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Abstract. The Unitary Dual Problem is one of the most
important open problems in mathematics: classify the irreducible
unitary representations of a group. That is, classify all irreducible
representations admitting a definite invariant Hermitian form. Signa-
tures of invariant Hermitian forms on Verma modules are important
to finding the unitary dual of a real reductive Lie group. By a
philosophy of Vogan introduced in [Vog84], signatures of invariant
Hermitian forms on irreducible Verma modules may be computed
by varying the highest weight and tracking how signatures change
at reducibility points (see [Yee05]). At each reducibility point there
is a sign ε governing how the signature changes. A formula for ε
was first determined in [Yee05] and simplified in [Yee19]. The proof
of the simplification was complicated. We simplify the proof in this
note.

1. Introduction

In the 1930s, I.M. Gelfand introduced a broad programme in abstract
harmonic analysis that is a grand generalization of Fourier analysis. The
programme permitted the solution of problems in areas ranging from
topology to mathematical physics by algebraic means. Associate to a
difficult problem an algebraic object (eg. a space of functions) and translate
the problem to an algebraic problem. Decompose the algebraic problem

2010 MSC: 22E50, 05E10.
Key words and phrases: unitary representations.



“adm-n4” — 2020/1/24 — 13:02 — page 196 — #46

196 A simplified reduction point crossing sign formula

into smaller simpler problems, solve the simpler problems, reassemble
the solutions into a solution to the algebraic problem, and then transfer
the solution to a solution to the original problem. To realize Gelfand’s
programme, the Unitary Dual Problem must be solved.

In [Mac58], Mackey showed how to construct unitary representations of
a group G from unitary representations of a normal subgroup N and G/N .
In [Duf82], Duflo described the unitary dual of an algebraic Lie group
in terms of unitary duals of smaller reductive Lie groups. Thus we wish
to solve the Unitary Dual Problem for real reductive Lie groups, which
is equivalent to classifying irreducible unitary Harish-Chandra modules.
Harish-Chandra modules may be constructed from Verma modules. The
Unitary Dual Problem in the case of real reductive Lie groups is still
unsolved in general.

In the 1970s, Knapp and Zuckerman classified Hermitian representa-
tions of a real reductive group (those admitting a non-degenerate invariant
Hermitian form). Thus the approach to the Unitary Dual Problem has
been the following: calculate signatures of invariant Hermitian forms on
Hermitian representations and determine when the forms are definite.

In [Vog84], Vogan developed a philosophy for computing signatures of
invariant Hermitian forms. The philosophy depended on computing some
signs which were unknown at the time. The signs were first computed in
[Yee05]. Vogan’s philosophy in the case of Verma modules is the following
(for a full account, see [Yee05] and for a more detailed summary than this
introduction see [Yee19]). As the highest weight varies, Verma modules
may be thought of as realized on the same vector space. Invariant Hermi-
tian forms on Hermitian Verma modules are unique up to a real scalar.
The radical of the invariant Hermitian form is the unique maximal proper
submodule of the Verma module. Thus if you vary the highest weight
analytically, if the invariant Hermitian forms remain non-degenerate, the
signatures of the forms cannot change. Let h and b be the Cartan subal-
gebra and Borel subalgebra, respectively, from which the Verma modules
are constructed, let g be the Lie algebra for which the Verma module
is a representation, and let ∆+(g, h) be the positive roots corresponding
to b. Let ρ be one half the sum of the positive roots and let α∨ = 2α

(α,α)

for α ∈ ∆(g, h). Let λ ∈ h∗ and let Cλ−ρ be the h-module of weight
λ− ρ. Then the Verma module M(λ) = U(g)⊗U(b) Cλ−ρ is reducible if
and only if (λ, α∨) ∈ Z

+ for some positive root α. Thus Verma modules
are reducible when the highest weight lies on a reducibility hyperplane
Hα,n := {λ ∈ h∗|(λ, α∨) = n} where α ∈ ∆+(g, h) and n ∈ Z

+. Thus the
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reducibility hyperplanes partition the highest weights into regions where
the signature cannot change. These regions may be broken up into alcoves
parameterized by the (dual) affine Weyl group. The antidominant Weyl
chamber is a large region not containing any reducibility hyperplanes. By
an asymptotic argument, Wallach was able to determine the signature
of Hermitian forms in this region in [Wal84]. Vogan’s philosophy is now
the following. Cross reducibility hyperplanes one at a time. Then the
signature changes by the signature of the radical of the form as one crosses
a single reducibility hyperplane. The radical is another Verma module
that you can arrange to be “closer” to Wallach’s region. The radical being
a Verma module, the signature on the radical is unique up to a real scalar.
Thus the signature character (see [Yee05] for a definition) of the radical
is either equal to the signature character of the canonical form on the
Verma module or is equal to its negative. This is the sign associated with
the reduction point crossing. In particular, for adjacent alcoves C and C ′

separated by the reducibility hyperplane Hα,n and for λ ∈ C and λ′ ∈ C ′

we have ([Yee05], Lemma 4.3)

chsM(λ) = eλ−λ′

chsM(λ′) + 2ε(C,C ′)chsM(λ− nα)

where ε(C,C ′) = ±1. By induction, the signature character of an arbitrary
Verma module may be expressed as a sum of products of crossing signs
and powers of 2 times the signature in Wallach’s region with a translation
(see [Yee05], Theorem 4.6). The signature character formula was simplified
in [Yee19] and [LY18] where it was shown that the signatures can be
expressed as sums of Hall-Littlewood polynomial summands evaluated at
q = −1 times a version of the Weyl denominator. Key to simplifying the
signature character formula was a simplification of the reduction point
crossing sign formula. The proof of the sign simplification was somewhat
complicated. We will simplify the proof in the next section.

2. A simplification of the proof of the reduction point

sign formula

First, we restrict ourselves to computing signs when the real form
with respect to which our forms are invariant is the compact real form.
For other forms, the signs may be related to corresponding signs for the
compact real form easily (see Theorem 3.17 of [Yee19]).

The following notation will be consistent throughout what follows:

• g is a complex semisimple Lie algebra with compact real form g0;
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• h0 is a Cartan subalgebra of g0 with complexification h;
• b = h⊕ n is a Borel subalgebra of g;
• ∆(g, h) is the root system of g with respect to h, Π = {αi}16i6n is

the base corresponding to b, and si is the reflection corresponding
to αi;

• ∆+(g, h) is the system of positive roots in ∆(g, h) with respect to Π
and ρ is one half the sum of the positive roots;

• for λ ∈ h∗, M(λ) = U(g)⊗U(b)Cλ−ρ is the Verma module of highest
weight λ− ρ;

• W is the Weyl group of ∆(g, h);
• Hγ,n is the hyperplane {µ ∈ h∗0 : (µ, γ

∨) = n};
• for w ∈ W,∆(w) := {α ∈ ∆+(g, h) : w(α) < 0};
• C0 is the antidominant Weyl chamber.

In order to explain the purpose of this proof accurately, a few definitions
are also required:

Definition 1 (see [Yee05], Theorem 5.3.4). Let γ ∈ ∆+(g, h), and let
γ = si1si2 · · · sik−1

αik be an expression with the property that for all
integers 1 6 j 6 k − 1:

ht(sijsij+1 · · · sik−1
αik) > ht(sij+1sij+2 · · · sik−1

αik).

Then let wγ = si1 · · · sik−1
sik .

(Note that wγ is in general not unique, but all theorems below hold
for any choice of wγ).

Definition 2. Let γ ∈ ∆+(g, h),wγ be defined as in definition 1, and
w ∈ W . Then we define

S1 := {β ∈ ∆(w−1
γ ) : |β| = |γ|, β 6= γ, and β, sβγ ∈ ∆(w−1)}

S2 := {β ∈ ∆(w−1
γ ) : |β| 6= |γ|, and β,−sβsγβ ∈ ∆(w−1)}.

In [Yee05], it was shown that for a given reducibility hyperplane, the
reduction point crossing sign only depends on the Weyl chamber containing
the point of crossing, so we denote by ε(Hγ,n, w) the crossing sign from
H+

γ,n := {λ ∈ h∗0 : (λ, γ∨) > n} to H−
γ,n := {λ ∈ h∗0 : (λ, γ∨) < n} in

the Weyl chamber wC0 where γ ∈ ∆+(g, h), n ∈ Z
+, and w ∈ W . The

reduction point crossing sign when g0 is the compact real form of g is
given as follows:



“adm-n4” — 2020/1/24 — 13:02 — page 199 — #49

M. St. Denis, W. L. Yee 199

Theorem 1 ([Yee05], Theorem 5.3.4). Let g0 be the compact real form
of g. Let γ be a positive root that does not form a type G2 root system
with other roots in ∆(g, h). If γ hyperplanes are positive on wC0 ,then

ε(Hγ,n, w) = (−1)#{β∈∆(w−1
γ ):|β|=|γ|,β 6=γ and β,sβγ∈∆(w−1)} (1)

× (−1)#{β∈∆(w−1
γ ):|β|6=|γ| and β,−sβsγβ∈∆(w−1)}.

In the notation of definition 2, this takes the following more compact,
form:

ε(Hγ,n, w) = (−1)#S1+#S2 . (2)

The simplification of this formula in [Yee19] is as follows:

Theorem 2 ([Yee19], Theorem 4.11). Let g0 be the compact real form of
g and let γ be a positive root such that γ hyperplanes are positive on wC0.
Then:

ε(Hγ,n, w) = (−1)
ℓ(w)−ℓ(sγw)−1

2 . (3)

We develop a shorter, alternative proof of this simplification. It is easy
to verify that the equation holds for type G2. We thus prove that the
exponents equations (2) and (3) are equal when γ does not form a type
G2 root system with any other roots in ∆(g, h); that is:

ℓ(w)− ℓ(sγw) = 2(#S1 +#S2) + 1. (4)

Now we provide a proof of equation (4). First, the following Lemma
will allow us to simplify the sets S1 and S2:

Lemma 1 ([Yee19], Lemma 4.4). Let ∆(g, h) be a root system not con-
taining any components of type G2 and let β, γ ∈ ∆+(g, h).

• If |β| = |γ|, then sβγ = −sγβ.
• If |β 6= |γ|, then −sβsγ(β) = −sγ(β).

Observing Lemma 1 and the definitions of S1 and S2, all conditions
except for the length of β are the same in both sets. Therefore we can
express them as a single set by removing the length condition:

Definition 3. S := {β ∈ ∆(w−1
γ ) : β,−sγ(β) ∈ ∆(w−1)}.

Lemma 2. Let ∆(g, h) be a root system not containing any components
of type G2, let γ ∈ ∆+(g, h), wγ be defined as in 1 and let w ∈ W be an
element with w−1γ < 0 (i.e. γ hyperplanes are positive on wC0). Then
S = (S1 ∪ S2)∪̇{γ}.
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Proof. By using the formulas from 1 we can rewrite S1 and S2 as

S1 := {β ∈ ∆(w−1
γ ) : |β| = |γ|, β 6= γ, and β,−sγβ ∈ ∆(w−1)},

S2 := {β ∈ ∆(w−1
γ ) : |β| 6= |γ|, and β,−sγβ ∈ ∆(w−1)}.

Then the only root which might possibly be an element of S but not of
S1 or S2 is γ. Since γ = wγsik(αik), we have w−1

γ (γ) = −αik . Therefore
γ ∈ ∆(w−1

γ ). Then since γ ∈ ∆(w−1
γ ) and −sγγ = γ ∈ ∆(w−1), γ ∈ S.

The purpose of the following Lemma is to prove that if α ∈ S then
−sγ(α) /∈ S, unless α = γ. In the proof of Theorem 3 we will require this
fact to ensure that no double-counting occurs when we use S to count a
certain set of roots. We recall it from [Yee19] without proof.

Lemma 3 ([Yee19], Lemma 4.7). Let γ ∈ ∆+(g, h) and wγ be as defined
in Definition 1. Then

∆(w−1
γ ) ∩ −sγ∆(w−1

γ ) = {γ}.

From Lemma 2 and a well-known equivalent definition of the length
function, it follows that equation (4) is equivalent to the equation

#∆(w−1)−#∆(w−1sγ) = 2#S − 1. (5)

We now begin the proof of equation (5). Our method will be to first
construct an injection f : ∆(w−1sγ) −֒→ ∆(w−1), and then use S to count
the points outside of im f . (It will turn out that β ∈ S corresponds to
β,−sγβ outside of im f .) First we construct f :

Lemma 4. Let γ ∈ ∆+(g, h) and w ∈ W with w−1γ < 0 (i.e. so that γ
hyperplanes are positive on wC0). Define

f : ∆(w−1sγ) → ∆(w−1) : f(β) =

{

β if β ∈ ∆(w−1)

sγ(β) if β /∈ ∆(w−1).
(6)

Then im f ⊆ ∆(w−1) and f is injective.

Proof. First we prove inclusion. Let β ∈ ∆(w−1sγ). If β ∈ ∆(w−1) then
trivially f(β) ∈ ∆(w−1), so consider the case that β /∈ ∆(w−1).

Since β is in the domain, w−1(sγ(β)) < 0, so sγ(β) ∈ ∆(w−1) is
equivalent to sγ(β) > 0. We expand w−1sγ(β) into the form

w−1(β)−
2(β, γ)

(γ, γ)
w−1(γ) < 0. (7)
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Since β /∈ ∆(w−1), w−1(β) > 0, and by assumption w−1(γ) < 0,
therefore inequality (7) requires that (β, γ) < 0, from which it follows that
sγ(β) > β > 0 as required.

Next we prove injectivity. Let β1, β2 ∈ ∆(w−1sγ). In the cases that
f(β1) = β1, f(β2) = β2 and f(β1) = sγ(β1), f(β2) = sγ(β2) it is obvious
that f(β1) = f(β2) implies that β1 = β2.

For the remaining case, without loss of generality assume that f(β1) =
β1 and f(β2) = sγ(β2) = β1. This generates an immediate contradiction
since by the conditions of f , β2 /∈ ∆(w−1) but w−1sγ(β1) = w−1(β2) < 0.
Therefore f is injective.

With this lemma we are prepared to prove the main theorem:

Theorem 3. Let γ ∈ ∆+(g, h), wγ = si1si2 · · · sik be defined as in Defini-
tion 1 and w ∈ W have the property that w−1γ < 0 (i.e. γ hyperplanes
are positive on wC0). Let S be defined as in Definition 3. Then

#∆(w−1) = #∆(w−1sγ) + 2#S − 1

so that if g0 is the compact real form, then

ε(Hγ,n, w) = (−1)
ℓ(w)−ℓ(sγw)−1

2 .

Proof. By Lemma 4, ∆(w−1sγ)
f

−֒−→ ∆(w−1), so #∆(w−1sγ) = # im f .
Now let us consider the set ∆(w−1)\ im f . We will show that for every α in
this set, −sγ(α) is contained in the set as well, and one of α or −sγ(α) ∈ S.
Since Lemma 3 implies that with the exception of α = γ exactly one
of α,−sγα ∈ S, this procedure will establish that #(∆(w−1) \ im f) =
2#S − 1.

If α ∈ ∆(w−1)\im f , then we must have α /∈ ∆(w−1sγ), since otherwise
f(α) = α is in im f . We must also have that sγ(α) /∈ ∆(w−1sγ). If it were
possible that sγα ∈ ∆(w−1sγ), then we would have either f(sγα) = sγα,
which contradicts the fact that α /∈ ∆(w−1sγ), or f(sγα) = α, which
contradicts the assumption that α /∈ im f . Therefore sγα /∈ ∆(w−1sγ) as
well.

Since w−1sγ(sγ(α)) = w−1(α) < 0, the condition sγ(α) /∈ ∆(w−1sγ)
requires sγ(α) < 0. Then since α /∈ ∆(w−1sγ) we have w−1(−sγ(α)) < 0,
and −sγ(α) > 0 so −sγ(α) ∈ ∆(w−1).

Thus we have shown that if α ∈ ∆(w−1)\im f , then −sγ(α) ∈ ∆(w−1).
In fact, −sγα ∈ ∆(w−1) \ im f since sγ(−sγα) = −α /∈ ∆(w−1sγ) and
−sγα /∈ ∆(w−1sγ) since w−1sγ(−sγα) = −w−1α > 0. The remaining step
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in the proof is to show that if α ∈ ∆(w−1) \ im f then either α ∈ ∆(w−1
γ )

or −sγ(α) ∈ ∆(w−1
γ ).

If α ∈ ∆(w−1
γ ) and α 6= γ, then α ∈ S and −sγα /∈ S by Lemma 3.

Otherwise assume that α /∈ ∆(w−1
γ ). We can expand w−1

γ (−sγ(α)) as:

w−1
γ (−sγ(α)) = −w−1

γ wγsikw
−1
γ α = −sikw

−1
γ α.

Since w−1
γ α > 0 and the only positive root sent to a negative root by

sik is αik , this expression is negative unless w−1
γ α = αik . However this is

impossible since w−1
γ is a bijection and w−1

γ (−γ) = αik , but α ∈ ∆(w−1)
so α cannot be a negative root. Therefore −sγ(α) ∈ ∆(w−1

γ ) and so
−sγ(α) ∈ S while α /∈ S.

We have established a correspondence β ↔ {β,−sγβ} between roots
in S and roots in ∆(w−1) \ im f . Since exactly one of β,−sγβ ∈ S unless
β = γ by Lemma 3, the set S counts 2#S − 1 roots. Therefore

#∆(w−1) = # im f +#(∆(w−1) \ im f) = #∆(w−1sγ) + 2#S − 1

from which the formula for ε(Hγ,n, w) follows.
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