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Abstract. In this manuscript, we have evaluated the energies

of Smith graphs. In the course of the investigation, we found that

only one Smith graph is hypo-energetic. Moreover, we have also

established the energy bounds for Smith graphs.

1. Introduction

For all standard terminology and notations in graph theory and those
in the theory of spectra of graphs, we refer the reader to Harary [4] and
Cvetkovic et. al. [2], respectively. Particularly, all graphs considered in
this paper are finite, simple, connected and undirected.

One of the current interests in mathematical chemistry, pharmacology,
toxicology and biomedicinal chemistry is the prediction of pharmacological
and biodynamic properties of molecules from their structure. The tacit
assumption underlying this trend of research is that the structure of a

molecule determines its behavior. To identify the certain classes of chemical
compounds, one involves quite sophisticated mathematical techniques,
where Graph Theory has come to play a major role. However, there are
specific classes of graphs, which are isomorphic to unsaturated conjugate
hydrocarbon compounds; for example, the Smith graphs (i.e., a graph
whose at least one eigenvalue is 2) Wm and Cm are isomorphic to unsatu-
rated conjugate hydrocarbon compounds (for detail details see [1]). From
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the survey of the literature, we found the there are six kinds of Smith
graphs, viz., Wm (m > 6), Cm (m > 3), K1,4, H7, H8, and H9.

Let G = (V,E) be a simple graph with vertex set V = {v1, v2, . . . , vm}
and edge set E = {e1, e2, . . . , en}. Let A(G) be the adjacency matrix
of G. The energy E(G) of graph G is the sum of the absolute values of
eigenvalues λ1, λ2, . . . , λm of its adjacency matrix A(G). A graph G is
said to be hypoenergetic if E(G) < m, otherwise G is non-hypoenergetic.
Two non-isomorphic graphs G1 and G2 are said to be equienergetic graphs
if E(G1) = E(G2) and if they have identical spectra, then the graph is
co-spectral equienergetic graphs, otherwise non co-spectral equienergetic
graphs. Throughout the paper by Sm, we mean a Smith graph on m

vertices and n edges. Except K1,4, other Smith graphs are the extended
form of Dynkin graphs [3].

Motivated by the earlier study done in [5] on the energy of a graph,
in this paper, we have focused on the energy of Smith graphs. Moreover,
we have characterized the Smith graphs for which the energy bounds are

attained in the inequality (m− 1) 6 E(Sm) 6 m+ ⌈
n

3
⌉.

2. Main results

In this section, we begin with the following existing results reported in
[3], and will be found useful to derive new results. Later, we will establish
the results on energy bonds of Smith graphs.

Lemma 1. Let G be a graph and S(G) be the spectrum of G. Then

(i) S(Wm) = {2 cos rπ
m−4

| r = 1, 2, . . . ,m− 5} ∪ {−2, 0, 0, 2}.

(ii) S(Cm) = {2 cos 2rπ
m

| r = 0, 1, 2, . . . ,m− 1}.
(iii) S(H7) = {0,±1,±1,±2}.
(iv) S(H8) = {2 cos rπ

30
| r = 1, 7, 11, 13, 17, 19, 23, 29}.

(v) S(H9) = {2 cos rπ
5

| r = 1, 2, 3, 4} ∪ {0,±1,±2}.
(vi) S(K1,4) = {±2, 0, 0, 0}.

In view of Lemma 1, the spectra of Smith graph can be at most
{0, 0, 0, . . . , 2,−2, λ1, λ2, . . . , λi}. In general, the energy bounds on Smith
graphs is given by the following result:

Theorem 1. Let Sm be Smith graph and E(Sm) be its energy. Then

(m− 1) 6 E(Sm) 6 m+ ⌈
n

3
⌉. (1)

Proof. Consider Sm be isomorphic to K1,4, whose spectrum is {−2, 0, 0, 2}.
Clearly, E(K1,4) is equal to 4, which is also equal to (m− 1).
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Now we consider Sm to be Wm (m > 6). In view of Lemma 1, the
spectrum of Wm is

{

2 cos
rπ

m− 4
| r = 1, 2, . . . ,m− 5

}

∪ {−2, 0, 0, 2}.

Thus, the energy of Wm is strictly greater than (m− 1) and strictly less

than to m+ ⌈
n

3
⌉.

For the next case, if we consider Sm to be H7, then (m−1) < E(H7) =

(m + 1) < m + ⌈
n

3
⌉ Let Sm to be H8. In view of Lemma 1, we get

(m− 1) < E(H8) < m+ ⌈
n

3
⌉. If we take Sm to be H9, then again we get

(m− 1) < E(H9) < m+ ⌈
n

3
⌉. Finally, we take Sm to be Cm (m > 3), for

m = 6, E(Cm) attains the upper bound m+ ⌈
n

3
⌉ and for other remaining

values of m (m 6= 6), the energy of Cm lies between (m− 1) and m+ ⌈
n

3
⌉.

From the above analysis, we conclude that

(m− 1) 6 E(Sm) 6 m+ ⌈
n

3
⌉.

At this stage we have the following problem:

Problem 1. Characterize the Smith graphs for which the bounds are
attained in the Inequality (1).

We answer to the above problem in the following theorems:

Theorem 2. Let Sm be Smith graph and E(Sm) be its energy. Then

E(Sm) = (m− 1) if and only if Sm is isomorphic to K1,4.

Proof. Necessity: Let us take E(Sm) = (m− 1) and we have to show that
the only Smith graph will be K1,4. We shall prove it by contradiction.
Let us suppose that Sm is not isomorphic to K1,4. It means that it is
isomorphic to either Wm (m > 7) or Cm (m > 3) or H7 or H8 or H9.
However none of the listed graphs have energy equal to (m− 1). So, our
assumption is wrong. Hence, E(Sm) = (m− 1).

Sufficiency: Let Sm be isomorphic to K1,4. Clearly K1,4 have 5 vertices
and

E(K1,4) = 4 = (m− 1).

Thus, the result follows.
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Theorem 3. Let Sm be Smith graph and E(Sm) be its energy. Then

E(Sm) = m+ ⌈
n

3
⌉ if and only if Sm is isomorphic to C6.

Proof. For the necessity part, let us take E(Sm) = m + ⌈
n

3
⌉ and we

have to show that the only Smith graph will be C6. We shall prove it by
contradiction. Let us suppose that Sm is not isomorphic to C6. It means
that it is isomorphic to other Smith graphs. However, none of the Smith

graph except C6 have energy equal to m + ⌈
n

3
⌉. So, our assumption is

wrong. Hence, E(Sm) = m+ ⌈
n

3
⌉.

For the sufficiency part, let Sm be isomorphic to C6. C6 has the
spectrum {−2,−1,−1, 1, 1, 2}, and hence E(C6) = 8, which is equal to

m+ ⌈
n

3
⌉.

Theorem 4. Let Sm be Smith graph and E(Sm) be its energy. Then

E(Sm) = m if and only if Sm is isomorphic to either C4 or W6.

Proof. Necessity: Let us take E(Sm) = m and we shall show that the
only Smith graph is C4 or W6. Suppose to contrary that Sm is neither
isomorphic to C4 nor W6, it means Sm can be isomorphic to other Smith
graphs. But, the energy of any of the Smith graphs is not equal to m.
So, our assumption is wrong. Hence, Sm must be isomorphic to either C4

or W6.
Sufficiency: Let us assume that Sm be isomorphic to C4. Clearly, C4

have 4 vertices and whose spectrum is {−2, 0, 0, 2}. Therefore, E(C4) = 4.
Now suppose that Sm is isomorphic to W6 with 6 vertices and the spectrum
is {−2,−1, 0, 0, 1, 2}. Thus, E(W6) = 6. Hence, the result follows.

Theorem 5. Let Sm be Smith graph and E(Sm) be its energy. Then

E(Sm) = (m+ 1) if and only if Sm is isomorphic to either C3 or H7.

Proof. The necessity part of the proof can be given by the same argument
as given in proof of Theorem 4.

For the sufficiency part, let us assume that Sm is isomorphic to C3.
Clearly, C3 have 3 vertices and its spectrum is {−1,−1, 2}.

Thus, E(C3) = 4 = m+ 1. Next let us take Sm to be H7, which has 7
vertices and spectrum is {−1,−1,−2, 0, 1, 1, 2}. Therefore, E(H7) = 8 =
(m+ 1). Hence, the result.

Theorem 6. Let S1 and S2 be two Smith graphs having vertices set V (S1)
and V (S2), respectively such that |V (S1)| < |V (S2)|. Then, E(S1) 6

E((S2).
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Proof. In order to show the result, we shall pick up those Smith graphs S1

and S2 for which |V (S1)| < |V (S2)|. First, we consider C3 whose spectrum
is {−1, 1, 2}. Therefore, E(C3) = 4. We need to tackle the following cases:

Case(i) Let S2
∼= C4. In light of Lemma 1, E(C4) = 4. Therefore

E(C3) = E(C4).

Case (ii) Let us take S2
∼= K1,4. Then, clearly E(K1,4) = 4. Therefore

E(C3) = E(K1,4).

Case (iii) Let S2
∼= H7 or H8 or H9. Then, in view of Lemma 1, we

see that energy of each of the listed graphs is greater than E(C3).

Case (iv) Let us assume S2
∼= Wm(m > 6). Due to Lemma 1, we get

E(Wm) > E(C3).

Case (v) When we assume S2
∼= Cm (m > 4). Clearly, the strict

inequality holds between the energy of S1 and S2.

Next if we choose S1 and S2 to be any of the Smith graph namely
K1,4 H7, H8, H9, Wm and Cm in such a way that |V (S1)| < |V (S2)|,
then we can easily prove the result for each case by following the same
technique. Thus, for any two Smith graph having |V (S1)| < |V (S2)|, we
have E(S1) 6 E(S2).

Remark 1. If two Smith graphs have equal number of vertices, then their
energies need not be same. As for instance, consider C5 and K1,4. Both
the graphs have same number of vertices. However, the energy of C5 is
6.47 and the energy of K1,4 is 4, which are not equal.

Remark 2. The minimum energy of Smith graph is 4. Moreover, the
minimum energy is attained by more than one Smith graphs. The graphs
C3, C4 and K1,4 all have the same energy.

Theorem 7. Among all the Smith graphs K1,4 is the only Smith graph

which is hypoenergetic.

Proof. In order to show the result E(K1,4) < m and for all other Smith
graph E(Sm) > m.

If we take Sm to be C6 then by Theorem 3, E(C6) = m+ ⌈
n

3
⌉ > m.

Therefore, C6 is non-hypoenergetic.

Let us assume Sm to be either C4 or W6 then by Theorem 4.,E(C4) = 4
and E(W6) = 6. Hence C4 and W6 are non-hypoenergetic.

Let us take Sm to be either C3 or H7 then by Theorem 5. E(Sm) =
(m+ 1) > m. Therefore, C3 and H7 are non-hypoenergetic.
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If we take Sm be Wm(m > 7), Cm(m 6= 3, 4, 6), H8 and H9. In view

of Theorem 1, (m− 1) < E(Sm) < m+ ⌈
n

3
⌉. Thus all listed Smith graph

is non-hypoenergetic.
Let we take Sm to be K1,4 then by Theorem 2, E(K1,4) = 4. Therefore,

E(Sm) = (m−1) < m. Hence K1,4 is a hypoenergetic. From the foregoing
analysis, we found that the only hypoenergetic graph is K1,4.

Remark 3. The following are non co-spectral equienergetic graphs
• C3, C4 and K1,4,
• C3, C4 and C6,
• C3, C4 and H7.
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