© Algebra and Discrete Mathematics Volume **30** (2020). Number 2, pp. 230–234 DOI:10.12958/adm1258

Normal automorphisms of the metabelian product of free abelian Lie algebras

N. Ş. Öğüşlü

Communicated by I. Ya. Subbotin

ABSTRACT. Let M be the metabelian product of free abelian Lie algebras of finite rank. In this study we prove that every normal automorphism of M is an IA-automorphism and acts identically on M'.

1. Introduction

Let L be a Lie algebra over a field K. An automorphism φ of L is called a normal automorphism if $\varphi(I) = I$ for every ideal I of L. The set of normal automorphisms of L is a normal subgroup of the automorphism group of L.

Automorphisms and more particularly normal automorphisms have a very important place in groups and Lie algebras. Let G be a soluble product of class $n \ge 2$ of nontrivial free abelian groups. In [5] it is shown that the subgroup of all normal automorphisms of G coincides with the subgroup of all inner automorphisms. In [4] Romankov showed that if S is a free non-abelian soluble group, then the subgroup of normal automorphisms of S is the subgroup of inner automorphisms of S. In [1] it is studied normal automorphisms of a free metabelian nilpotent group. Let $L_{m,c}$ be the free m-generated metabelian nilpotent of class c Lie algebra over a field of characteristic zero. In [2] it is shown that the group of normal

²⁰¹⁰ MSC: 17B01, 17B40.

Key words and phrases: free abelian Lie algebras, metabelian product, auto-morphisms.

automorphisms of $L_{m,c}$ is contained by the group of IA-automorphisms of $L_{m,c}$ for $m \ge 3$, $c \ge 2$.

For an arbitrary variety of Lie algebras, the metabelian product of Lie algebras F_i , i = 1, ..., m is defined as

$$\left(\prod^* F_i\right) / \left(D \cap F''\right),$$

where $F = \prod^* F_i$ is the free product of the Lie algebras F_i and D is the cartesian subalgebra of $\prod^* F_i$. If the algebras F_i are non-trivial free abelian Lie algebras then the metabelian product of them is isomorphic to F/F'', where F'' = [F', F'] and F' = [F, F] is the derived subalgebra.

Let M be the metabelian product of free abelian Lie algebras of finite rank. In this study it is shown that every normal automorphism of M is an IA-automorphism and acts identically on M'. In proving this result we inspired by the result of Timoshenko in the case of groups [5].

Let L be a Lie algebra and B any subset of L. We show that by $\langle B \rangle$ the ideal of L generated by the set B.

2. Normal automorphisms of metabelian product

Let A_i , i = 1, ..., m, be free abelian Lie algebras of finite rank over a field K of characteristic zero and $F = \prod^* A_i$ is the free product of the abelian Lie algebras A_i , i = 1, ..., m. If M is the metabelian product of the algebras A_i , M is isomorphic to F/F''.

Definition 1. Let L be a Lie algebra. An automorphism φ of L is called a normal automorphism If $\varphi(I) = I$ for evey ideal I of L.

Theorem 1. Let A_i , i = 1, ..., m, be free abelian Lie algebras of finite rank and let M be their metabelian product. If φ is a normal automorphism of M then φ is an IA-automorphism.

Proof. Let φ be a normal automorphism of M. The algebra M can be considered as M = F/F''. Let denote by $\hat{v} = v + F''$, where $v \in F$. Then by [3] there exist $u_i \in F', 1 \leq i \leq m$, such that

$$\varphi\left(\widehat{a_{i}}\right) = \alpha \widehat{a_{i}} + \widehat{u_{i}},$$

where $a_i \in A_i$ and $0 \neq \alpha \in K$. Consider the ideal $\langle \hat{a}_1 \rangle$ of M. Since φ is normal we have $\varphi(\hat{a}_1) \in \langle \hat{a}_1 \rangle$ and so $\widetilde{u}_1 \in \langle \hat{a}_1 \rangle$ and similarly, for the ideal

 $\langle \widehat{[a_2, a_3]} \rangle$ of M we have $\varphi\left(\widehat{[a_2, a_3]}\right) \in \langle \widehat{[a_2, a_3]} \rangle$. Then for an element \widehat{y} of $\langle \widehat{[a_2, a_3]} \rangle$ we have

$$\varphi\left(\widehat{[a_2,a_3]}\right) = \alpha^2 \widehat{[a_2,a_3]} + \widehat{y}.$$

Now consider the ideal $\langle a_1 + \widehat{[a_2, a_3]} \rangle$ of M. Since φ is normal we have $\varphi\left(\widehat{a_1 + [a_2, a_3]}\right) \in \langle \widehat{a_1 + [a_2, a_3]} \rangle$ and for an element \widehat{z} of $\langle \widehat{a_1 + [a_2, a_3]} \rangle$ $\varphi\left(\widehat{a_1 + [a_2, a_3]}\right) = c\left(\widehat{a_1 + [a_2, a_3]}\right) + \widehat{z}$

where $c \in K$. From the last equality we have

$$(\alpha - c) \, \widehat{a_1} + (\alpha^2 - c) \, \widehat{[a_2, a_3]} = \widehat{0}.$$

Then we get $c = \alpha$ and $c = \alpha^2$, that is, $\alpha^2 = \alpha$. Hence $\alpha = 1$ and φ is an IA-automorphism.

Theorem 2. Every normal automorphism of M acts identically on M'.

Proof. The algebra M can be considered as M = F/F''. Let denote by $\hat{v} = v + F''$, where $v \in F$. Let φ be a normal automorphism of M. By theorem 1 we have that φ is an IA-automorphism. Then there is an element \hat{v} of M' such that

$$\varphi\left(\widehat{[a_1,a_2]}\right) = \widehat{[a_1,a_2]} + \widehat{v},$$

where $a_1 \in A_1, a_2 \in A_2$. Let *H* be the ideal of *M'* generated by the element $\widehat{[a_1, a_2]}$. It is clear that

$$H = \left\{ \widehat{c[a_1, a_2]} : c \in K \right\}.$$

Now suppose that $\hat{v} \neq \hat{0}$. Consider the homomorphism $\theta : M' \to M'/H$ which is defined $\theta(\hat{u}) = \varphi(\hat{u}) + H$ for every element $\hat{u} \in M'$. Since φ is a normal automorphism of M it is clear that θ is an epimorphism. Let $\hat{u} \in Ker\theta$. Consider the ideal $\langle \hat{u} \rangle$ of M. Since φ is normal we have $\varphi(\hat{u}) \in \langle \hat{u} \rangle$. Then we have $\varphi(\hat{u}) = \beta \hat{u} + \hat{w}$, where $\hat{w} \in \langle \hat{u} \rangle, \beta \in K$. Since $\hat{u} \in Ker\theta$, we have $\varphi(\hat{u}) \in H$, that is,

$$\beta \widehat{u} + \widehat{w} \in \left\{ \widehat{c[a_1, a_2]} : c \in K \right\}.$$

Thus we have $\widehat{u} = d[a_1, a_2]$, where $d \in K$. Then we get

$$\varphi\left(\widehat{u}\right) = d[\widehat{a_1, a_2}] + d\widehat{v} \in H.$$

If $\hat{v} \neq \hat{0}$ we get d = 0 and $\hat{u} = \hat{0}$. Hence we obtain that θ is an isomorphism. Since $\varphi(M') = M'$ and $\hat{v} \in M'$ there exist an element \hat{g} of M' such that $\varphi(\hat{g}) = \hat{v}$. By the definition of θ we have

$$\theta\left(\widehat{g}\right) = \widehat{v} + H.$$

We also have that

$$\theta\left(\widehat{[a_1,a_2]}\right) = \widehat{v} + H.$$

Since θ is an isomorphism we get

$$\widehat{g} = [\widehat{a_1, a_2}].$$

Thus we have

$$\varphi\left(\widehat{[a_1,a_2]}\right) = \varphi\left(\widehat{g}\right) = \widehat{v}$$

and

$$\widehat{[a_1,a_2]} + \widehat{v} = \widehat{v}.$$

We obtain that $\widehat{[a_1, a_2]} = \widehat{0}$. This is a contradiction. Thus we get $\widehat{v} = \widehat{0}$ and

$$\varphi\left(\widehat{[a_1,a_2]}\right) = \widehat{[a_1,a_2]}$$

Similarly, we obtain that

$$\varphi\left(\widehat{[a_i,a_j]}\right) = \widehat{[a_i,a_j]},$$

where $a_i \in A_i, a_j \in A_j, 1 \leq i < j \leq m$. Let $\hat{u} \in M'$. Then \hat{u} is a linear combinations of some elements of M of the form

$$[\ldots [[a_{j_1}, a_{j_2}], a_{j_3}], \ldots, a_{j_n}],$$

where $a_{j_1}, a_{j_2}, \ldots, a_{j_n} \in \bigcup_{i=1}^m A_i, n \ge 2$. we know that

$$\varphi\left(\widehat{[a_{j_1}, a_{j_2}]}\right) = \widehat{[a_{j_1}, a_{j_2}]}.$$

Since φ is an IA-automorphism there exist some elements $u_{j_3}, \ldots, u_{j_n} \in F'$ such that

$$\varphi\left(\widehat{a_{j_k}}\right) = \widehat{a_{j_k}} + \widehat{u_{j_k}}, \ k \ge 3.$$

Then

$$\varphi\left(\left[\dots\left[\left[a_{j_{1}}, a_{j_{2}}\right], a_{j_{3}}\right], \dots, a_{j_{n}}\right]\right)$$

$$= \left[\dots\left[\varphi\left(\left[a_{j_{1}}, a_{j_{2}}\right]\right), \varphi\left(\widehat{a_{j_{3}}}\right)\right], \dots, \varphi\left(\widehat{a_{j_{n}}}\right)\right]$$

$$= \left[\dots\left[\left[a_{j_{1}}, a_{j_{2}}\right], \widehat{a_{j_{3}}} + \widehat{u_{j_{3}}}\right], \dots, \widehat{a_{j_{n}}} + \widehat{u_{j_{n}}}\right]$$

$$= \left[\dots\left[\left[a_{j_{1}}, a_{j_{2}}\right], a_{j_{3}}\right], \dots, a_{j_{n}}\right].$$

Hence we get $\varphi(\hat{u}) = \hat{u}$ for all $\hat{u} \in M'$. Therefore φ acts identically on M'.

References

- G. Endimioni, Normal automorphisms of a free metabelian nilpotent group, *Glasgow Math.J.*, 52 (2010), 169-177.
- [2] Ş. Fındık, Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras, Serdica Math. J., 36 (2010), 171–210.
- [3] N. Ş. Öğüşlü, IA-automorphisms of a solvable product of abelian Lie algebras, Int. J. of Sci. and Research Pub., 8 (2018), no.4, 84-85.
- [4] V. A. Romankov, Normal automorphisms of discrete groups, Siberian Math. J., 24 (1983), no.4, 604-614.
- [5] E. I. Timoshenko, Normal automorphisms of a soluble product of abelian groups, Siberian Math. J., 56 (2015), no.1, 191-198.

CONTACT INFORMATION

Nazar Şahin ÖğüşlüDepartment of Mathematics, Çukurova
University, Adana, Turkey
E-Mail(s): noguslu@cu.edu.tr

Received by the editors: 19.09.2018 and in final form 23.01.2020.