General formal local cohomology modules

Sh. Rezaei

Communicated by V. Lyubashenko

ABSTRACT. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. In this paper, we define and study general formal local cohomology modules. We denote the *i*-th general formal local cohomology module M with respect to Φ by $\mathfrak{F}^i_{\Phi}(M)$ and we investigate some finiteness and Artinianness properties of general formal local cohomology modules.

Introduction

Throughout this paper, R is a commutative Noetherian ring with identity, \mathfrak{a} is an ideal of R, Φ a system of ideals of R and M is an Rmodule. Recall that the *i*-th local cohomology module of M with respect to \mathfrak{a} is denoted by $\mathrm{H}^{i}_{\mathfrak{a}}(M)$. There are some generalizations of local cohomology theory. The following one is given in [2]. A system of ideals of R is a non-empty set Φ of ideals of R such that, whenever $\mathfrak{a}, \mathfrak{b} \in \Phi$, there exists $\mathfrak{c} \in \Phi$ with $\mathfrak{c} \subseteq \mathfrak{ab}$. For such a system, there is a Φ -torsion functor $\Gamma_{\Phi}: \mathcal{C}(R) \to \mathcal{C}(R)$ (where $\mathcal{C}(R)$ denotes the category of R-modules and R-homomorphisms) such that for every R-module M,

 $\Gamma_{\Phi}(M) := \{ x \in M : \mathfrak{a}x = 0 \text{ for some } \mathfrak{a} \text{ in } \Phi \}.$

In [2], $\Gamma_{\Phi}(-)$ is called the "general local cohomology functor with respect to Φ ". For each $i \ge 0$, the *i*-th right derived functor of $\Gamma_{\Phi}(-)$ is denoted by $\mathrm{H}^{i}_{\Phi}(-)$.

²⁰¹⁰ MSC: 13D45, 13C14.

Key words and phrases: formal local cohomology, local cohomology, system of ideals.

For more details about general local cohomology modules see [2], [3].

Let \mathfrak{a} be an ideal of a local ring (R, \mathfrak{m}) and M a finitely generated R-module. For each $i \ge 0$; $\mathfrak{F}^i_{\mathfrak{a}}(M) := \varprojlim_n \mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{a}^n M)$ is called the i-th formal local cohomology of M with respect to \mathfrak{a} .

The formal local cohomology modules have been studied by several authors; see for example [1], [4], [6], [9] and [10]. The purpose of this paper is to make a generalization of formal local cohomology theory as above. There are some generalization of formal local cohomology theory (see [7] and [11]). Here, we give a new generalization in terms of a system of ideals.

Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. For each $i \ge 0$; we define i-th general formal local cohomology of M with respect to Φ by

$$\mathfrak{F}^i_{\Phi}(M) := \varprojlim_{\mathfrak{a} \in \Phi} \mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{a} M).$$

Clearly, for an ideal \mathfrak{a} of R, if we put $\Phi := {\mathfrak{a}^i | i \in \mathbb{N}}$ then the above definition coincides with the original definition $\mathfrak{F}^i_{\mathfrak{a}}(M)$.

In this paper, we get some results on Artinianness, vanishing and other properties of general formal local cohomology modules. Among other things, we will prove that, for any finitely generated R-module M we have:

$$\inf\{i \in \mathbb{N} : \mathfrak{F}^{i}_{\Phi}(M) \text{ is not representable}\} \\= \inf\{i \in \mathbb{N} : \mathfrak{F}^{i}_{\Phi}(M) \text{ is not Artinian}\}$$

and

$$\sup\{i \in \mathbb{N} : \mathfrak{F}^{i}_{\Phi}(M) \text{ is not representable}\} \\ = \sup\{i \in \mathbb{N} : \mathfrak{F}^{i}_{\Phi}(M) \text{ is not Artinian}\}.$$

Also, we study the structure of 0-th general formal local cohomology module and we will prove that for a complete local ring (R, \mathfrak{m}) ,

$$\operatorname{Ass}_R \mathfrak{F}^0_{\Phi}(M) = \{ \mathfrak{p} \in \operatorname{Ass}_R(M) : \dim R/(\mathfrak{a} + \mathfrak{p}) = 0 \text{ for all } \mathfrak{a} \in \Phi \}.$$

Recall that, $\operatorname{Assh}_R(M)$ denotes the set $\{\mathfrak{p} \in \operatorname{Ass} M : \dim R/\mathfrak{p} = \dim M\}$. We show that $\mathfrak{F}_{\Phi}^{\dim M}(M)$ is Artinian and there exists an ideal \mathfrak{a} in Φ such that $\operatorname{Att}_R \mathfrak{F}_{\Phi}^d(M) = \operatorname{Assh}_R(M) \cap V(\mathfrak{a})$.

1. Results

Assume that (R, \mathfrak{m}) is a local ring and that M is a finitely generated R-module. We investigate a generalization of formal local cohomology theory in terms of a system of ideals. A system of ideals of R is a nonempty set Φ of ideals of R such that, whenever $\mathfrak{a}, \mathfrak{b} \in \Phi$, there exists $\mathfrak{c} \in \Phi$ with $\mathfrak{c} \subseteq \mathfrak{a}\mathfrak{b}$. We define the relation \leqslant on Φ by: $\mathfrak{a} \leqslant \mathfrak{b}$ if and only if $\mathfrak{b} \subseteq \mathfrak{a}$. It is easy to see that Φ is a direct set by this relation. Now, let $\mathfrak{a}, \mathfrak{b} \in \Phi$ such that $\mathfrak{a} \leqslant \mathfrak{b}, M$ be an R-module. Then for each integer $n \ge 0$, the R-homomorphism $M/\mathfrak{b}M \to M/\mathfrak{a}M$ induces the R-homomorphism $\psi^{\mathfrak{b}}_{\mathfrak{a}} : \mathrm{H}^{n}_{\mathfrak{m}}(M/\mathfrak{b}M) \to \mathrm{H}^{n}_{\mathfrak{m}}(M/\mathfrak{a}M)$. Thus $\{\mathrm{H}^{n}_{\mathfrak{m}}(M/\mathfrak{a}M), \psi\}$ forms an inverse system of R-modules and R-homomorphisms over Φ . Now we are ready to give the following definition.

Definition 1. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. For each $i \ge 0$; $\mathfrak{F}^i_{\Phi}(M) := \lim_{\mathfrak{a} \in \Phi} \operatorname{H}^i_{\mathfrak{m}}(M/\mathfrak{a}M)$ is called the i-th general formal local cohomology of M with respect to Φ .

Theorem 1. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. For each $i \ge 0$; $\mathfrak{F}^i_{\Phi}(M) \simeq \lim_{\alpha \in \Phi} \mathfrak{F}^i_{\mathfrak{a}}(M)$.

Proof. Let $\mathfrak{a}, \mathfrak{b} \in \Phi$ such that $\mathfrak{a} \leq \mathfrak{b}$. If n is an integer then the natural homomorphism $M/\mathfrak{b}^n M \to M/\mathfrak{a}^n M$ induces the homomorphism $\mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{b}^n M) \to \mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{a}^n M)$ for any integer $i \geq 0$. On the other hand, if $n \leq m$ we have the following commutative diagram:

$$\begin{aligned} \mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{b}^{n}M) & \longrightarrow \mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}^{n}M) \\ & \uparrow & \uparrow \\ \mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{b}^{m}M) & \longrightarrow \mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}^{m}M) \end{aligned}$$

From the above diagram we get a homomorphism

$$\lambda^{\mathfrak{b}}_{\mathfrak{a}}: \varprojlim_{n} \mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{b}^{n}M) \to \varprojlim_{n} \mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{b}^{n}M)$$

and so, we have

$$\lambda^{\mathfrak{b}}_{\mathfrak{a}}:\mathfrak{F}^{i}_{\mathfrak{b}}(M)\to\mathfrak{F}^{i}_{\mathfrak{a}}(M).$$

This shows that $\{\mathfrak{F}^i_\mathfrak{a}(M), \lambda\}_{\mathfrak{a}\in\Phi}$ is an inverse system of *R*-modules and *R*-homomorphisms over the directed set Φ . Thus we may form $\lim_{\mathfrak{a}\in\Phi} \mathfrak{F}^i_\mathfrak{a}(-)$.

But, for each integer $k \in \mathbb{N}$ and any ideal $\mathfrak{a} \in \Phi$ there exists an ideal $\mathfrak{b} \in \Phi$ such that $\mathfrak{b} \subseteq \mathfrak{a}^k$. Thus, by using a proof similar to the proof

of [12, Lemma 3.8] for each integer k we have

$$\varprojlim_{\mathfrak{a}\in\Phi}\mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}M)\simeq\varprojlim_{\mathfrak{a}\in\Phi}\mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}^{k}M)$$

and so

$$\lim_{\mathfrak{a}\in\Phi}\mathfrak{F}^{i}_{\mathfrak{a}}(M) \simeq \lim_{\mathfrak{a}\in\Phi}\lim_{k}\operatorname{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}^{k}M) \simeq \lim_{k}\operatorname{H}^{i}_{\mathfrak{a}\in\Phi}\operatorname{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}^{k}M) \simeq \lim_{\mathfrak{a}\in\Phi}\operatorname{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}M) \simeq \mathfrak{F}^{i}_{\Phi}(M). \qquad \Box$$

Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Let \underline{x} denotes a system of elements of R such that $\mathfrak{m} = Rad(\underline{x}R)$. Let $\check{C}_{\underline{x}}$ denotes the \check{C} ech complex of R with respect to \underline{x} . For an R-module M and an ideal \mathfrak{a} , it is easy to see that there exists an inverse system of R-complexes $\{\check{C}_{\underline{x}} \otimes M/\mathfrak{a}M\}_{\mathfrak{a}\in\Phi}$. Hence, we may form the inverse limit $\varprojlim_{\mathfrak{a}\in\Phi}(\check{C}_{\underline{x}} \otimes M/\mathfrak{a}M)$. By a proof similar to the proof of [12, proposition 3.2] we obtain the next result.

Theorem 2. With the previous notation, there is an isomorphism

$$\mathfrak{F}^i_{\Phi}(M) \simeq \mathrm{H}^i(\varprojlim_{\mathfrak{a} \in \Phi}(\check{C}_{\underline{x}} \otimes M/\mathfrak{a}M))$$

for all $i \in \mathbb{Z}$.

Proof. It follows by a straightforward modification of the proof of [12, proposition 3.2].

Theorem 3. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Then $\mathfrak{F}^i_{\Phi}(M) = 0$ for all $i > \dim(M)$.

Proof. Let $i > \dim(M)$. By [12, Theorem 4.5] $\mathfrak{F}^i_{\mathfrak{a}}(M) = 0$ for all $\mathfrak{a} \in \Phi$. Thus $\mathfrak{F}^i_{\Phi}(M) = \varprojlim_{\mathfrak{a} \in \Phi} \mathfrak{F}^i_{\mathfrak{a}}(M) = 0$, as required. \Box

Let $f : R \to R'$ be a homomorphism of Noetherian commutative rings. Set $\Phi R' := \{\mathfrak{a}R' : \mathfrak{a} \in \Phi\}$. Then $\Phi R'$ is a system of ideals of R'. Now by using this notation we give the following result:

Theorem 4. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Then $\mathfrak{F}^{i}_{\Phi}(M) \simeq \mathfrak{F}^{i}_{\Phi\widehat{R}}(\widehat{M})$ for all $i \in \mathbb{Z}$.

Proof. By [12, Proposition 3.3], $\mathfrak{F}^{i}_{\mathfrak{a}}(M) \simeq \mathfrak{F}^{i}_{\mathfrak{a}\widehat{R}}(\widehat{M})$. Thus $\varprojlim_{\mathfrak{a}\in\Phi} \mathfrak{F}^{i}_{\mathfrak{a}}(M) \simeq \varprojlim_{\mathfrak{a}\in\Phi} \mathfrak{F}^{i}_{\mathfrak{a}\widehat{R}}(\widehat{M})$. Now Theorem 1 completes the proof. \Box

Recall that a dualizing complex D_R^{\cdot} for a local ring (R, \mathfrak{m}) is a bounded complex of injective *R*-modules whose cohomology modules $\mathrm{H}^i(D_R^{\cdot})$ are finitely generated *R*-modules for all $i \in \mathbb{Z}$. For more details see [13]. It is well known that *R* possesses a dualizing complex if and only if *R* is the factor ring of a Gorenstein ring. The next result is an expression of the general formal local cohomology in terms of a certain general local cohomology of the dualizing complex.

Theorem 5. Let (R, \mathfrak{m}) be a local ring possessing a dualizing complex D_R^{\cdot} , Φ a system of ideals of R and M a finitely generated R-module. Then

$$\mathfrak{F}^{i}_{\Phi}(M) \simeq \operatorname{Hom}_{R}(\operatorname{H}^{-i}_{\Phi}(\operatorname{Hom}_{R}(M, D_{R})), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$.

Proof. By Local Duality Theorem there are the isomorphisms

$$\mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}M) \simeq \mathrm{Hom}_{R}(\mathrm{H}^{-i}(\mathrm{Hom}_{R}(M/\mathfrak{a}M, D_{R}^{\cdot})), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$ and $\mathfrak{a} \in \Phi$. Thus we have

$$\lim_{\mathfrak{a}\in\Phi} \operatorname{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}M) \simeq \operatorname{Hom}_{R}(\operatorname{H}^{-i}(\underset{\mathfrak{a}\in\Phi}{\lim}\operatorname{Hom}_{R}(M/\mathfrak{a}M, D_{R}^{\cdot})), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$. But $\varinjlim_{\mathfrak{a} \in \Phi} \operatorname{Hom}_R(M/\mathfrak{a} M, D_R^{\cdot})) \simeq \Gamma_{\Phi}(\operatorname{Hom}_R(M, D_R^{\cdot}))$ and so

$$\lim_{\mathfrak{a}\in\Phi} \mathrm{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}M) \simeq \mathrm{Hom}_{R}(\mathrm{H}^{-i}(\Gamma_{\Phi}(\mathrm{Hom}_{R}(M, D_{R}^{\cdot})), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$. Therefore

$$\mathfrak{F}^{i}_{\Phi}(M) \simeq \operatorname{Hom}_{R}(\operatorname{H}^{-i}_{\Phi}(\operatorname{Hom}_{R}(M, D_{R})), E(R/\mathfrak{m})),$$

for all $i \in \mathbb{Z}$, as required.

Theorem 6. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and $0 \to A \to B \to C \to 0$ a short exact sequence of finitely generated R-modules. Then there is a long exact sequence

$$\cdots \to \mathfrak{F}^i_{\Phi}(A) \to \mathfrak{F}^i_{\Phi}(B) \to \mathfrak{F}^i_{\Phi}(C) \to \mathfrak{F}^{i+1}_{\Phi}(A) \to \cdots$$

Proof. It follows by an argument similar to the proof of [12, Theorem 3.11]. \Box

Theorem 7. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and Ma finitely generated R-module. If $w := \max\{\dim(M/\mathfrak{a}M) | \mathfrak{a} \in \Phi\}$ is finite then $\mathfrak{F}^w_{\Phi}(M) \neq 0$ and $\mathfrak{F}^i_{\Phi}(M) = 0$ for all i > w.

Proof. Let i > w. Since $i > \dim(M/\mathfrak{a}M)$ for all $\mathfrak{a} \in \Phi$, [12, Theorem 4.5] implies that $\mathfrak{F}^i_\mathfrak{a}(M) = 0$ for all $\mathfrak{a} \in \Phi$. Thus $\mathfrak{F}^i_\Phi(M) = \lim_{\mathfrak{a} \in \Phi} \mathfrak{F}^i_\mathfrak{a}(M) = 0$. On the other hand, since w is finite there exists an ideal $\mathfrak{b} \in \Phi$ such that $\dim(M/\mathfrak{b}M) = w$. Now, put $\Psi = \{\mathfrak{c} \in \Phi \mid \mathfrak{c} \subseteq \mathfrak{b}\}$. Then Ψ is cofinal in Φ . Thus we may assume that $\mathfrak{a} \subseteq \mathfrak{b}$ for all $\mathfrak{a} \in \Phi$. Let $\mathfrak{c} \in \Phi$. It is easy to see that $\dim(\mathfrak{b}M/\mathfrak{c}M) \leq \dim M/\mathfrak{c}M \leq w$ and so the exact sequence $0 \to \mathfrak{b}M/\mathfrak{c}M \to M/\mathfrak{c}M \to M/\mathfrak{b}M \to 0$ induces $\mathrm{H}^w_\mathfrak{m}(M/\mathfrak{c}M) \to \mathrm{H}^w_\mathfrak{m}(M/\mathfrak{b}M) \to 0$. Now for each $\mathfrak{d} \in \Phi$ with $\mathfrak{d} \leq \mathfrak{c}$ i.e $\mathfrak{c} \subseteq \mathfrak{d}$ we have the following commutative diagram:

The family of *R*-modules $\{\ker f_{\mathfrak{c}}\}_{\mathfrak{c}\in\Phi}$, as a family of Artinian *R*-modules, satisfies the Mittag-Leffler condition. Hence the above diagram induces an exact sequence $\lim_{\mathfrak{c}\in\Phi} \operatorname{H}^w_{\mathfrak{m}}(M/\mathfrak{c}M) \to \operatorname{H}^w_{\mathfrak{m}}(M/\mathfrak{b}M) \to 0$. By Theorem 1 we get $\mathfrak{F}^w_{\Phi}(M) \to \operatorname{H}^w_{\mathfrak{m}}(M/\mathfrak{b}M) \to 0$. By Grothendieck's non-vanishing Theorem $\operatorname{H}^w_{\mathfrak{m}}(M/\mathfrak{b}M) \neq 0$. Therefore $\mathfrak{F}^w_{\Phi}(M) \neq 0$, as required. \Box

Theorem 8. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module of dimension d. Then $\mathfrak{F}^d_{\Phi}(M)$ is homomorphic image of $\mathrm{H}^d_{\mathfrak{m}}(M)$, and so $\mathfrak{F}^d_{\Phi}(M)$ is Artinian.

Proof. Let $\mathfrak{a} \in \Phi$. We have dim $\mathfrak{a}M \leq \dim M$, so that, by the Grothendieck's Vanishing Theorem, the short exact sequence

$$0 \longrightarrow \mathfrak{a} M \longrightarrow M \longrightarrow M/\mathfrak{a} M \longrightarrow 0$$

induces an exact sequence

$$\mathrm{H}^{d}_{\mathfrak{m}}(M) \xrightarrow{\phi_{\mathfrak{a}}} \mathrm{H}^{d}_{\mathfrak{m}}(M/\mathfrak{a}M) \longrightarrow 0.$$

The family of *R*-modules $\{\ker \phi_{\mathfrak{a}}\}_{\mathfrak{a} \in \Phi}$, as a family of Artinian *R*-modules, satisfies the Mittag-Leffler condition. Therefore, the above exact sequence induces an exact sequence $\lim_{\mathfrak{a} \in \Phi} \mathrm{H}^{d}_{\mathfrak{m}}(M) \to \lim_{\mathfrak{a} \in \Phi} \mathrm{H}^{d}_{\mathfrak{m}}(M/\mathfrak{a}M) \to 0$ and

so we have the exact sequence $\mathrm{H}^d_{\mathfrak{m}}(M) \to \mathfrak{F}^d_{\Phi}(M) \to 0$, and the proof is complete. \Box

In the next result, we investigate the 0-th general formal local cohomology module. Let \mathfrak{a} be an ideal of R and M a finitely generated R-module. For a submodule N of M we denote the ultimate constant value of the increasing sequence

$$N \subseteq N :_M \mathfrak{a} \subseteq N :_M \mathfrak{a}^2 \subseteq \cdots \subseteq N :_M \mathfrak{a}^i \subseteq \cdots$$

by $N :_M \langle \mathfrak{a} \rangle$. Let $0 = \bigcap_{j=1}^n Q_j$ denotes a reduced primary decomposition of the zero submodule 0 in M and Q_j is a \mathfrak{p}_j -primary submodule of M, for all $j = 1, \dots, n$. Put $T(\mathfrak{a}, M) := \{\mathfrak{p} \in \operatorname{Ass}_R M : \dim R/(\mathfrak{a} + \mathfrak{p}) > 0\}$ and $u_M(\mathfrak{a}) := \bigcap_{\mathfrak{p}_i \in T(\mathfrak{a}, M)} Q_i$ also $T(\Phi, M) := \{\mathfrak{p} \in \operatorname{Ass}_R M : \text{ there exists } \mathfrak{a} \in \Phi$ such that $\dim R/(\mathfrak{a} + \mathfrak{p}) > 0\}$ and $u_M(\Phi) := \bigcap_{\mathfrak{p}_i \in T(\Phi, M)} Q_i$. With these notations we have:

Theorem 9. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Then

- i) $\bigcap_{\mathfrak{a}\in\Phi} u_M(\mathfrak{a}) = u_M(\Phi),$
- ii) $u_M(\Phi) = \bigcap_{\mathfrak{a} \in \Phi} (\mathfrak{a}M :_M \langle \mathfrak{m} \rangle),$
- iii) $\mathfrak{F}^0_{\Phi}(M) \simeq u_{\hat{M}}(\Phi \hat{R}).$

Proof. i) It is easy to see that

$$\bigcap_{\mathfrak{a}\in\Phi} u_M(\mathfrak{a}) = \bigcap_{\mathfrak{a}\in\Phi} \bigcap_{\mathfrak{p}_i\in T(\mathfrak{a},M)} Q_i = \bigcap_{\mathfrak{p}_i\in T(\Phi,M)} Q_i = u_M(\Phi).$$

ii) By [12, Lemma 4.1(a)], $u_M(\mathfrak{a}) = \bigcap_{n \ge 1} (\mathfrak{a}^n M :_M \langle \mathfrak{m} \rangle)$. Thus

$$u_M(\Phi) = \bigcap_{\mathfrak{a} \in \Phi} u_M(\mathfrak{a}) = \bigcap_{\mathfrak{a} \in \Phi} \bigcap_{n \ge 1} (\mathfrak{a}^n M :_M \langle \mathfrak{m} \rangle) \subseteq \bigcap_{\mathfrak{a} \in \Phi} (\mathfrak{a} M :_M \langle \mathfrak{m} \rangle).$$

Conversely, let $x \in \bigcap_{\mathfrak{a} \in \Phi} (\mathfrak{a}M :_M \langle \mathfrak{m} \rangle)$. Let $\mathfrak{a} \in \Phi$ be an ideal. Then there exists an integer u such that $x\mathfrak{m}^u \subseteq \mathfrak{a}M$. For any integer k, there exists an ideal $\mathfrak{b} \in \Phi$ such that $\mathfrak{b} \subseteq \mathfrak{a}^k$. Since $x \in (\mathfrak{b}M :_M \langle \mathfrak{m} \rangle)$ there exists an integer t such that $x\mathfrak{m}^t \subseteq \mathfrak{b}M \subseteq \mathfrak{a}^kM$. Hence $x \in (\mathfrak{a}^kM :_M \langle \mathfrak{m} \rangle)$ and so $x \in \bigcap_{n \ge 1} (\mathfrak{a}^nM :_M \langle \mathfrak{m} \rangle)$ for each ideal $\mathfrak{a} \in \Phi$. Therefore $x \in \bigcap_{\mathfrak{a} \in \Phi} \bigcap_{n \ge 1} (\mathfrak{a}^nM :_M \langle \mathfrak{m} \rangle) = u_M(\Phi)$.

iii) By Theorem 4 we may assume that M = M and R = R. Let b be a proper ideal of R such that $\mathfrak{b} \in \Phi$. It is easy to see that $\bigcap_{\mathfrak{a} \in \Phi} \mathfrak{a} M \subseteq \bigcap_{n \geq 0} \mathfrak{b}^n M$. Thus Krull's intersection theorem implies that $\bigcap_{\mathfrak{a} \in \Phi} \mathfrak{a} M = 0$. Now the proof is a straightforward modification of the proof of [12, Lemma 4.1(c)]. **Corollary 1.** Let (R, \mathfrak{m}) be a complete local ring, Φ a system of ideals of R and M a finitely generated R-module. Then

 $\operatorname{Ass}_R \mathfrak{F}^0_{\Phi}(M) = \{ \mathfrak{p} \in \operatorname{Ass}_R M : \dim R / (\mathfrak{a} + \mathfrak{p}) = 0 \text{ for all } \mathfrak{a} \in \Phi \}.$

Proof. By [12, Lemma 2.7] Ass_R $u_M(\Phi) = \operatorname{Ass}_R M \setminus T(\Phi, M)$. But

 $\operatorname{Ass}_R M \setminus T(\Phi, M) = \{ \mathfrak{p} \in \operatorname{Ass}_R M : \dim R / (\mathfrak{a} + \mathfrak{p}) = 0 \text{ for all } \mathfrak{a} \in \Phi \}$

and $\mathfrak{F}^0_{\Phi}(M) = u_M(\Phi)$ by Theorem 9(iii) and this finishes the proof. \Box

Corollary 2. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Then $\mathfrak{F}^{0}_{\Phi}(M) = 0$ if and only if $\operatorname{Ass}_{\hat{R}} \hat{M} = T(\Phi \hat{R}, \hat{M})$.

Proof. By Theorem 3(iii) $\mathfrak{F}^0_{\Phi}(M) = 0$ if and only if $u_{\hat{M}}(\Phi \hat{R}) = 0$. But $\operatorname{Ass}_{\hat{R}} u_{\hat{M}}(\Phi \hat{R}) = \operatorname{Ass}_{\hat{R}} \hat{M} \setminus T(\Phi \hat{R}, \hat{M})$ by [12, Lemma 2.7]. Thus $u_{\hat{M}}(\Phi \hat{R}) = 0$ if and only if $\operatorname{Ass}_{\hat{R}} \hat{M} = T(\Phi \hat{R}, \hat{M})$ and the proof is complete. \Box

The next theorem gives a result for representable general formal local cohomology modules.

Theorem 10. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Let i be an integer such that $\mathfrak{F}^{i}_{\Phi}(M)$ is nonzero and representable. Then there exists an ideal $\mathfrak{a} \in \Phi$ such that $\mathfrak{a} \subseteq \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Att}_{R} \mathfrak{F}^{i}_{\Phi}(M)$.

Proof. Let $\mathfrak{F}^{i}_{\Phi}(M) = S_{1} + S_{2} + \ldots + S_{n}$ be a minimal secondary representation of $\mathfrak{F}^{i}_{\Phi}(M)$ where S_{j} is non-zero and \mathfrak{p}_{j} -Secondary for $j = 1, 2, \ldots, n$. Let $1 \leq j \leq n$. Since $S_{j} \neq 0$, there exists $0 \neq a = (a_{i}) \in S_{j} \subseteq \mathfrak{F}^{i}_{\Phi}(M) = \varprojlim_{\mathfrak{a} \in \Phi} \operatorname{H}^{i}_{\mathfrak{m}}(M/\mathfrak{a}M)$.

Let a_k be the first nonzero component of a. Thus there exists an ideal $\mathfrak{a}_k \in \Phi$ such that $a_k \in \mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{a}_k M)$. We claim $\mathfrak{a}_k \subseteq \mathfrak{p}_j$. If not, then there exists $u \in \mathfrak{a}_k \setminus \mathfrak{p}_j$. Since $u \notin \mathfrak{p}_j$, we have $uS_j = S_j$. Thus $a \in S_j = uS_j \subseteq u\mathfrak{F}^i_{\Phi}(M)$ But $u \mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{a}_k M) = 0$ and so the k-th component of each element of $u\mathfrak{F}^i_{\Phi}(M)$ is zero. But $a \in u\mathfrak{F}^i_{\Phi}(M)$ and the k-th component of a is not zero. It follows that $\mathfrak{a}_k \subseteq \mathfrak{p}_j$ where $\mathfrak{a}_k \in \Phi$. Hence, we proved that for each integer $j \in \{1, \ldots, n\}$ there exists an ideal $\mathfrak{b}_j \in \Phi$ such that $\mathfrak{b}_j \subseteq \mathfrak{p}_j$. Since Φ is a system of ideals there exists an ideal $\mathfrak{a} \in \Phi$ such that $\mathfrak{a} \subseteq \mathfrak{b}_1 \mathfrak{b}_2 \cdots \mathfrak{b}_n \subseteq \mathfrak{p}_j$ for all $j \in \{1, \ldots, n\}$, this completes the proof.

Corollary 3. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Let i be an integer such that $\mathfrak{F}^{i}_{\Phi}(M)$ is nonzero and representable. Then there exists an ideal $\mathfrak{a} \in \Phi$ such that $\mathfrak{a}\mathfrak{F}^{i}_{\Phi}(M) = 0$.

Proof. By [5, 7.2.11] $\bigcap_{\mathfrak{p}\in\operatorname{Att}\mathfrak{F}^i_{\Phi}(M)}\mathfrak{p} = \sqrt{(0:\mathfrak{F}^i_{\Phi}(M))}$. Thus by Theorem 10 we conclude that there exists an ideal \mathfrak{b} in Φ and an integer n such that, $\mathfrak{b}^n\mathfrak{F}^i_{\Phi}(M) = 0$. Since Φ is a system of ideals, there exists an ideal \mathfrak{a} in Φ such that $\mathfrak{a} \subseteq \mathfrak{b}^n$. Therefore $\mathfrak{a}\mathfrak{F}^i_{\Phi}(M) = 0$, as desired. \Box

Let R be a ring, Φ a system of ideals of R and M an R-module. Recall that

$$\Gamma_{\Phi}(M) := \{ x \in M : \mathfrak{a}x = 0 \text{ for some } \mathfrak{a} \text{ in } \Phi \}.$$

We say that M is Φ -torsion if $M = \Gamma_{\Phi}(M)$ and that M is Φ -torsion-free if $\Gamma_{\Phi}(M) = 0$. For a finitely generated R-module M, it is easy to see that M is Φ -torsion-free if and only if, for each $\mathfrak{a} \in \Phi$, \mathfrak{a} contains a non-zero-divisor on M.

In order to state the next result we recall the concept of Matlis dual. Let M be an R-module and $E(R/\mathfrak{m})$ the injective envelope of R/\mathfrak{m} . The module $D(M) = \operatorname{Hom}_R(M, E(R/\mathfrak{m}))$ is called the Matlis dual of M.

Lemma 1. Let (R, \mathfrak{m}) be a complete local ring, Φ a system of ideals of R and M a finitely generated R-module. Then

- (i) M is Φ -adically complete (i.e $M \simeq \varprojlim_{\mathfrak{a} \in \Phi}(M/\mathfrak{a}M)),$
- ii) $\mathfrak{F}^0_{\Phi}(M)$ is finitely generated *R*-module.

Proof. i) Since M is finitely generated, D(M) is Artinian and so D(M) is **m**-torsion. For each $i \in \mathbb{N}$, there exists $\mathfrak{a} \in \Phi$ such that $\mathfrak{a} \subseteq \mathfrak{m}^i$. Hence D(M) is Φ -torsion and we have

$$D(M) = \bigcup_{\mathfrak{a} \in \Phi} (0 :_{D(M)} \mathfrak{a}) \simeq \varinjlim_{\mathfrak{a} \in \Phi} \operatorname{Hom}_{R}(R/\mathfrak{a}, D(M)).$$

Thus

$$M \simeq \mathrm{D}\,\mathrm{D}(M) \simeq \mathrm{D}(\varinjlim_{\mathfrak{a}\in\Phi} \mathrm{Hom}_R(R/\mathfrak{a},\mathrm{D}(M))) \simeq$$
$$\simeq \varprojlim_{\mathfrak{a}\in\Phi} R/\mathfrak{a}\otimes_R \mathrm{D}\,\mathrm{D}(M) \simeq \varprojlim_{\mathfrak{a}\in\Phi} M/\mathfrak{a}M.$$

ii) By definition $\mathfrak{F}^0_{\Phi}(M) = \varprojlim_{\mathfrak{a} \in \Phi} \mathrm{H}^0_{\mathfrak{m}}(M/\mathfrak{a}M)$. Since $\mathrm{H}^0_{\mathfrak{m}}(M/\mathfrak{a}M) \subseteq M/\mathfrak{a}M$ for all $\mathfrak{a} \in \Phi$, by (i) we get

$$\mathfrak{F}^0_{\Phi}(M) \subseteq \varprojlim_{\mathfrak{a} \in \Phi}(M/\mathfrak{a}M) \simeq M$$

Since M is finitely generated we conclude that $\mathfrak{F}^0_{\Phi}(M)$ is finitely generated, as required.

Lemma 2. Let Φ be a system of ideals of R and $L \xrightarrow{f} M \xrightarrow{g} N$ be a exact sequence of R-modules and R-homomorphisms. Suppose that there exist two ideal \mathfrak{a} and \mathfrak{b} in Φ such that $\mathfrak{a}L = 0$ and $\mathfrak{b}N = 0$. Then there exists an ideal $\mathfrak{c} \in \Phi$ such that $\mathfrak{c}M = 0$.

Proof. Since $\mathfrak{b}g(M) = 0$, we have $\mathfrak{b}M \subseteq \ker g = \operatorname{im} f$. But $\mathfrak{a}L = 0$, and so $\mathfrak{a}(\operatorname{im} f) = 0$. Thus $\mathfrak{a}\mathfrak{b}M = 0$. But, there exists an ideal $\mathfrak{c} \in \Phi$ such that $\mathfrak{c} \subseteq \mathfrak{a}\mathfrak{b}$. Therefore $\mathfrak{c}M = 0$ and the proof is complete.

For the following proof we need the next Lemma.

Lemma 3. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and Ma finitely generated R-module. Let M be an Φ -torsion R-module. Then $\mathfrak{F}^{i}_{\Phi}(M) \cong \mathrm{H}^{i}_{\mathfrak{m}}(M)$. Therefore $\mathfrak{F}^{i}_{\Phi}(M)$ is Artinian for all $i \geq 0$.

Proof. It is easy to see that, since M is finitely generated and Φ -torsion there exists an ideal \mathfrak{a} in Φ such that $\mathfrak{a}M = 0$. We put $\Psi = \{\mathfrak{b} \in \Phi \mid \mathfrak{b} \subseteq \mathfrak{a}\}$. Then Ψ is cofinal in Φ . Thus we may assume that $\mathfrak{b} \subseteq \mathfrak{a}$ for all $\mathfrak{b} \in \Phi$ and so $\mathfrak{b}M = 0$ for all $\mathfrak{b} \in \Phi$. Hence

$$\mathfrak{F}^i_{\Phi}(M) \cong \varprojlim_{\mathfrak{b} \in \Phi} \mathrm{H}^i_{\mathfrak{m}}(M/\mathfrak{b}M) \cong \varprojlim_{\mathfrak{b} \in \Phi} \mathrm{H}^i_{\mathfrak{m}}(M) \cong \mathrm{H}^i_{\mathfrak{m}}(M)$$

for all $i \ge 0$, as desired.

Theorem 11. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Let $t \in \mathbb{N}$. Then the following statements are equivalent:

- (i) $\mathfrak{F}^i_{\Phi}(M)$ is Artinian for all i < t,
- (ii) $\mathfrak{F}^i_{\Phi}(M)$ is representable for all i < t,
- (iii) there exists an ideal \mathfrak{a} in Φ such that, $\mathfrak{a}\mathfrak{F}^i_{\Phi}(M) = 0$ for all i < t.

Proof. (i) \Rightarrow (ii); Any Artinian *R*-module is representable.

(ii) \Rightarrow (iii): By Corollary 3.

(iii) \Rightarrow (i): We use induction on t. Since $\mathfrak{F}^{i}_{\Phi}(M) \simeq \mathfrak{F}^{i}_{\Phi \widehat{R}}(\widehat{M})$ by Theorem 4, we may assume that R is complete. Let t = 1. By Lemma 1(ii), $\mathfrak{F}^{0}_{\Phi}(M)$ is a finitely generated R-module. By assumption $\operatorname{Supp}_{R}(\mathfrak{F}^{0}_{\Phi}(M)) \subseteq V(\mathfrak{a})$ and so by Corollary 1 we conclude that $\operatorname{Supp}_{R}(\mathfrak{F}^{0}_{\Phi}(M)) \subseteq V(\mathfrak{m})$. Thus $\mathfrak{F}^{0}_{\mathfrak{a}}(M)$ is Artinian.

Now suppose, inductively, that t > 0 and $\mathfrak{F}^{i}_{\Phi}(M)$ is Artinian for all $i \leq t-2$. We show that $\mathfrak{F}^{t-1}_{\mathfrak{a}}(M)$ is Artinian. By Theorem 6, the short exact sequence

$$0 \longrightarrow \Gamma_{\Phi}(M) \longrightarrow M \longrightarrow M/\Gamma_{\Phi}(M) \longrightarrow 0$$

implies the long exact sequence

$$\cdots \longrightarrow \mathfrak{F}_{\Phi}^{i-1}(\Gamma_{\Phi}(M)) \longrightarrow \mathfrak{F}_{\Phi}^{i-1}(M) \longrightarrow \mathfrak{F}_{\Phi}^{i-1}(M/\Gamma_{\Phi}(M)) \longrightarrow \mathfrak{F}_{\Phi}^{i}(\Gamma_{\Phi}(M)) \longrightarrow \cdots .$$

But $\mathfrak{F}^i_{\Phi}(\Gamma_{\Phi}(M))$ is Artinian for all *i* by Lemma 3. Thus by using the above long exact sequence it follows that $\mathfrak{F}^i_{\Phi}(M)$ is Artinian if and only if $\mathfrak{F}^i_{\Phi}(M/\Gamma_{\Phi}(M))$ is Artinian for all *i*. On the other hand, since Φ is a system of ideals, by Corollary 3 we can find an ideal $\mathfrak{b} \in \Phi$ such that $\mathfrak{b}\mathfrak{F}^i_{\Phi}(\Gamma_{\Phi}(M)) = 0$ for all $i \leq t$. By assumption and lemma 2 we conclude that there exists an ideal $\mathfrak{c} \in \Phi$ such that $\mathfrak{c}\mathfrak{F}^i_{\Phi}(M/\Gamma_{\Phi}(M)) = 0$ for all i < t. Therefore we can and do assume that M is an Φ -torsion-free R-module. Since $\mathfrak{a} \in \Phi$, it is easy to see that \mathfrak{a} contains an element r which is a non-zerodivisor on M. The short exact sequence

$$0 \longrightarrow M \xrightarrow{r} M \longrightarrow M/rM \longrightarrow 0$$

induces a long exact sequence

$$0 \to \mathfrak{F}^0_{\Phi}(M) \xrightarrow{r} \mathfrak{F}^0_{\Phi}(M) \to \dots \to \mathfrak{F}^i_{\Phi}(M) \xrightarrow{r} \mathfrak{F}^i_{\Phi}(M) \to \mathfrak{F}^i_{\Phi}(M/rM) \to \dots$$

By assumption and the above long exact sequence and lemma 2, it follows that there exists an ideal $\mathfrak{b} \in \Phi$ such that $\mathfrak{b}\mathfrak{F}^i_{\Phi}(M/rM) = 0$ for all i < t-1. Thus, by the inductive hypothesis, we conclude that $\mathfrak{F}^{t-2}_{\Phi}(M/rM)$ is Artinian. Since $r\mathfrak{F}^{t-1}_{\Phi}(M) \subseteq \mathfrak{a}\mathfrak{F}^{t-1}_{\Phi}(M) = 0$, the above long exact sequence implies that $\mathfrak{F}^{t-2}_{\Phi}(M/rM) \longrightarrow \mathfrak{F}^{t-1}_{\Phi}(M) \longrightarrow 0$ is exact. But $\mathfrak{F}^{t-2}_{\Phi}(M/rM)$ is Artinian and so $\mathfrak{F}^{t-1}_{\mathfrak{a}}(M)$ is Artinian, as required. \Box

Theorem 12. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module. Let $t \in \mathbb{N}$. Then the following statements are equivalent:

- (i) $\mathfrak{F}^{i}_{\Phi}(M)$ is Artinian for all i > t,
- (ii) $\mathfrak{F}^{i}_{\Phi}(M)$ is representable for all i > t,
- (iii) there exists an ideal \mathfrak{a} in Φ such that, $\mathfrak{aS}^{\mathfrak{i}}_{\Phi}(M) = 0$ for all i > t.

Proof. (i) \Rightarrow (ii): It is clear.

(ii) \Rightarrow (iii): By Corollary 3.

(iii) \Rightarrow (i): The proof can be easily obtained by extending the proof of [4, Theorem 2.9] *mutatis mutandis* to this general case.

Let \mathfrak{a} be an ideal of a local ring (R, \mathfrak{m}) and M a finitely generated R-module of dimension d. By Theorem 8 $\mathfrak{F}^d_{\Phi}(M)$ is Artinian. In the next result we determine the set $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M)$.

Theorem 13. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M a finitely generated R-module of dimension d. Then there exists an ideal \mathfrak{a} in Φ such that $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M) = \operatorname{Assh}_R(M) \cap V(\mathfrak{a})$.

Proof. Let $w := \max\{\dim (M/\mathfrak{a}M) : \mathfrak{a} \in \Phi\}$. If w < d then $\mathfrak{F}^d_{\Phi}(M) = 0$ by Theorem 7 and so there is nothing to prove. Thus we suppose that w = d.

By Theorem 10 there exists an ideal $\mathfrak{a} \in \Phi$ such that $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M) \subseteq V(\mathfrak{a})$. But by Theorem 8 and [5, 7.3.2] $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M) \subseteq \operatorname{Att}_R \operatorname{H}^d_{\mathfrak{m}}(M) = \operatorname{Assh}_R(M)$. Thus $\operatorname{Att}_R \mathfrak{F}^d_{\mathfrak{a}}(M) \subseteq \operatorname{Assh}_R(M) \cap V(\mathfrak{a})$.

Conversely, assume that $\mathfrak{a} \in \Phi$. We show that $\operatorname{Assh}_R(M) \cap V(\mathfrak{a}) \subseteq \operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M)$. Let $\mathfrak{p} \in \operatorname{Assh}_R(M) \cap V(\mathfrak{a})$. By [8, 6.8], there exists a \mathfrak{p} -primary submodule N of M such that $\operatorname{Ass}(M/N) = \{\mathfrak{p}\}$ and $\mathfrak{p} = \sqrt{(0:(M/N))}$. Thus $\dim M/N = \dim R/\mathfrak{p} = \dim M$. Since $\mathfrak{a} \subseteq \mathfrak{p}$ we have $\sqrt{\mathfrak{a}} \subseteq \sqrt{(0:(M/N))}$.

Thus we can see that $\operatorname{Supp}_R((M/N)/\mathfrak{a}(M/N)) = \operatorname{Supp}_R(M/N)$ and $\dim((M/N)/\mathfrak{a}(M/N)) = \dim(M/N)$. Now by Theorem 7, $\mathfrak{F}^d_{\Phi}(M/N) \neq 0$. Hence

$$\phi \neq \operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M/N) \subseteq \operatorname{Att}_R \operatorname{H}^d_{\mathfrak{m}}(M/N) \subseteq \operatorname{Ass}(M/N) = \{\mathfrak{p}\}$$

Therefore we have $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M/N) = \{\mathfrak{p}\}$. But the exact sequence

$$0 \to N \to M \to M/N \to 0$$

induces $\mathfrak{F}^d_{\Phi}(M) \to \mathfrak{F}^d_{\Phi}(M/N) \to 0$. Thus $\{\mathfrak{p}\} = \operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M/N) \subseteq \operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M)$. Therefore $\mathfrak{p} \in \operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M)$. This completes the proof. \Box

Corollary 4. Let (R, \mathfrak{m}) be a local ring, Φ a system of ideals of R and M and N be two finitely generated R-modules of dimension d such that $\operatorname{Supp}_R M = \operatorname{Supp}_R N$. Then $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M) = \operatorname{Att}_R \mathfrak{F}^d_{\Phi}(N)$.

Proof. By Theorem 13 there exist two ideals \mathfrak{a} and \mathfrak{b} in Φ such that $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M) = \operatorname{Assh}_R M \cap V(\mathfrak{a})$ and $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(N) = \operatorname{Assh}_R N \cap V(\mathfrak{b})$. But by assumption we have $\operatorname{Assh}_R M = \operatorname{Assh}_R N$. On the other hand, by using the proof of Theorem 13,

 $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M) = \operatorname{Assh}_R M \cap \operatorname{V}(\mathfrak{a}) = \operatorname{Assh}_R N \cap \operatorname{V}(\mathfrak{a}) \subseteq \operatorname{Att}_R \mathfrak{F}^d_{\Phi}(N).$

Similarly $\operatorname{Att}_R \mathfrak{F}^d_{\Phi}(N) \subseteq \operatorname{Att}_R \mathfrak{F}^d_{\Phi}(M)$. This completes the proof.

Acknowledgement

The author thanks the referee for his careful reading and useful suggestions on this paper.

References

- M. Asgharzadeh, K. Divaani-Aazar, Finiteness properties of formal local cohomology modules and Cohen-Macaulayness, Comm. Algebra, N.39, 2011, pp.1082-1103.
- [2] M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative noetherian rings, J. london Math. Soc., N.19, 1979, pp.402-410.
- [3] M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glascow Math. J., N.21, pp.173-181.
- [4] M. H. Bijan-Zadeh, Sh. Rezaei, Artinianness and attached primes of formal local cohomology modules, Algebra Colloquium, N.21(2), 2014, pp.307-316.
- [5] M. Brodmann, R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Univ. Press, N.60, 1998.
- [6] M. Eghbali, On Artinianness of formal local cohomology, colocalization and coassociated primes, Math. Scand., N.113(1), 2013, pp.5-19.
- [7] T. H. Freitas, V. H. Jorge Pérez, On formal local cohomology modules with respect to a pair of ideals, J. Commut. Algebra, N.3, 2016, pp.337-366.
- [8] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, 1986.
- Sh. Rezaei, Minimaxness and finiteness properties of formal local cohomology modules, Kodai Math. J., N.38(2), 2015, pp.430-436.
- [10] Sh. Rezaei, Some results on top local cohomology and top formal local cohomology modules, Comm. in Alg., N.45(2), 2017, pp.1935-1940.
- [11] Sh. Rezaei, A Generalization of formal local cohomology modules, Kyungpook Math. J., N.56, 2016, pp.737-743.
- [12] P. Schenzel, On formal local cohomology and connectedness, J. Algebra, N.315(2), 2007, pp.894-923.
- P. Schenzel, On the use of local cohomology and geometry, Progress in Math., 1998, pp.241-292.

CONTACT INFORMATION

Shahram RezaeiPayame Noor University, Tehran, IranE-Mail(s):Sha.Rezaei@gmail.com

Received by the editors: 23.02.2018 and in final form 28.08.2020.