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Geometrical equivalence and action type

geometrical equivalence of group representations∗

J. Simões da Silva and A. Tsurkov

Communicated by I. P. Shestakov

Abstract. In this paper we construct an example of two

representations (V1, G1) and (V2, G2) which are action type geomet-

rically equivalent and groups G1 and G2 are geometrically equivalent,

but the representations (V1, G1) and (V2, G2) are not geometrically

equivalent.

Introduction

All definitions of the basic notions of the universal algebraic geometry
can be found, for example, in [5], [6], [7] and [8]. Also, there are fundamental
papers [1], [4] and [2], [3].

Some problems of the universal algebraic geometry for many-sorted
universal algebras were considered also in [10], [12], [13] and [14].

Let K be an arbitrary but fixed field. We consider representations of
groups over K-vector spaces. In this paper a representation of group is
a pair (V,G), where V is a vector space over field K and G is a group.
The signature of this algebraic object includes all operations of the vector
space V (multiplication by a scalar λ ∈ K we consider as unary operation:
λ : V → V , where λ(v) = λv, v ∈ V ), all operations of the group G and
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the operation of action of G on vector space V . We denote this operation
by ◦:

V ×G ∋ (v, g) → v ◦ g ∈ V.

From now on we will write briefly "representation" instead of "repre-
sentation of group". The homomorphism (α, β): (V,G) → (W,H) from
representation (V,G) to representation (W,H) is a pair, where α : V → W
is a linear mapping and β : G → H is a homomorphism of groups, such
that for every v ∈ V and every g ∈ G the equality

α(v ◦ g) = α(v) ◦ β(g)

holds. The reader can see that we consider representations as 2-sorted
universal algebras: the first sort is a sort of vectors from a vector space
and the second sort is a sort of elements from a group. This approach to
representations can be found in [11], [15], [10], [13].

The variety of all representations of groups over a fixed field K will
be denoted by REP-K.

Definition 0.1. The representation W (X,Y ) = (U(X,Y ), H(X,Y )) is
called the free representation generated by sets X and Y if, for every
(V,G) ∈ REP-K and every mappings f1 : X → V and f2 : Y → G, there is
a unique homomorphism of representations (α, β) : (U(X,Y ), H(X,Y )) →
(V,G), such that α|X = f1, β|Y = f2.

It was proved in [11], that (U(X,Y ), H(X,Y )) = (XKF (Y ), F (Y )),
where F (Y ) is the free group with the free set of generators Y , KF (Y )
is the group ring over F (Y ) and XKF (Y ) =

⊕
x∈X xKF (Y ) is the free

KF (Y )-module with free basis X.

1. Basic notions of the algebraic geometry

of representations

From now on we suppose that sets X and Y of generators of the free
representations (XKF (Y ), F (Y )) are finite. Equations in the algebraic ge-
ometry of representations have the form v1 = v2, where v1, v2 ∈ XKF (Y ),
or the form f1 = f2 where f1, f2 ∈ F (Y )The equation of the first form is
equivalent to the equation v1−v2 = 0, and the equation of the second form
is equivalent to the equation f1f

−1
2 = 1. So, in algebraic geometry of rep-

resentations we can consider the system of equations T = (T1, T2), where
T1 ⊆ XKF (Y ), T2 ⊆ F (Y ), or, briefly, (T1, T2) ⊆ (XKF (Y ), F (Y )). If
we look for solutions of this system of equations in the representation
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(V,G) ∈ REP-K, then the set Hom((XKF (Y ), F (Y )), (V,G)) takes the
role of the affine space. The solution of the system (T1, T2) in (V,G) is
the set

(T1, T2)
′
(V,G) = {(α, β) ∈ Hom((XKF (Y ), F (Y )), (V,G)) | T1 ⊆ ker(α)

and T2 ⊆ ker(β)}.

The algebraic (V,G)-closure of the system (T1, T2) is defined as

(T1, T2)
′′
(V,G)

=

( ⋂

(α,β)∈(T1,T2)′(V,G)

ker(α),
⋂

(α,β)∈(T1,T2)′(V,G)

ker(β)

)
⊆ (XKF (Y ), F (Y )).

This is the maximal system of equations, which has the same solutions as
the system (T1, T2). It is easy to see that the transition ′ defines a kind of
the Galois correspondence (see [10] for details).

Definition 1.1. Let (V1, G1), (V2, G2) ∈ REP-K. We say that (V1, G1)
and (V2, G2) are geometrically equivalent if (T1, T2)

′′
(V1,G1)

=(T1, T2)
′′
(V2,,G2)

,

for every (T1, T2) ⊆ (XKF (Y ), F (Y )) and every X and Y . We use the
notation (V1, G1) ∼ (V2, G2).

The notion of geometric equivalence can be defined in an arbitrary
variety of universal algebras. For more details, see [5].

Here we introduce the notion of identity of a representation.

Consider logical formulas of the form

v = 0, (1.1)

where v ∈ XKF (Y ), or

f = 1, (1.2)

where f ∈ F (Y ).

Definition 1.2. Let (V,G) ∈ REP-K. We say that (V,G) satisfies the

identity (1.1) if, for every (α, β) ∈ Hom((XKF (Y ), F (Y )), (V,G)) the
equality α(v) = 0 holds. We say that (V,G) satisfies the identity (1.2) if,
for every (α, β) ∈ Hom((XKF (Y ), F (Y )), (V,G)) the equality β(f) = 1
holds.
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We will write
(V,G) � (v = 0)

in the first case and
(V,G) � (f = 1)

in the second case.
For example the identity y ◦ (x − 1)n = 0 defines the variety of all

unipotent representations of degree n.

Definition 1.3. The logic formula of the form

(
n∧

i=1

wi) ⇒ w0, (1.3)

where wi can have either form of (1.1) or form of (1.2), 0 6 i 6 n, n ∈ N,
is called quasi-identity.

Definition 1.4. Let (V,G) ∈ REP-K. We say that (V,G) satisfies the
quasi-identity (1.3) if, for every (α, β) ∈ Hom((XKF (Y ), F (Y )), (V,G))
which satisfies the conditions: for 1 6 i 6 n,

1) if wi is (vi = 0) then α(vi) = 0,
2) if wi is (fi = 1) then β(fi) = 1,

we have that
• if w0 is (v0 = 0) then α(v0) = 0, or
• if w0 is (f0 = 1) then β(f0) = 1.

We will write

(V,G) � ((

n∧

i=1

wi) ⇒ w0),

if (V,G) satisfies the quasi-identity (1.3).
By [9, Theorem 2] we have

Proposition 1.1. Let (V1, G1), (V2, G2) ∈ REP-K and (V1, G1) ∼
(V2, G2) then (V1, G1) and (V2, G2) satisfy same quasi-identities.

By [5, Proposition 13] we also have the following.

Proposition 1.2. Let Θ be some variety of universal algebras and
H1, H2 ∈ Θ. Then H1 ∼ H2 if and only if for every finitely generated
subalgebra H0

1 ⊂ H1 there exists an injection H0
1 →֒ HI2

2 and for every
finitely generated subalgebra H0

2 ⊂ H2 there exists an injection H0
2 →֒ HI1

1 ,
where I1, I2 are some sets of indexes and HI1

1 , HI2
2 are the corresponding

Cartesian powers of algebras H1 and H2.
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Corollary 1. If H1, H2 are finitely generated algebras from Θ then
H1 ∼ H2 if and only if there exist injections H1 →֒ HI2

2 and H2 →֒ HI1
1 ,

where I1, I2 are some sets of indexes and HI1
1 , HI2

2 corresponding Cartesian
powers of algebras H1 and H2.

In [10] the action type algebraic geometry of representations was
considered. This geometry was studied in order to avoid the influence of
the algebraic geometry of the acting group on the algebraic geometry of
representation.

In this geometry we consider only system of action type equations, i.e.,
system of equations which have form T ⊆ XKF (Y ). The set of solutions
of this system in the representation (V,G) is the set

T ′
(V,G) = {(α, β) ∈ Hom((XKF (Y ), F (Y )), (V,G)) | T ⊆ ker(α)}.

The action type (V,G)-closure of the system of equations T is a set

T ′▽
(V,G) =

⋂

(α,β)∈T ′

(V,G)

ker(α) ⊆ XKF (Y ). (1.4)

This is the maximal system of action type equations, which has the same
solutions as the system T .

Definition 1.5. Let (V1, G1), (V2, G2) ∈ REP-K. We say that (V1, G1)
and (V2, G2) are action type geometrically equivalent if T ′▽

(V1,G1)
= T ′▽

(V2,G2)
,

for every T ⊆ XKF (Y ) and every X and Y . We use the notation
(V1, G1) ∼at (V2, G2).

By [10, Corollary 2 from Proposition 4.2], if two representations (V1, G1)
and (V2, G2) are geometrically equivalent then they are action type geo-
metrically equivalent.

Example 1. We consider the representation (V,G). Also we can consider
the vector space V1 = V I , which is a Cartesian power of V indexed by the
set I; and the group G1 = GI , which is a Cartesian power of G indexed
by the same set. We can define the action of G1 in V1 component-wise,
i.e.: for every v = (vi)i∈I ∈ V1 and every g = (gi)i∈I ∈ G1 we define
(v ◦ g)i = vi ◦ gi for each coordinate i. It is clear that this action gives us
the representation (V1, G1). By Proposition 1.2 the representations (V,G)
and (V1, G1) are geometrically equivalent. Therefore these representations
are action type geometrically equivalent. The groups G and G1 are also
geometrically equivalent.



278 Geometrical equivalence of group representations

Example 2. We can prove by method of [9, Proposition 4] that the
natural representations of the groups G1 = UTn(Z) and G2 = UTn(Q)
in V = Qn are geometrically equivalent. In this example, we have the
same situation as in the previous one. The representations (V,G1) and
(V,G2) are geometrically equivalent. Therefore these representations are
action type geometrically equivalent. Here also the groups G1 and G2 are
geometrically equivalent.

More examples of the action type geometric equivalence of representa-
tions can be obtained from Proposition 1.3.

If (V,G) ∈ REP-K, for every v ∈ V we can consider the stabilizer of
v, defined as follows

stab(v) = {g ∈ G | v ◦ g = v} ,

and ker(V,G), defined as follows

ker(V,G) =
⋂

v∈V

stab(v).

One can prove that ker(V,G) is a normal subgroup of G. We denote by
G̃ the quotient group G/ ker(V,G) and by σ the natural epimorphism σ :
G → G/ ker(V,G). It also is easy to check that we obtain the representation
(V, G̃) if we define the action of the group G̃ on V as follows

v ◦ σ(g) = v ◦ g,

where v ∈ V , g ∈ G.

Definition 1.6. The representation (V, G̃) is called the faithful image of
the representation (V,G).

By [10, Corollary 4 from Theorem 5.1], we have

Proposition 1.3. Every representation (V,G) ∈ REP-K is action type
geometrically equivalent to its faithful image (V, G̃).

2. The relation between geometrical equivalence and

action type geometrical equivalence of group

representations

In this section we will discuss the following question:
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Problem 1. Let (V1, G1), (V2, G2) ∈ REP-K. Does the geometric equiva-
lence (V1, G1) ∼ (V2, G2) follow from the action type geometric equivalence
(V1, G1) ∼at (V2, G2) and the geometrical equivalence of groups G1 ∼ G2?

The negative answer to this question was mentioned in [10, Remark 5.1],
but no counterexample was presented. This question makes sense, because
in the action type algebraic geometry of representations we consider only
specific systems of equations which have form T ⊆ XKF (Y ) and the
specific form of the algebraic closure (1.4). By this restriction we avoid
the influence of the algebraic geometry of acting groups of representations.
The question that comes naturally is whether we are losing some important
information about representations by this restriction. The negative answer
to the Problem 1 shows that we indeed lose some information.

Theorem 2.1. There exists (V1, G1), (V2, G2) ∈ REP-K, such that
(V1, G1) ∼at (V2, G2), G1 ∼ G2, but (V1, G1) ≁ (V2, G2).

Proof. We consider a vector space V over an arbitrary field K, such that
dimK(V ) = 2. Let {e1, e2} be a basis of V . Also we consider the groups
G1 = 〈a〉 ∼= Z2 and G2 = 〈a〉 × 〈b〉 ∼= Z2 × Z2. In order to define the
representation of a group G on a vector space V it is enough to define
a homomorphism from this group to the group GL(V ) of all invertible
linear operators on vector space V . We define the homomorphism ϕ of
G2 to the group 〈S〉 < GL(V ), where S is the invertible linear operator
on vector space V such that (e1)S = e2, (e2)S = e1. Let us set: ϕ(a) = S,
ϕ(b) = idV . G2 = 〈a〉× 〈b〉, so this homomorphism is defined correctly. G1

is a subgroup of G2, so we also have a homomorphism ϕ|G1
: G1 → 〈S〉.

We can say that generators of the groups G1 and G2 act on elements of
basis of V in this way:

e1 ◦ a = e2, e2 ◦ a = e1,

e1 ◦ b = e1, e2 ◦ b = e2.

Hence, we obtain the representations (V1, G1) and (V2, G2), where
V1 = V2 = V . Note that ker(V,G2) = 〈b〉 ∼= Z2 and G2/ ker(V,G2) ∼=

G1 = 〈a〉 ∼= Z2. Therefore, the faithful image (V, G̃2) of the representation
(V,G2) is isomorphic to the representation (V,G1). So, by Proposition 1.3,
(V,G1) ∼at (V,G2).

Obviously, there are injections G1 →֒ G2 and G2 →֒ G1×G1. Therefore,
by Corollary 1 from Proposition 1.2, G1 ∼ G2.
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Now, we consider the quasi-identity

(x ◦ y − x = 0) ⇒ (y = 1).

We have that

(V,G1) � ((x ◦ y − x = 0) ⇒ (y = 1)),

because ker(V,G1) = {1}, and

(V,G2) 2 ((x ◦ y − x = 0) ⇒ (y = 1)),

because ker(V,G2) 6= {1}. By Proposition 1.1 this means that (V1, G1) ≁
(V2, G2).
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