is the case with C
(n)
1 , all of the operators C

(n)
λ preserve order

between preradicals.

Proposition 29. Let τ, σ ∈ R-pr be such that τ � σ. Then:

(1) For each ordinal λ, C
(n)
λ (τ) � C

(n)
λ (σ).

(2) C
(n)
Ω (τ) � C

(n)
Ω (σ).

Proposition 30. For each τ ∈ R-pr, C(n)(τ) � C
(n)
Ω (τ).

Proof. Let τ ∈ R-pr. We use transfinite induction. First, note that

C(n)(τ) � τ = C
(n)
0 (τ). Assume that λ is an ordinal such that C(n)(τ) �

C
(n)
λ (τ). Since C(n)(τ) is semi-co-n-absorbing, C(n)(τ) � C

(n)
1 (C(n)(τ))

� C
(n)
1 (C

(n)
λ (τ)) = C

(n)
λ+1(τ), by parts (2) and (4) of Proposition 27.

If λ is a limit ordinal and C(n)(τ) � C
(n)
β (τ) for each β < λ, then

C(n)(τ) �
∧

β<λ
C

(n)
β (τ) = C

(n)
λ (τ).
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In the following result we give equivalent conditions for the equality

C
(n)
Ω (τ) = C(n)(τ).

Proposition 31. For each τ ∈ R-pr the following statements are equiv-
alent:

(1) C
(n)
Ω (τ) is semi-co-n-absorbing;

(2) C
(n)
Ω (τ) � C

(n)
1 (C

(n)
Ω (τ));

(3) For each ordinal λ we have C
(n)
Ω (τ) � C

(n)
λ (C

(n)
Ω (τ));

(4) C
(n)
Ω (C

(n)
Ω (τ)) = C

(n)
Ω (τ);

(5) C
(n)
Ω (τ) = C(n)(τ).

Proof. (1)⇒(2) By Proposition 27(2).
(2)⇒(3) It follows by using transfinite induction on λ.
(3)⇒(4) Is easy.
(4)⇒(1) By Proposition 28.

(1)⇒(5) Assume that C
(n)
Ω (τ) is semi-co-n-absorbing. Since C

(n)
Ω (τ)�τ ,

the definition of C(n)(τ) implies that C
(n)
Ω (τ) � C(n)(τ). On the other

hand C(n)(τ) � C
(n)
Ω (τ), by Proposition 30. So the equality holds.

(5)⇒(1) Is straightforward.

5. Quasi-co-n-absorbing and semi-co-n-absorbing

submodules

Remark 6. Let M ∈ R-co-ass and N be a nonzero fully invariant
submodule of M . Then we have:

(1) N is co-n-absorbing in M ⇒ N is quasi-co-n-absorbing in M ⇒ N
is semi-co-n-absorbing in M .

(2) N is a quasi-co-1-absorbing submodule of M if and only if N is a
coprime submodule of M .

(3) N is a semi-co-1-absorbing submodule of M if and only if N is a
semicoprime submodule of M .

Proposition 32. Let σ ∈ R-pr. If for every M ∈ R-Mod, σ(M) is a
semicoprime submodule of M , then σ is a semicoprime preradical.

Proof. By hypothesis, [11, Proposition 19] implies that αM
σ(M) is a semi-

coprime preradical. So σ =
∨

{αM
σ(M) | M ∈ R-Mod} (see [17, Remark 1])

is a semicoprime preradical.

Corollary 5. Let R be a ring. If every nonzero R-module is semicoprime,
then 1 is a semicoprime preradical in R-pr.
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Lemma 3 ([7, Lemma 2.5]). Let M ∈ R-Mod. Then for any submodules
N, K of M , αM

N+K = αM
N ∨ αM

K .

Proposition 33. Let M ∈ R-Mod. Suppose that {Ni}i∈I is a family
of semicoprime submodules of M . Then N =

∑
i∈I

Ni is a semicoprime

submodule of M .

Proof. Let {Ni}i∈I be a family of semicoprime submodules of M . Then,
by [11, Proposition 19], αM

Nj
’s are semicoprime preradicals. Thus αM

N =
∨

i∈I αM
Ni

is a semicoprime preradical. Again by [11, Proposition 19],
N =

∑
i∈I

Ni is a semicoprime submodule of M .

Proposition 34. Let R be a ring and {Mi}i∈I be a family of semicoprime
R-modules. Then M =

⊕
i∈I

Mi is a semicoprime R-module.

Proof. Since for every i ∈ I, Mi is a semicoprime R-module, then for
every i ∈ I, αMi

Mi
is a semicoprime preradical, by [11, Proposition 19].

Therefore
∨

i∈I
αMi

Mi
= αM

M is a semicoprime preradical, and so again by

[11, Proposition 19], M =
⊕
i∈I

Mi is a semicoprime R-module.

Proposition 35. For a ring R the following statements are equivalent:
(1) R is a finite product of simple rings;
(2) κ = 1;
(3) 1 is a semicoprime preradical;
(4) RR is a semicoprime R-module;
(5) There exists a semicoprime R-module that is a generator in R-Mod.

Proof. (1)⇔(2) By [11, Theorem 10].
(1)⇔(3) By [11, Theorem 29].
(3)⇔(4) Notice the fact that an R-module G is a generator in R-Mod

if and only if αG
G = 1. Since R is a generator in R-Mod, then αR

R = 1.
Now, use [11, Proposition 19].

(4)⇒(5) Is trivial.
(5)⇒(3) See the proof of (3)⇔(4).

Theorem 2. Let M ∈ R-co-ass and N a fully invariant submodule of M .
Consider the following statements.

(a) N is co-n-absorbing in M .
(b) αM

N is a co-n-absorbing preradical.
Then (b) ⇒ (a), and if M satisfies the ω-property, then (a) ⇒ (b).
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Proof. The proof is similar to that of [22, Theorem 4.2].

Theorem 3. Let M ∈ R-co-ass and N a fully invariant submodule of M .
Consider the following statements:

(1) N is quasi-co-n-absorbing (resp. semi-co-n-absorbing) in M .
(2) αM

N is a quasi-co-n-absorbing (resp. semi-co-n-absorbing) preradical.

Then (2) ⇒ (1), and if M satisfies the ω-property, then (1) ⇒ (2).

Proof. (1) ⇒ (2) Assume that N is quasi-co-n-absorbing in M and that
(η(M) : µ(M)) = (η : µ)(M) for every η, µ ∈ R-pr. Since N 6= 0 we have
αM

N 6= 0. Now let η, µ ∈ R-pr be such that αM
N � (η[n] : µ). In this case

we have

N = αM
N (M) 6 (η[n] : µ)(M) = (η(M)[n] : µ(M)).

Since N is quasi-co-n-absorbing in M , by hypothesis we have that N 6

η(M)[n] = η[n](M) or N 6 (η(M)[n−1] : µ(M)) = (η[n−1] : µ)(M). It

follows from [15, Proposition 5] that αM
N � αM

η[n](M) � η[n] or αM
N �

αM
(η[n−1]:µ)(M) � (η[n−1] : µ), and so αM

N is quasi-co-n-absorbing.

(2) ⇒ (1) Assume that αM
N is a quasi-co-n-absorbing preradical. Since

αM
N 6= 0, we have N 6= 0. Suppose that J, K are fully invariant submodules

of M such that N 6 (J[n] : K). Then we have N 6

(
(ωM

J )[n] : ωM
K

)
(M).

By [15, Proposition 5], we get

αM
N � αM

((ωM
J

)[n]:ω
M
K )(M)

�
(
(ωM

J )[n] : ωM
K

)
.

Since αM
N is quasi-co-n-absorbing, we have αM

N � (ωM
J )[n] or αM

N �(
(ωM

J )[n] : ωM
K

)
. Therefore N = αM

N (M) � (ωM
J )[n](M) = J[n] or N =

αM
N (M) �

(
(ωM

J )[n] : ωM
K

)
(M) = (J[n−1] : K). Hence N is a quasi-co-

n-absorbing submodule. A similar proof can be stated for semi-co-n-
absorbing preradicals.

Remark 7. Note that in Theorem 3, for the case n = 2 we can omit
the condition M ∈ R-co-ass, by the definition of quasi-co-2-absorbing
(semi-co-2-absorbing) submodules.

Definition 4. Let M ∈ R-co-ass. We say that M is a quasi-co-n-absorbing
(resp. semi-co-n-absorbing) module if M is a quasi-co-n-absorbing (resp.
semi-co-n-absorbing) submodule of itself.
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Corollary 6. Let M1, M2, . . . , Mt be injective Artinian R-modules. Sup-
pose that Mi’s are quasi-co-n-absorbing modules that satisfy the ω-property.
Then M =

⊕t
i=1 Mi is a quasi-co-(n + t − 1)-absorbing R-module.

Proof. Let M1, M2, . . . , Mt be quasi-co-n-absorbing R-modules. Then,
by Theorem 3, αM1

M1
, αM2

M2
, . . . , αMt

Mt
are quasi-co-n-absorbing preradicals,

and so αM
M = αM1

M1
∨ αM2

M2
∨ · · · ∨ αMt

Mt
is a quasi-co-(n + t − 1)-absorbing

preradical, by Proposition 11(2). Again by Theorem 3, M =
⊕t

i=1 Mi is
a quasi-co-(n + t − 1)-absorbing R-module.

Corollary 7. Let R be a ring. The following statements hold:

(1) If the preradical 1 is quasi-co-2-absorbing (resp.semi-co-2-absorbing),
then every generator R-module is a quasi-co-2-absorbing (resp. semi-
co-2-absorbing) R-module.

(2) If R is a semisimple Artinian ring, then every R-module is quasi-
co-i-absorbing for every i > 2.

Proof. (1) Suppose that 1 is a quasi-co-2-absorbing (resp. semi-co-2-
absorbing) preradical and G is a generator R-module. Since αG

G = 1, the
result follows from Theorem 3.

(2) By Proposition 6 and Theorem 3.

Example 1. Let R be a semisimple Artinian ring and S1, S2, . . . , Sn+1 ∈
R-simp be distinct. Then the injective Artinian R-module

⊕n+1
i=1 Si is

quasi-co-n-absorbing, by Corollary 7(2). But note that, by [22, Proposi-
tion 3.6] and Theorem 2,

⊕n+1
i=1 Si is not co-n-absorbing. This example

shows that the two concepts of quasi-co-n-absorbing modules and of
co-n-absorbing modules are different in general.

The following two propositions can be proved similar to [22, Proposi-
tion 4.10] and [22, Theorem 4.11], respectively.

Proposition 36. Let N, H ∈ R-co-ass such that H be a fully invariant
submodule of N and N be self-injective. For a fully invariant submodule
K of H,

(1) If K is quasi-co-n-absorbing in N , then K is quasi-co-n-absorbing
in H.

(2) If K is quasi-co-n-absorbing in N and K ∈ R-co-ass, then K is a
quasi-co-n-absorbing module.

(3) If αN
K is a quasi-co-n-absorbing preradical and N satisfies the ω-

property, then αH
K is a quasi-co-n-absorbing preradical.
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Proposition 37. Let N, Q ∈ R-co-ass such that N be a fully invariant
submodule of Q and Q be self-injective. Then N is a quasi-co-n-absorbing
module if and only if N is quasi-co-n-absorbing in Q.

Theorem 4. Let M ∈ R-co-ass that satisfies the ω-property. The follow-
ing statements are equivalent:

(1) M is quasi-co-n-absorbing;
(2) αM

M is quasi-co-n-absorbing;
(3) For each τ, η ∈ R-pr, M ∈ T(τ[n]:η) ⇒ M ∈ Tτ[n]

or M ∈ T(τ[n−1]:η).

Proof. (1) ⇔ (2) Is clear by Theorem 3.
(2) ⇒ (3) Suppose that αM

M is quasi-co-n-absorbing. Let τ, η ∈ R-pr
such that M ∈ T(τ[n]:η). Then (τ[n] : η)(M) = M , and so αM

M � (τ[n] : η).

Therefore αM
M � τ[n] or αM

M � (τ[n−1] : η). Hence τ[n](M) = M or
(τ[n−1] : η)(M) = M . Consequently M ∈ Tτ[n]

or M ∈ T(τ[n−1]:η).

(3) ⇒ (2) has a routine verification.

Similarly we can prove the following theorem.

Theorem 5. Let M ∈ R-co-ass that satisfies the ω-property. The follow-
ing statements are equivalent:

(1) M is semi-co-n-absorbing;
(2) αM

M is semi-co-n-absorbing;
(3) For each τ ∈ R-pr, M ∈ Tτ[n+1]

⇒ M ∈ Tτ[n]
.

Theorem 6. Let M ∈ R-Mod be such that, for each pair K, L of fully

invariant submodules of M , we have
(
ωM

K : ωM
L

)
= ωM

(K:L). Then, for each

quasi-co-n-absorbing (resp. semi-co-n-absorbing) preradical σ such that
σ(M) 6= 0, we have that σ(M) is quasi-co-n-absorbing (resp. semi-co-n-
absorbing) in M .

Proof. By hypothesis M ∈ R-co-ass, [22, Lemma 4.12]. Let σ be a quasi-
co-n-absorbing preradical such that σ(M) 6= 0. If K, L are fully invariant
submodules of M such that σ(M) 6 (K[n] : L), then

σ � ωM
σ(M) � ωM

(K[n]:L) =
(
(ωM

K )[n] : ωM
L

)
.

Since σ is quasi-co-n-absorbing, then

σ � (ωM
K )[n] or σ �

(
(ωM

K )[n−1] : ωM
L

)
.

In the first case we have σ(M) 6 (ωM
K )[n](M) = K[n]; in the second case

we have σ(M) 6

(
(ωM

K )[n−1] : ωM
L

)
(M) = (K[n−1] : L). Consequently

σ(M) is quasi-co-n-absorbing.



A. Yousefian Darani, H. Mostafanasab 237

Acknowledgement

The authors would like to thank the referee for the careful reading of
the manuscript and all the suggestions that improved the paper.

References

[1] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings,
Comm. Algebra 39 (2011) 1646–1672.

[2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc.
75 (2007) 417–429.

[3] A. Badawi and A. Yousefian Darani, On weakly 2-absorbing ideals of commutative
rings, Houston J. Math. 39 (2013), 441–452.

[4] L. Bican, P. Jambor, T. Kepka and P. Nemec, Preradicals, Comment. Math. Univ.

Carolinae 15(1) (1974) 75–83.

[5] L. Bican, T. Kepka, and P. Nemec, Rings, Modules and Preradicals (Marcel Dekker,
New York, 1982).

[6] A. I. Kashu, On partial inverse operations in the lattice of submodules. Bulet. A.

Ş. M. Mathematica, 2(69) (2012) 59-73.

[7] A. I. Kashu, On some operations in the lattice of submodules determined by
preradicals, Bull. Acad. Stiinte Repub. Mold. Mat. 2(66) (2011) 5–16.

[8] M. Luísa Galvão, Preradicals of associative algebras and their connections with pre-
radicals of modules. Modules and Comodules. Trends in Mathematics. Birkhäuser,

(2008) 203–225.

[9] H. Mostafanasab, E. Yetkin, U. Tekir and A. Yousefian Darani, On 2-absorbing
primary submodules of modules over commutative rings, An. Şt. Univ. Ovidius

Constanta, 24(1) (2016) 335–351.

[10] H. Mostafanasab and A. Yousefian Darani, Quasi-n-absorbing and semi-n-
absorbing preradicals, submitted.

[11] F. Raggi, J. Ríos, S. Gavito, H. Rincón and R. Fernández-Alonso, Semicoprime
preradicals, J. Algebra Appl. 11(6) (2012) 1250115 (12 pages).

[12] F. Raggi, J. Ríos, H. Rincón and R. Fernández-Alonso, Basic preradicals and main
injective modules, J. Algebra Appl. 8(1) (2009) 1–16.

[13] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, Prime and
irreducible preradicals, J. Algebra Appl. 4(4) (2005) 451–466.

[14] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, Semiprime
preradicals, Comm. Algebra 37 (2009) 2811–2822.

[15] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice
structure of preradicals, Comm. Algebra 30(3) (2002) 1533–1544.

[16] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice
structure of preradicals II: partitions, J. Algebra Appl. 1(2) (2002) 201–214.

[17] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice
structure of preradicals III: operators, J. Pure and Applied Algebra 190 (2004)
251–265.



238 Generalizations of semicoprime preradicals

[18] F. Raggi, J. Ríos and R. Wisbauer, Coprime preradicals and modules, J. Pure

Appl. Algebra, 200 (2005) 51–69.

[19] B. Stenström, Rings of Quotients, Die Grundlehren der Mathematischen Wis-
senschaften, Band 217 (Springer Verlag, Berlin, 1975).

[20] D. K. Tütüncü, and Y. Kuratomi, On generalized epi-projective modules. Math.

J. Okayama Univ., 52 (2010) 111-122.

[21] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach,
Philadelphia, 1991).

[22] A. Yousefian Darani, and H. Mostafanasab, Co-2-absorbing preradicals and
submodules, J. Algebra Appl. 14(7) (2015) 1550113 (23 pages).

[23] A. Yousefian Darani and H. Mostafanasab, On 2-absorbing preradicals, J. Algebra

Appl. 14(2) (2015) 1550017 (22 pages)

[24] A. Yousefian Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing sub-
moduels, Thai J. Math. 9(3) (2011) 577–584.

[25] A. Yousefian Darani and F. Soheilnia, On n-absorbing submodules, Math. Comm.,
17 (2012), 547-557.

Contact information

A. Yousefian

Darani,

H. Mostafanasab

Department of Mathematics and Applications,
University of Mohaghegh Ardabili, P. O. Box
179, Ardabil, Iran
E-Mail(s): yousefian@uma.ac.ir,

h.mostafanasab@gmail.com

Web-page(s): www.yousefiandarani.com

Received by the editors: 21.09.2015
and in final form 27.11.2015.


