General formal local cohomology modules

Sh. Rezaei

Communicated by V. Lyubashenko

Abstract. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. In this paper, we define and study general formal local cohomology modules. We denote the i-th general formal local cohomology module M with respect to Φ by $\mathcal{F}_\Phi^i(M)$ and we investigate some finiteness and Artinianness properties of general formal local cohomology modules.

Introduction

Throughout this paper, R is a commutative Noetherian ring with identity, \mathfrak{a} is an ideal of R, Φ a system of ideals of R and M is an R-module. Recall that the i-th local cohomology module of M with respect to \mathfrak{a} is denoted by $H_i^\mathfrak{a}(M)$. There are some generalizations of local cohomology theory. The following one is given in [2]. A system of ideals of R is a non-empty set Φ of ideals of R such that, whenever $a, b \in \Phi$, there exists $c \in \Phi$ with $c \subseteq a \cdot b$. For such a system, there is a Φ-torsion functor $\Gamma_\Phi : \mathcal{C}(R) \to \mathcal{C}(R)$ (where $\mathcal{C}(R)$ denotes the category of R-modules and R-homomorphisms) such that for every R-module M,

$$
\Gamma_\Phi(M) := \{ x \in M : ax = 0 \text{ for some } a \text{ in } \Phi \}.
$$

In [2], $\Gamma_\Phi(-)$ is called the "general local cohomology functor with respect to $\Phi". For each $i \geq 0$, the i-th right derived functor of $\Gamma_\Phi(-)$ is denoted by $H_i^\Phi(-)$.

Key words and phrases: formal local cohomology, local cohomology, system of ideals.
For more details about general local cohomology modules see [2], [3].

Let \mathfrak{a} be an ideal of a local ring (R,\mathfrak{m}) and M a finitely generated R-module. For each $i \geq 0$, $\mathcal{F}_\mathfrak{a}^i(M) := \lim_{\leftarrow n} H^i_{\mathfrak{m}}(M/\mathfrak{a}^n M)$ is called the i-th formal local cohomology of M with respect to \mathfrak{a}.

The formal local cohomology modules have been studied by several authors; see for example [1], [4], [6], [9] and [10]. The purpose of this paper is to make a generalization of formal local cohomology theory as above. There are some generalization of formal local cohomology theory (see [7] and [11]). Here, we give a new generalization in terms of a system of ideals.

Let (R,\mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. For each $i \geq 0$, we define i-th general formal local cohomology of M with respect to Φ by

$$\mathcal{F}_\Phi^i(M) := \lim_{\leftarrow \mathfrak{a} \in \Phi} H^i_{\mathfrak{m}}(M/\mathfrak{a}M).$$

Clearly, for an ideal \mathfrak{a} of R, if we put $\Phi := \{\mathfrak{a}^i \mid i \in \mathbb{N}\}$ then the above definition coincides with the original definition $\mathcal{F}_\mathfrak{a}^i(M)$.

In this paper, we get some results on Artinianness, vanishing and other properties of general formal local cohomology modules. Among other things, we will prove that, for any finitely generated R-module M we have:

$$\inf\{i \in \mathbb{N} : \mathcal{F}_\Phi^i(M) \text{ is not representable}\} = \inf\{i \in \mathbb{N} : \mathcal{F}_\Phi^i(M) \text{ is not Artinian}\}$$

and

$$\sup\{i \in \mathbb{N} : \mathcal{F}_\Phi^i(M) \text{ is not representable}\} = \sup\{i \in \mathbb{N} : \mathcal{F}_\Phi^i(M) \text{ is not Artinian}\}.$$

Also, we study the structure of 0-th general formal local cohomology module and we will prove that for a complete local ring (R,\mathfrak{m}),

$$\operatorname{Ass}_R \mathcal{F}_\Phi^0(M) = \{p \in \operatorname{Ass}_R(M) : \dim R/(\mathfrak{a} + p) = 0 \text{ for all } \mathfrak{a} \in \Phi\}.$$
1. Results

Assume that \((R, m)\) is a local ring and that \(M\) is a finitely generated \(R\)-module. We investigate a generalization of formal local cohomology theory in terms of a system of ideals. A system of ideals of \(R\) is a non-empty set \(\Phi\) of ideals of \(R\) such that, whenever \(a, b \in \Phi\), there exists \(c \in \Phi\) with \(c \subseteq ab\). We define the relation \(\leq\) on \(\Phi\) by: \(a \leq b\) if and only if \(b \subseteq a\). It is easy to see that \(\Phi\) is a direct set by this relation. Now, let \(a, b \in \Phi\) such that \(a \leq b\), \(M\) be an \(R\)-module. Then for each integer \(n \geq 0\), the \(R\)-homomorphism \(M/b^n M \to M/a^n M\) induces the \(R\)-homomorphism \(\psi_{a}^{b} : H^{i}_{m}(M/b^n M) \to H^{i}_{m}(M/a^n M)\). Thus \(\{H^{i}_{m}(M/a^n M), \psi\}\) forms an inverse system of \(R\)-modules and \(R\)-homomorphisms over \(\Phi\). Now we are ready to give the following definition.

Definition 1. Let \((R, m)\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. For each \(i \geq 0\);

\[F^i_{\Phi}(M) := \lim_{\leftarrow a \in \Phi} H^{i}_{m}(M/a^n M) \]

is called the \(i\)-th general formal local cohomology of \(M\) with respect to \(\Phi\).

Theorem 1. Let \((R, m)\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. For each \(i \geq 0\);

\[F^i_{\Phi}(M) \cong \lim_{\leftarrow a \in \Phi} F^i_{a}(M). \]

Proof. Let \(a, b \in \Phi\) such that \(a \leq b\). If \(n\) is an integer then the natural homomorphism \(M/b^n M \to M/a^n M\) induces the homomorphism \(H^{i}_{m}(M/b^n M) \to H^{i}_{m}(M/a^n M)\) for any integer \(i \geq 0\). On the other hand, if \(n \leq m\) we have the following commutative diagram:

\[
\begin{array}{c}
H^{i}_{m}(M/b^n M) \quad \longrightarrow \quad H^{i}_{m}(M/a^n M) \\
\uparrow \quad \uparrow \\
H^{i}_{m}(M/b^m M) \quad \longrightarrow \quad H^{i}_{m}(M/a^m M)
\end{array}
\]

From the above diagram we get a homomorphism

\[\lambda^{b}_{a} : \lim_{\leftarrow n} H^{i}_{m}(M/b^n M) \to \lim_{\leftarrow n} H^{i}_{m}(M/b^n M) \]

and so, we have

\[\lambda^{b}_{a} : F^{i}_{b}(M) \to F^{i}_{a}(M). \]

This shows that \(\{F^{i}_{a}(M), \lambda\}_{a \in \Phi}\) is an inverse system of \(R\)-modules and \(R\)-homomorphisms over the directed set \(\Phi\). Thus we may form \(\lim_{\leftarrow a \in \Phi} F^{i}_{a}(M)\).

But, for each integer \(k \in \mathbb{N}\) and any ideal \(a \in \Phi\) there exists an ideal \(b \in \Phi\) such that \(b \subseteq a^k\). Thus, by using a proof similar to the proof
of [12, Lemma 3.8] for each integer \(k \) we have
\[
\lim_{\overset{\leftarrow}{a \in \Phi}} \lim_{m} H_{m}^{i}(M/\alpha M) \simeq \lim_{\overset{\leftarrow}{a \in \Phi}} \lim_{k} H_{m}^{i}(M/\alpha^{k}M)
\]
and so
\[
\lim_{\overset{\leftarrow}{a \in \Phi}} \Phi^{i}(M) \simeq \lim_{\overset{\leftarrow}{a \in \Phi}} \lim_{k} H_{m}^{i}(M/\alpha^{k}M) \simeq \lim_{k} \lim_{\overset{\leftarrow}{a \in \Phi}} H_{m}^{i}(M/\alpha^{k}M)
\]
\[
\simeq \lim_{\overset{\leftarrow}{a \in \Phi}} \lim_{m} H_{m}^{i}(M/\alpha M) \simeq \Phi^{i}(M).
\]

Let \((R, \mathfrak{m})\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. Let \(x\) denotes a system of elements of \(R\) such that \(m = \text{Rad}(xR)\). Let \(\check{C}_{\overline{x}}\) denotes the Čech complex of \(R\) with respect to \(x\). For an \(R\)-module \(M\) and an ideal \(a\), it is easy to see that there exists an inverse system of \(R\)-complexes \(\{\check{C}_{\overline{x}} \otimes M/\alpha M\}_{a \in \Phi}\). Hence, we may form the inverse limit \(\lim_{\overset{\leftarrow}{a \in \Phi}} (\check{C}_{\overline{x}} \otimes M/\alpha M)\). By a proof similar to the proof of [12, proposition 3.2] we obtain the next result.

Theorem 2. With the previous notation, there is an isomorphism
\[
\Phi^{i}(M) \simeq H^{i}(\lim_{\overset{\leftarrow}{a \in \Phi}} (\check{C}_{\overline{x}} \otimes M/\alpha M))
\]
for all \(i \in \mathbb{Z}\).

Proof. It follows by a straightforward modification of the proof of [12, proposition 3.2]. \(\square\)

Theorem 3. Let \((R, \mathfrak{m})\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. Then \(\Phi^{i}(M) = 0\) for all \(i > \dim(M)\).

Proof. Let \(i > \dim(M)\). By [12, Theorem 4.5] \(\Phi^{i}(M) = 0\) for all \(a \in \Phi\). Thus \(\Phi^{i}(M) = \lim_{\overset{\leftarrow}{a \in \Phi}} \Phi^{i}(M) = 0\), as required. \(\square\)

Let \(f : R \to R'\) be a homomorphism of Noetherian commutative rings. Set \(\Phi R' := \{aR' : a \in \Phi\}\). Then \(\Phi R'\) is a system of ideals of \(R'\). Now by using this notation we give the following result:

Theorem 4. Let \((R, \mathfrak{m})\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. Then \(\Phi^{i}(M) \simeq \Phi^{i}R(\hat{M})\) for all \(i \in \mathbb{Z}\).

Proof. By [12, Proposition 3.3], \(\Phi^{i}(M) \simeq \Phi^{i}R(\hat{M})\). Thus \(\lim_{\overset{\leftarrow}{a \in \Phi}} \Phi^{i}(M) \simeq \lim_{\overset{\leftarrow}{a \in \Phi}} \Phi^{i}R(\hat{M})\). Now Theorem 1 completes the proof. \(\square\)
Recall that a dualizing complex D_R for a local ring (R, \mathfrak{m}) is a bounded complex of injective R-modules whose cohomology modules $H^i(D_R)$ are finitely generated R-modules for all $i \in \mathbb{Z}$. For more details see [13]. It is well known that R possesses a dualizing complex if and only if R is the factor ring of a Gorenstein ring. The next result is an expression of the general formal local cohomology in terms of a certain general local cohomology of the dualizing complex.

Theorem 5. Let (R, \mathfrak{m}) be a local ring possessing a dualizing complex D_R, Φ a system of ideals of R and M a finitely generated R-module. Then

$$\mathfrak{F}_\Phi^i(M) \simeq \text{Hom}_R(H^i_{\Phi}(\text{Hom}_R(M, D_R)), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$.

Proof. By Local Duality Theorem there are the isomorphisms

$$H^i_m(M/\alpha M) \simeq \text{Hom}_R(H^{-i}(\text{Hom}_R(M/\alpha M, D_R)), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$ and $\alpha \in \Phi$. Thus we have

$$\lim_{\leftarrow \alpha \in \Phi} H^i_m(M/\alpha M) \simeq \text{Hom}_R(H^{-i}(\lim_{\rightarrow \alpha \in \Phi} \text{Hom}_R(M/\alpha M, D_R)), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$. But $\lim_{\rightarrow \alpha \in \Phi} \text{Hom}_R(M/\alpha M, D_R)) \simeq \Gamma_\Phi(\text{Hom}_R(M, D_R))$ and so

$$\lim_{\leftarrow \alpha \in \Phi} H^i_m(M/\alpha M) \simeq \text{Hom}_R(H^{-i}(\Gamma_\Phi(\text{Hom}_R(M, D_R)), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$. Therefore

$$\mathfrak{F}_\Phi^i(M) \simeq \text{Hom}_R(H^i_{\Phi}(\text{Hom}_R(M, D_R)), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$, as required. \qed

Theorem 6. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ a short exact sequence of finitely generated R-modules. Then there is a long exact sequence

$$\cdots \rightarrow \mathfrak{F}_\Phi^i(A) \rightarrow \mathfrak{F}_\Phi^i(B) \rightarrow \mathfrak{F}_\Phi^i(C) \rightarrow \mathfrak{F}_\Phi^{i+1}(A) \rightarrow \cdots.$$

Proof. It follows by an argument similar to the proof of [12, Theorem 3.11]. \qed
Theorem 7. Let \((R, \mathfrak{m})\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. If \(w := \max \{\dim (M/aM) | a \in \Phi\}\) is finite then \(\mathfrak{f}_\Phi^w(M) \neq 0\) and \(\mathfrak{f}_\Phi^i(M) = 0\) for all \(i > w\).

Proof. Let \(i > w\). Since \(i > \dim (M/\mathfrak{a}M)\) for all \(\mathfrak{a} \in \Phi\), [12, Theorem 4.5] implies that \(\mathfrak{f}_\mathfrak{a}^i(M) = 0\) for all \(\mathfrak{a} \in \Phi\). Thus \(\mathfrak{f}_\Phi^i(M) = \lim_{\mathfrak{a} \to \Phi} \mathfrak{f}_\mathfrak{a}^i(M) = 0\). On the other hand, since \(w\) is finite there exists an ideal \(\mathfrak{b} \in \Phi\) such that \(\dim (M/\mathfrak{b}M) = w\). Now, put \(\Psi = \{\mathfrak{c} \in \Phi \mid \mathfrak{c} \subseteq \mathfrak{b}\}\). Then \(\Psi\) is cofinal in \(\Phi\). Thus we may assume that \(\mathfrak{a} \subseteq \mathfrak{b}\) for all \(\mathfrak{a} \in \Phi\). Let \(\mathfrak{c} \in \Phi\). It is easy to see that \(\dim (\mathfrak{b}M/\mathfrak{c}M) \leq \dim M/\mathfrak{c}M \leq w\) and so the exact sequence \(0 \to \mathfrak{b}M/\mathfrak{c}M \to M/\mathfrak{c}M \to M/\mathfrak{b}M \to 0\) induces \(H^w_m(M/\mathfrak{c}M) \to H^w_m(M/\mathfrak{b}M) \to 0\). Now for each \(\mathfrak{d} \in \Phi\) with \(\mathfrak{d} \leq \mathfrak{c}\), i.e., \(\mathfrak{c} \subseteq \mathfrak{d}\), we have the following commutative diagram:

\[
\begin{array}{ccc}
H^w_m(M/\mathfrak{d}M) & \xrightarrow{f_\mathfrak{d}} & H^w_m(M/\mathfrak{b}M) \\
\uparrow & & \uparrow \\
H^w_m(M/\mathfrak{c}M) & \xrightarrow{f_\mathfrak{c}} & H^w_m(M/\mathfrak{b}M) \to 0
\end{array}
\]

The family of \(R\)-modules \(\{\ker f_\mathfrak{c}\}_{\mathfrak{c} \in \Phi}\), as a family of Artinian \(R\)-modules, satisfies the Mittag-Leffler condition. Hence the above diagram induces an exact sequence \(\lim_{\mathfrak{c} \to \Phi} H^w_m(M/\mathfrak{c}M) \to H^w_m(M/\mathfrak{b}M) \to 0\). By Theorem 1 we get \(\mathfrak{f}_\Phi^w(M) \to H^w_m(M/\mathfrak{b}M) \to 0\). By Grothendieck’s non-vanishing Theorem \(H^w_m(M/\mathfrak{b}M) \neq 0\). Therefore \(\mathfrak{f}_\Phi^w(M) \neq 0\), as required.

Theorem 8. Let \((R, \mathfrak{m})\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module of dimension \(d\). Then \(\mathfrak{f}_\Phi^d(M)\) is homomorphic image of \(H^d_m(M)\), and so \(\mathfrak{f}_\Phi^d(M)\) is Artinian.

Proof. Let \(\mathfrak{a} \in \Phi\). We have \(\dim \mathfrak{a}M \leq \dim M\), so that, by the Grothendieck’s Vanishing Theorem, the short exact sequence

\[
0 \to \mathfrak{a}M \to M \to M/\mathfrak{a}M \to 0
\]

induces an exact sequence

\[
H^d_m(M) \xrightarrow{\phi_\mathfrak{a}} H^d_m(M/\mathfrak{a}M) \to 0.
\]

The family of \(R\)-modules \(\{\ker \phi_\mathfrak{a}\}_{\mathfrak{a} \in \Phi}\), as a family of Artinian \(R\)-modules, satisfies the Mittag-Leffler condition. Therefore, the above exact sequence induces an exact sequence \(\lim_{\mathfrak{a} \to \Phi} H^d_m(M) \to \lim_{\mathfrak{a} \to \Phi} H^d_m(M/\mathfrak{a}M) \to 0\) and
so we have the exact sequence $H^d_m(M) \rightarrow \mathcal{F}^d_{\Phi}(M) \rightarrow 0$, and the proof is complete.

In the next result, we investigate the 0-th general formal local cohomology module. Let \mathfrak{a} be an ideal of R and M a finitely generated R-module. For a submodule N of M we denote the ultimate constant value of the increasing sequence

$$N \subseteq N :_M \mathfrak{a} \subseteq N :_M \mathfrak{a}^2 \subseteq \cdots \subseteq N :_M \mathfrak{a}^i \subseteq \cdots$$

by $N :_M (\mathfrak{a})$. Let $0 = \bigcap_{j=1}^n Q_j$ denotes a reduced primary decomposition of the zero submodule 0 in M and Q_j is a p_j-primary submodule of M, for all $j = 1, \cdots, n$. Put $T(\mathfrak{a}, M) := \{ \mathfrak{p} \in \text{Ass}_R M : \dim R/(\mathfrak{a} + \mathfrak{p}) > 0 \}$ and $u_M(\mathfrak{a}) := \bigcap_{\mathfrak{p} \in T(\mathfrak{a}, M)} Q_i$ also $T(\Phi, M) := \{ \mathfrak{p} \in \text{Ass}_R M : \text{there exists } \mathfrak{a} \in \Phi \text{ such that } \dim R/(\mathfrak{a} + \mathfrak{p}) > 0 \}$ and $u_M(\Phi) := \bigcap_{\mathfrak{p} \in T(\Phi, M)} Q_i$. With these notations we have:

Theorem 9. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Then

i) $\bigcap_{\mathfrak{a} \in \Phi} u_M(\mathfrak{a}) = u_M(\Phi)$,

ii) $u_M(\Phi) = \bigcap_{\mathfrak{a} \in \Phi} (\mathfrak{a}M :_M (\mathfrak{m}))$,

iii) $\mathcal{F}^0_{\Phi}(M) \simeq u_M(\hat{\Phi} \hat{R})$.

Proof. i) It is easy to see that

$$\bigcap_{\mathfrak{a} \in \Phi} u_M(\mathfrak{a}) = \bigcap_{\mathfrak{a} \in \Phi} \bigcap_{\mathfrak{p} \in T(\mathfrak{a}, M)} Q_i = \bigcap_{\mathfrak{p} \in T(\Phi, M)} Q_i = u_M(\Phi).$$

ii) By [12, Lemma 4.1(a)], $u_M(\mathfrak{a}) = \bigcap_{n \geq 1} (\mathfrak{a}^nM :_M (\mathfrak{m}))$. Thus

$$u_M(\Phi) = \bigcap_{\mathfrak{a} \in \Phi} u_M(\mathfrak{a}) = \bigcap_{\mathfrak{a} \in \Phi} \bigcap_{n \geq 1} (\mathfrak{a}^nM :_M (\mathfrak{m})) \subseteq \bigcap_{\mathfrak{a} \in \Phi} (\mathfrak{a}M :_M (\mathfrak{m})).$$

Conversely, let $x \in \bigcap_{\mathfrak{a} \in \Phi} (\mathfrak{a}M :_M (\mathfrak{m}))$. Let $\mathfrak{a} \in \Phi$ be an ideal. Then there exists an integer u such that $xm^u \subseteq \mathfrak{a}M$. For any integer k, there exists an ideal $\mathfrak{b} \in \Phi$ such that $\mathfrak{b} \subseteq \mathfrak{a}^k$. Since $x \in (\mathfrak{b}M :_M (\mathfrak{m}))$ there exists an integer t such that $xm^t \subseteq \mathfrak{b}M \subseteq \mathfrak{a}^kM$. Hence $x \in (\mathfrak{a}^kM :_M (\mathfrak{m}))$ and so $x \in \bigcap_{n \geq 1} (\mathfrak{a}^nM :_M (\mathfrak{m}))$ for each ideal $\mathfrak{a} \in \Phi$. Therefore $x \in \bigcap_{\mathfrak{a} \in \Phi} \bigcap_{n \geq 1} (\mathfrak{a}^nM :_M (\mathfrak{m})) = u_M(\Phi)$.

iii) By Theorem 4 we may assume that $M = \hat{M}$ and $R = \hat{R}$. Let \mathfrak{b} be a proper ideal of R such that $\mathfrak{b} \in \Phi$. It is easy to see that $\bigcap_{\mathfrak{a} \in \Phi} \mathfrak{a}M \subseteq \bigcap_{n \geq 0} \mathfrak{b}^nM$. Thus Krull’s intersection theorem implies that $\bigcap_{\mathfrak{a} \in \Phi} \mathfrak{a}M = 0$. Now the proof is a straightforward modification of the proof of [12, Lemma 4.1(c)].
Corollary 1. Let \((R, \mathfrak{m})\) be a complete local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. Then

\[\text{Ass}_R \mathfrak{S}_\Phi^0(M) = \{p \in \text{Ass}_R M : \dim R/(a + p) = 0 \text{ for all } a \in \Phi\}.\]

Proof. By [12, Lemma 2.7] \(\text{Ass}_R u_M(\Phi) = \text{Ass}_R M \setminus T(\Phi, M)\). But

\[\text{Ass}_R M \setminus T(\Phi, M) = \{p \in \text{Ass}_R M : \dim R/(a + p) = 0 \text{ for all } a \in \Phi\}\]

and \(\mathfrak{S}_\Phi^0(M) = u_M(\Phi)\) by Theorem 9(iii) and this finishes the proof.

Corollary 2. Let \((R, \mathfrak{m})\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. Then \(\mathfrak{S}_\Phi^0(M) = 0\) if and only if \(\text{Ass}_R \hat{M} = T(\Phi \hat{R}, \hat{M})\).

Proof. By Theorem 3(iii) \(\mathfrak{S}_\Phi^0(M) = 0\) if and only if \(u_\hat{M}(\Phi \hat{R}) = 0\). But

\[\text{Ass}_R u_M(\Phi \hat{R}) = \text{Ass}_R \hat{M} \setminus T(\Phi \hat{R}, \hat{M})\]

by [12, Lemma 2.7]. Thus \(u_\hat{M}(\Phi \hat{R}) = 0\) if and only if \(\text{Ass}_R \hat{M} = T(\Phi \hat{R}, \hat{M})\) and the proof is complete.

The next theorem gives a result for representable general formal local cohomology modules.

Theorem 10. Let \((R, \mathfrak{m})\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. Let \(i\) be an integer such that \(\mathfrak{S}_\Phi^i(M)\) is nonzero and representable. Then there exists an ideal \(a \subseteq p\) for all \(p \in \text{Att}_R \mathfrak{S}_\Phi^i(M)\).

Proof. Let \(\mathfrak{S}_\Phi^i(M) = S_1 + S_2 + \ldots + S_n\) be a minimal secondary representation of \(\mathfrak{S}_\Phi^i(M)\) where \(S_j\) is non-zero and \(p_j\)-Secondary for \(j = 1, 2, \ldots, n\).

Let \(1 \leq j \leq n\). Since \(S_j \neq 0\), there exists \(0 \neq a = (a_i) \in S_j \subseteq \mathfrak{S}_\Phi^i(M) = \lim \longrightarrow_{a \in \Phi} H^i_m(M/\mathfrak{m}M)\).

Let \(a_k\) be the first nonzero component of \(a\). Thus there exists an ideal \(a_k \in \Phi\) such that \(a_k \in H^i_m(M/a_kM)\). We claim \(a_k \subseteq p_j\). If not, then there exists \(u \in a_k \setminus p_j\). Since \(u \notin p_j\), we have \(uS_j = S_j\). Thus \(a \in S_j = uS_j \subseteq u\mathfrak{S}_\Phi^i(M)\) But \(uH^i_m(M/a_kM) = 0\) and so the \(k\)-th component of each element of \(u\mathfrak{S}_\Phi^i(M)\) is zero. But \(a \in u\mathfrak{S}_\Phi^i(M)\) and the \(k\)-th component of \(a\) is not zero. It follows that \(a_k \subseteq p_j\) where \(a_k \in \Phi\). Hence, we proved that for each integer \(j \in \{1, \ldots, n\}\) there exists an ideal \(b_j \in \Phi\) such that \(b_j \subseteq p_j\). Since \(\Phi\) is a system of ideals there exists an ideal \(a \in \Phi\) such that \(a \subseteq b_1b_2\cdots b_n \subseteq p_j\) for all \(j \in \{1, \ldots, n\}\), this completes the proof.

\(\Box\)
Corollary 3. Let \((R, \mathfrak{m})\) be a local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. Let \(i\) be an integer such that \(\mathfrak{F}_\Phi^i(M)\) is nonzero and representable. Then there exists an ideal \(a \in \Phi\) such that \(a\mathfrak{F}_\Phi^i(M) = 0\).

Proof. By \([5, 7.2.11]\) \(\bigcap_{p \in \text{Att } \mathfrak{F}_\Phi^i(M)} \mathfrak{p} = \sqrt{(0 : \mathfrak{F}_\Phi^i(M))}\). Thus by Theorem 10 we conclude that there exists an ideal \(b\) in \(\Phi\) and an integer \(n\) such that, \(b^n \mathfrak{F}_\Phi^i(M) = 0\). Since \(\Phi\) is a system of ideals, there exists an ideal \(a\) in \(\Phi\) such that \(a \subseteq b^n\). Therefore \(a\mathfrak{F}_\Phi^i(M) = 0\), as desired. \(\square\)

Let \(R\) be a ring, \(\Phi\) a system of ideals of \(R\) and \(M\) an \(R\)-module. Recall that

\[\Gamma_\Phi(M) := \{ x \in M : ax = 0 \text{ for some } a \in \Phi \}. \]

We say that \(M\) is \(\Phi\)-torsion if \(M = \Gamma_\Phi(M)\) and that \(M\) is \(\Phi\)-torsion-free if \(\Gamma_\Phi(M) = 0\). For a finitely generated \(R\)-module \(M\), it is easy to see that \(M\) is \(\Phi\)-torsion-free if and only if, for each \(a \in \Phi\), \(a\) contains a non-zero-divisor on \(M\).

In order to state the next result we recall the concept of Matlis dual.

Let \(M\) be an \(R\)-module and \(E(R/\mathfrak{m})\) the injective envelope of \(R/\mathfrak{m}\). The module \(D(M) = \text{Hom}_R(M, E(R/\mathfrak{m}))\) is called the Matlis dual of \(M\).

Lemma 1. Let \((R, \mathfrak{m})\) be a complete local ring, \(\Phi\) a system of ideals of \(R\) and \(M\) a finitely generated \(R\)-module. Then

(i) \(M\) is \(\Phi\)-adically complete (i.e \(M \simeq \lim_{\leftarrow a \in \Phi} (M/aM)\)),

(ii) \(\mathfrak{F}_\Phi^0(M)\) is finitely generated \(R\)-module.

Proof. i) Since \(M\) is finitely generated, \(D(M)\) is Artinian and so \(D(M)\) is \(\mathfrak{m}\)-torsion. For each \(i \in \mathbb{N}\), there exists \(a \in \Phi\) such that \(a \subseteq \mathfrak{m}^i\). Hence \(D(M)\) is \(\Phi\)-torsion and we have

\[D(M) = \bigcup_{a \in \Phi} (0 :_{D(M)} a) \simeq \lim_{\leftarrow a \in \Phi} \text{Hom}_R(R/a, D(M)). \]

Thus

\[M \simeq D D(M) \simeq D(\lim_{\leftarrow a \in \Phi} \text{Hom}_R(R/a, D(M))) \simeq \lim_{\leftarrow a \in \Phi} R/a \otimes R D D(M) \simeq \lim_{\leftarrow a \in \Phi} M/aM. \]

ii) By definition \(\mathfrak{F}_\Phi^0(M) = \lim_{\leftarrow a \in \Phi} H^0_m(M/aM)\). Since \(H^0_m(M/aM) \subseteq M/aM\) for all \(a \in \Phi\), by (i) we get

\[\mathfrak{F}_\Phi^0(M) \subseteq \lim_{\leftarrow a \in \Phi} (M/aM) \simeq M. \]
Since M is finitely generated we conclude that $\mathfrak{F}_\Phi^0(M)$ is finitely generated, as required. \square

Lemma 2. Let Φ be a system of ideals of R and $L \xrightarrow{f} M \xrightarrow{g} N$ be a exact sequence of R-modules and R-homomorphisms. Suppose that there exist two ideal a and b in Φ such that $a L = 0$ and $b N = 0$. Then there exists an ideal $c \in \Phi$ such that $c M = 0$.

Proof. Since $b g(M) = 0$, we have $b M \subseteq \ker g = \text{im} f$. But $a L = 0$, and so $a(\text{im} f) = 0$. Thus $a b M = 0$. But, there exists an ideal $c \in \Phi$ such that $c \subseteq a b$. Therefore $c M = 0$ and the proof is complete. \square

For the following proof we need the next Lemma.

Lemma 3. Let (R, m) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Let M be an Φ-torsion R-module. Then $\mathfrak{F}_\Phi^i(M) \cong H_m^i(M)$. Therefore $\mathfrak{F}_\Phi^i(M)$ is Artinian for all $i \geq 0$.

Proof. It is easy to see that, since M is finitely generated and Φ-torsion there exists an ideal a in Φ such that $a M = 0$. We put $\Psi = \{ b \in \Phi \mid b \subseteq a \}$. Then Ψ is cofinal in Φ. Thus we may assume that $b \subseteq a$ for all $b \in \Phi$ and so $b M = 0$ for all $b \in \Phi$. Hence

$$\mathfrak{F}_\Phi^i(M) \cong \lim_{\leftarrow b \in \Phi} H_m^i(M/b M) \cong \lim_{\leftarrow b \in \Phi} H_m^i(M) \cong H_m^i(M)$$

for all $i \geq 0$, as desired. \square

Theorem 11. Let (R, m) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Let $t \in \mathbb{N}$. Then the following statements are equivalent:

(i) $\mathfrak{F}_\Phi^i(M)$ is Artinian for all $i < t$,

(ii) $\mathfrak{F}_\Phi^i(M)$ is representable for all $i < t$,

(iii) there exists an ideal a in Φ such that, $a\mathfrak{F}_\Phi^i(M) = 0$ for all $i < t$.

Proof. (i) \Rightarrow (ii): Any Artinian R-module is representable.

(ii) \Rightarrow (iii): By Corollary 3.

(iii) \Rightarrow (i): We use induction on t. Since $\mathfrak{F}_\Phi^i(M) \cong \mathfrak{F}_\Phi^i(\hat{M})$ by Theorem 4, we may assume that R is complete. Let $t = 1$. By Lemma 1(ii), $\mathfrak{F}_\Phi^0(M)$ is a finitely generated R-module. By assumption $\text{Supp}_R(\mathfrak{F}_\Phi^0(M)) \subseteq V(a)$ and so by Corollary 1 we conclude that $\text{Supp}_R(\mathfrak{F}_\Phi^0(M)) \subseteq V(m)$. Thus $\mathfrak{F}_\Phi^0(M)$ is Artinian.
Now suppose, inductively, that \(t > 0 \) and \(\mathfrak{F}_a^{t-1}(M) \) is Artinian for all \(i \leq t - 2 \). We show that \(\mathfrak{F}_a^{t-1}(M) \) is Artinian. By Theorem 6, the short exact sequence

\[
0 \rightarrow \Gamma \Phi(M) \rightarrow M \rightarrow M/\Gamma \Phi(M) \rightarrow 0
\]

implies the long exact sequence

\[
\cdots \rightarrow \mathfrak{F}^{i-1}_a(\Gamma \Phi(M)) \rightarrow \mathfrak{F}^{i-1}_a(M) \rightarrow \mathfrak{F}^{i-1}_a(M/\Gamma \Phi(M)) \rightarrow \mathfrak{F}^i_a(\Gamma \Phi(M)) \rightarrow \cdots.
\]

But \(\mathfrak{F}^i_a(\Gamma \Phi(M)) \) is Artinian for all \(i \) by Lemma 3. Thus by using the above long exact sequence it follows that \(\mathfrak{F}_a^{t}(M) \) is Artinian if and only if \(\mathfrak{F}^i_a(M/\Gamma \Phi(M)) \) is Artinian for all \(i \). On the other hand, since \(\Phi \) is a system of ideals, by Corollary 3 we can find an ideal \(b \in \Phi \) such that \(b\mathfrak{F}^i_a(\Gamma \Phi(M)) = 0 \) for all \(i \leq t \). By assumption and lemma 2 we conclude that there exists an ideal \(c \in \Phi \) such that \(c\mathfrak{F}^i_a(M/\Gamma \Phi(M)) = 0 \) for all \(i < t \). Therefore we can and do assume that \(M \) is an \(\Phi \)-torsion-free \(R \)-module.

Since \(a \in \Phi \), it is easy to see that \(a \) contains an element \(r \) which is a non-zerodivisor on \(M \). The short exact sequence

\[
0 \rightarrow M \rightarrow M \rightarrow M/rM \rightarrow 0
\]

induces a long exact sequence

\[
0 \rightarrow \mathfrak{F}^0_a(M) \rightarrow \mathfrak{F}^0_a(M) \rightarrow \cdots \rightarrow \mathfrak{F}^i_a(M) \rightarrow \mathfrak{F}^i_a(M) \rightarrow \mathfrak{F}^i_a(M/rM) \rightarrow \cdots.
\]

By assumption and the above long exact sequence and lemma 2, it follows that there exists an ideal \(b \in \Phi \) such that \(b\mathfrak{F}^i_a(M/rM) = 0 \) for all \(i < t - 1 \). Thus, by the inductive hypothesis, we conclude that \(\mathfrak{F}^{t-2}_a(M/rM) \) is Artinian. Since \(r\mathfrak{F}^{t-1}_a(M) \subseteq a\mathfrak{F}^{t-1}_a(M) = 0 \), the above long exact sequence implies that \(\mathfrak{F}^{t-2}_a(M/rM) \rightarrow \mathfrak{F}^{t-1}_a(M) \rightarrow 0 \) is exact. But \(\mathfrak{F}^{t-2}_a(M/rM) \) is Artinian and so \(\mathfrak{F}^{t-1}_a(M) \) is Artinian, as required.

\textbf{Theorem 12.} Let \((R, \mathfrak{m})\) be a local ring, \(\Phi \) a system of ideals of \(R \) and \(M \) a finitely generated \(R \)-module. Let \(t \in \mathbb{N} \). Then the following statements are equivalent:

\begin{itemize}
 \item [(i)] \(\mathfrak{F}_a^{t}(M) \) is Artinian for all \(i > t \),
 \item [(ii)] \(\mathfrak{F}_a^{t}(M) \) is representable for all \(i > t \),
 \item [(iii)] there exists an ideal \(a \) in \(\Phi \) such that, \(a\mathfrak{F}_a^{t}(M) = 0 \) for all \(i > t \).
\end{itemize}
Proof. (i) \(\Rightarrow \) (ii): It is clear.
(ii) \(\Rightarrow \) (iii): By Corollary 3.
(iii) \(\Rightarrow \) (i): The proof can be easily obtained by extending the proof of [4, Theorem 2.9] *mutatis mutandis* to this general case. \(\square \)

Let \(\mathfrak{a} \) be an ideal of a local ring \((R, \mathfrak{m}) \) and \(M \) a finitely generated \(R \)-module of dimension \(d \). By Theorem 8 \(\mathfrak{g}^d_\Phi(M) \) is Artinian. In the next result we determine the set \(\text{Att}_R \mathfrak{g}^d_\Phi(M) \).

Theorem 13. Let \((R, \mathfrak{m}) \) be a local ring, \(\Phi \) a system of ideals of \(R \) and \(M \) a finitely generated \(R \)-module of dimension \(d \). Then there exists an ideal \(\mathfrak{a} \) in \(\Phi \) such that \(\text{Att}_R \mathfrak{g}^d_\Phi(M) = \text{Assh}_R(M) \cap \text{V}(\mathfrak{a}) \).

Proof. Let \(w := \max \{ \dim(M/\mathfrak{a}M) : \mathfrak{a} \in \Phi \} \). If \(w < d \) then \(\mathfrak{g}^d_\Phi(M) = 0 \) by Theorem 7 and so there is nothing to prove. Thus we suppose that \(w = d \).

By Theorem 10 there exists an ideal \(\mathfrak{a} \in \Phi \) such that \(\text{Att}_R \mathfrak{g}^d_\Phi(M) \subseteq \text{V}(\mathfrak{a}) \). But by Theorem 8 and [5, 7.3.2] \(\text{Att}_R \mathfrak{g}^d_\Phi(M) \subseteq \text{Att}_R H^d_{\mathfrak{m}}(M) = \text{Assh}_R(M) \). Thus \(\text{Att}_R \mathfrak{g}^d_\Phi(M) \subseteq \text{Assh}_R(M) \cap \text{V}(\mathfrak{a}) \).

Conversely, assume that \(\mathfrak{a} \in \Phi \). We show that \(\text{Assh}_R(M) \cap \text{V}(\mathfrak{a}) \subseteq \text{Att}_R \mathfrak{g}^d_\Phi(M) \). Let \(\mathfrak{p} \in \text{Assh}_R(M) \cap \text{V}(\mathfrak{a}) \). By [8, 6.8], there exists a \(\mathfrak{p} \)-primary submodule \(N \) of \(M \) such that \(\text{Ass}(M/N) = \{ \mathfrak{p} \} \) and \(\mathfrak{p} = \sqrt{(0 : (M/N))} \). Thus \(\dim M/N = \dim R/\mathfrak{p} = \dim M \). Since \(\mathfrak{a} \subseteq \mathfrak{p} \) we have \(\sqrt{\mathfrak{a}} \subseteq \sqrt{(0 : (M/N))} \).

Thus we can see that \(\text{Supp}_R((M/N)/\mathfrak{a}(M/N)) = \text{Supp}_R(M/N) \) and \(\dim ((M/N)/\mathfrak{a}(M/N)) = \dim (M/N) \). Now by Theorem 7, \(\mathfrak{g}^d_\Phi(M/N) \neq 0 \). Hence

\[\phi \neq \text{Att}_R \mathfrak{g}^d_\Phi(M/N) \subseteq \text{Att}_R H^d_{\mathfrak{m}}(M/N) \subseteq \text{Ass}(M/N) = \{ \mathfrak{p} \} \]

Therefore we have \(\text{Att}_R \mathfrak{g}^d_\Phi(M/N) = \{ \mathfrak{p} \} \). But the exact sequence

\[0 \to N \to M \to M/N \to 0 \]

induces \(\mathfrak{g}^d_\Phi(M) \to \mathfrak{g}^d_\Phi(M/N) \to 0 \). Thus \(\{ \mathfrak{p} \} = \text{Att}_R \mathfrak{g}^d_\Phi(M/N) \subseteq \text{Att}_R \mathfrak{g}^d_\Phi(M) \). Therefore \(\mathfrak{p} \in \text{Att}_R \mathfrak{g}^d_\Phi(M) \). This completes the proof. \(\square \)

Corollary 4. Let \((R, \mathfrak{m}) \) be a local ring, \(\Phi \) a system of ideals of \(R \) and \(M \) and \(N \) be two finitely generated \(R \)-modules of dimension \(d \) such that \(\text{Supp}_R M = \text{Supp}_R N \). Then \(\text{Att}_R \mathfrak{g}^d_\Phi(M) = \text{Att}_R \mathfrak{g}^d_\Phi(N) \).
Proof. By Theorem 13 there exist two ideals \(a \) and \(b \) in \(\Phi \) such that \(\text{Att}_R \mathfrak{S}_d^d(M) = \text{Assh}_R M \cap V(a) \) and \(\text{Att}_R \mathfrak{S}_d^d(N) = \text{Assh}_R N \cap V(b) \). But by assumption we have \(\text{Assh}_R M = \text{Assh}_R N \). On the other hand, by using the proof of Theorem 13,

\[
\text{Att}_R \mathfrak{S}_d^d(M) = \text{Assh}_R M \cap V(a) = \text{Assh}_R N \cap V(a) \subseteq \text{Att}_R \mathfrak{S}_d^d(N).
\]

Similarly \(\text{Att}_R \mathfrak{S}_d^d(N) \subseteq \text{Att}_R \mathfrak{S}_d^d(M) \). This completes the proof. \(\square \)

Acknowledgement

The author thanks the referee for his careful reading and useful suggestions on this paper.

References

Contact Information

Shahram Rezaei
Payame Noor University, Tehran, Iran

E-Mail(s): Sha.Rezaei@gmail.com

Received by the editors: 23.02.2018
and in final form 28.08.2020.