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General formal local cohomology modules
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Abstract. Let (R,m) be a local ring, Φ a system of ideals

of R and M a finitely generated R-module. In this paper, we define

and study general formal local cohomology modules. We denote

the i-th general formal local cohomology module M with respect to

Φ by Fi

Φ
(M) and we investigate some finiteness and Artinianness

properties of general formal local cohomology modules.

Introduction

Throughout this paper, R is a commutative Noetherian ring with
identity, a is an ideal of R, Φ a system of ideals of R and M is an R-
module. Recall that the i-th local cohomology module of M with respect to
a is denoted by Hi

a(M). There are some generaliztions of local cohomology
theory. The following one is given in [2]. A system of ideals of R is
a non-empty set Φ of ideals of R such that, whenever a, b ∈ Φ, there
exists c ∈ Φ with c ⊆ ab. For such a system, there is a Φ-torsion functor
ΓΦ : C(R)→ C(R) (where C(R) denotes the category of R-modules and
R-homomorphisms) such that for every R-module M ,

ΓΦ(M) := {x ∈M : ax = 0 for some a in Φ}.

In [2], ΓΦ(−) is called the "general local cohomology functor with respect
to Φ". For each i > 0, the i-th right derived functor of ΓΦ(−) is denoted
by Hi

Φ(−).
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For more details about general local cohomology modules see [2], [3].

Let a be an ideal of a local ring (R,m) and M a finitely generated
R-module. For each i > 0; Fi

a(M) := lim←−n
Hi

m(M/anM) is called the i-th
formal local cohomology of M with respect to a.

The formal local cohomology modules have been studied by several
authors; see for example [1], [4], [6], [9] and [10]. The purpose of this
paper is to make a generalization of formal local cohomology theory as
above. There are some generalization of formal local cohomology theory
(see [7] and [11]). Here, we give a new generalization in terms of a system
of ideals.

Let (R,m) be a local ring, Φ a system of ideals of R and M a finitely
generated R-module. For each i > 0; we define i-th general formal local
cohomology of M with respect to Φ by

Fi
Φ(M) := lim←−

a∈Φ

Hi
m(M/aM).

Clearly, for an ideal a of R, if we put Φ := {ai|i ∈ N} then the above
definition coincides with the original definition Fi

a(M).

In this paper, we get some results on Artinianness, vanishing and other
properties of general formal local cohomology modules. Among other
things, we will prove that, for any finitely generated R-module M we have:

inf{i ∈ N : Fi
Φ(M) is not representable}

= inf{i ∈ N : Fi
Φ(M) is not Artinian}

and

sup{i ∈ N : Fi
Φ(M) is not representable}

= sup{i ∈ N : Fi
Φ(M) is not Artinian}.

Also, we study the structure of 0-th general formal local cohomology
module and we will prove that for a complete local ring (R,m),

AssR F0
Φ(M) = {p ∈ AssR(M) : dimR/(a+ p) = 0 for all a ∈ Φ}.

Recall that, AsshR(M) denotes the set {p ∈ AssM : dimR/p = dimM}.
We show that FdimM

Φ (M) is Artinian and there exists an ideal a in Φ such
that AttR Fd

Φ(M) = AsshR(M) ∩V(a).
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1. Results

Assume that (R,m) is a local ring and that M is a finitely generated
R-module. We investigate a generalization of formal local cohomology
theory in terms of a system of ideals. A system of ideals of R is a non-
empty set Φ of ideals of R such that, whenever a, b ∈ Φ, there exists
c ∈ Φ with c ⊆ ab. We define the relation 6 on Φ by: a 6 b if and only
if b ⊆ a. It is easy to see that Φ is a direct set by this relation. Now, let
a, b ∈ Φ such that a 6 b, M be an R-module.Then for each integer n > 0,
the R-homomorphism M/bM →M/aM induces the R-homomorphism
ψb
a : Hn

m(M/bM)→ Hn
m(M/aM). Thus {Hn

m(M/aM), ψ} forms an inverse
system of R-modules and R-homomorphisms over Φ. Now we are ready
to give the following definition.

Definition 1. Let (R,m) be a local ring,Φ a system of ideals ofR andM a
finitely generatedR-module. For each i > 0; Fi

Φ(M) := lim←−a∈Φ
Hi

m(M/aM)
is called the i-th general formal local cohomology of M with respect to Φ.

Theorem 1. Let (R,m) be a local ring, Φ a system of ideals of R and M
a finitely generated R-module. For each i > 0; Fi

Φ(M) ≃ lim←−a∈Φ
Fi
a(M).

Proof. Let a, b ∈ Φ such that a 6 b. If n is an integer then the nat-
ural homomorphism M/bnM → M/anM induces the homomorphism
Hi

m(M/bnM)→ Hi
m(M/anM) for any integer i > 0. On the other hand,

if n 6 m we have the following commutative diagram:

Hi
m(M/bnM) // Hi

m(M/anM)

Hi
m(M/bmM) //

OO

Hi
m(M/amM)

OO

From the above diagram we get a homomorphism

λba : lim←−
n

Hi
m(M/bnM)→ lim←−

n

Hi
m(M/bnM)

and so, we have
λba : F

i
b(M)→ Fi

a(M).

This shows that {Fi
a(M), λ}a∈Φ is an inverse system of R-modules and R-

homomorphisms over the directed set Φ. Thus we may form lim←−a∈Φ
Fi
a(−).

But, for each integer k ∈ N and any ideal a ∈ Φ there exists an ideal
b ∈ Φ such that b ⊆ ak. Thus, by using a proof similar to the proof
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of [12, Lemma 3.8] for each integer k we have

lim←−
a∈Φ

Hi
m(M/aM) ≃ lim←−

a∈Φ

Hi
m(M/akM)

and so

lim←−
a∈Φ

Fi
a(M) ≃ lim←−

a∈Φ

lim←−
k

Hi
m(M/akM) ≃ lim←−

k

lim←−
a∈Φ

Hi
m(M/akM)

≃ lim←−
a∈Φ

Hi
m(M/aM) ≃ Fi

Φ(M).

Let (R,m) be a local ring, Φ a system of ideals of R and M a finitely
generated R-module. Let x denotes a system of elements of R such that
m = Rad(xR). Let C̆x denotes the C̆ech complex of R with respect to x.
For an R-module M and an ideal a, it is easy to see that there exists an
inverse system of R-complexes {C̆x ⊗M/aM}a∈Φ. Hence, we may form

the inverse limit lim←−a∈Φ
(C̆x ⊗M/aM). By a proof similar to the proof

of [12, proposition 3.2] we obtain the next result.

Theorem 2. With the previous notation, there is an isomorphism

Fi
Φ(M) ≃ Hi(lim←−

a∈Φ

(C̆x ⊗M/aM))

for all i ∈ Z.

Proof. It follows by a straightforward modification of the proof of [12,
proposition 3.2].

Theorem 3. Let (R,m) be a local ring, Φ a system of ideals of R and M
a finitely generated R-module. Then Fi

Φ(M) = 0 for all i > dim(M).

Proof. Let i > dim (M). By [12, Theorem 4.5] Fi
a(M) = 0 for all a ∈ Φ.

Thus Fi
Φ(M) = lim←−a∈Φ

Fi
a(M) = 0, as required.

Let f : R→ R
′

be a homomorphism of Noetherian commutative rings.
Set ΦR

′

:= {aR′

: a ∈ Φ}. Then ΦR
′

is a system of ideals of R
′

. Now by
using this notation we give the following result:

Theorem 4. Let (R,m) be a local ring, Φ a system of ideals of R and M

a finitely generated R-module. Then Fi
Φ(M) ≃ Fi

ΦR̂
(M̂) for all i ∈ Z.

Proof. By [12, Proposition 3.3], Fi
a(M) ≃ Fi

aR̂
(M̂). Thus lim←−a∈Φ

Fi
a(M) ≃

lim←−a∈Φ
Fi

aR̂
(M̂). Now Theorem 1 completes the proof.



258 General formal local cohomology modules

Recall that a dualizing complex D·

R for a local ring (R,m) is a bounded
complex of injective R-modules whose cohomology modules Hi(D·

R) are
finitely generated R-modules for all i ∈ Z. For more details see [13]. It
is well known that R possesses a dualizing complex if and only if R is
the factor ring of a Gorenstein ring. The next result is an expression of
the general formal local cohomology in terms of a certain general local
cohomology of the dualizing complex.

Theorem 5. Let (R,m) be a local ring possessing a dualizing complex
D·

R, Φ a system of ideals of R and M a finitely generated R-module. Then

Fi
Φ(M) ≃ HomR(H

−i
Φ (HomR(M,D·

R)), E(R/m)),

for all i ∈ Z.

Proof. By Local Duality Theorem there are the isomorphisms

Hi
m(M/aM) ≃ HomR(H

−i(HomR(M/aM,D·

R)), E(R/m)),

for all i ∈ Z and a ∈ Φ. Thus we have

lim←−
a∈Φ

Hi
m(M/aM) ≃ HomR(H

−i(lim−→
a∈Φ

HomR(M/aM,D·

R)), E(R/m)),

for all i ∈ Z. But lim−→
a∈Φ

HomR(M/aM,D·

R)) ≃ ΓΦ(HomR(M,D·

R)) and so

lim←−
a∈Φ

Hi
m(M/aM) ≃ HomR(H

−i(ΓΦ(HomR(M,D·

R)), E(R/m)),

for all i ∈ Z. Therefore

Fi
Φ(M) ≃ HomR(H

−i
Φ (HomR(M,D·

R)), E(R/m)),

for all i ∈ Z, as required.

Theorem 6. Let (R,m) be a local ring, Φ a system of ideals of R and
0 → A → B → C → 0 a short exact sequence of finitely generated
R-modules. Then there is a long exact sequence

· · · → Fi
Φ(A)→ Fi

Φ(B)→ Fi
Φ(C)→ Fi+1

Φ (A)→ · · · .

Proof. It follows by an argument similar to the proof of [12, Theorem 3.11].
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Theorem 7. Let (R,m) be a local ring, Φ a system of ideals of R and M
a finitely generated R-module. If w := max{dim(M/aM)|a ∈ Φ} is finite
then Fw

Φ(M) 6= 0 and Fi
Φ(M) = 0 for all i > w.

Proof. Let i > w. Since i > dim (M/aM) for all a ∈ Φ, [12, Theorem 4.5]
implies that Fi

a(M) = 0 for all a ∈ Φ. Thus Fi
Φ(M) = lim←−a∈Φ

Fi
a(M) = 0.

On the other hand, since w is finite there exists an ideal b ∈ Φ such
that dim (M/bM) = w. Now, put Ψ = {c ∈ Φ | c ⊆ b}. Then Ψ is
cofinal in Φ. Thus we may assume that a ⊆ b for all a ∈ Φ. Let c ∈ Φ.
It is easy to see that dim (bM/cM) 6 dimM/cM 6 w and so the exact
sequence 0→ bM/cM →M/cM →M/bM → 0 induces Hw

m(M/cM)→
Hw

m(M/bM) → 0. Now for each d ∈ Φ with d 6 c i.e c ⊆ d we have the
following commutative diagram:

Hw
m(M/dM)

fd
// Hw

m(M/bM) // 0

Hw
m(M/cM)

fc
//

OO

Hw
m(M/bM) //

OO

0

The family of R-modules {ker fc}c∈Φ, as a family of Artinian R-modules,
satisfies the Mittag-Leffler condition. Hence the above diagram induces
an exact sequence lim←−

c∈Φ

Hw
m(M/cM) → Hw

m(M/bM) → 0. By Theorem 1

we get Fw
Φ(M) → Hw

m(M/bM) → 0. By Grothendieck’s non-vanishing
Theorem Hw

m(M/bM) 6= 0. Therefore Fw
Φ(M) 6= 0, as required.

Theorem 8. Let (R,m) be a local ring, Φ a system of ideals of R and M a
finitely generated R-module of dimension d. Then Fd

Φ(M) is homomorphic
image of Hd

m(M), and so Fd
Φ(M) is Artinian.

Proof. Let a ∈ Φ. We have dim aM 6 dimM , so that, by the Grothen-
dieck’s Vanishing Theorem, the short exact sequence

0 −→ aM −→M −→M/aM −→ 0

induces an exact sequence

Hd
m(M)

φa−→ Hd
m(M/aM) −→ 0.

The family of R-modules {kerφa}a∈Φ, as a family of Artinian R-modules,
satisfies the Mittag-Leffler condition. Therefore, the above exact sequence
induces an exact sequence lim←−a∈Φ

Hd
m(M) → lim←−

a∈Φ

Hd
m(M/aM) → 0 and
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so we have the exact sequence Hd
m(M)→ Fd

Φ(M)→ 0, and the proof is
complete.

In the next result, we investigate the 0-th general formal local cohomol-
ogy module. Let a be an ideal of R and M a finitely generated R-module.
For a submodule N of M we denote the ultimate constant value of the
increasing sequence

N ⊆ N :M a ⊆ N :M a2 ⊆ · · · ⊆ N :M ai ⊆ · · ·

by N :M 〈a〉. Let 0 =
⋂n

j=1Qj denotes a reduced primary decomposition
of the zero submodule 0 in M and Qj is a pj-primary submodule of M , for
all j = 1, · · · , n. Put T (a,M) := {p ∈ AssRM : dimR/(a+ p) > 0} and
uM (a) :=

⋂
pi∈T (a,M)Qi also T (Φ,M) := {p ∈ AssRM : there exists a ∈

Φ such that dimR/(a+p) > 0} and uM (Φ) :=
⋂

pi∈T (Φ,M)Qi. With these
notations we have:

Theorem 9. Let (R,m) be a local ring, Φ a system of ideals of R and M
a finitely generated R-module. Then

i)
⋂

a∈Φ uM (a) = uM (Φ),
ii) uM (Φ) =

⋂
a∈Φ(aM :M 〈m〉),

iii) F0
Φ(M) ≃ u

M̂
(ΦR̂).

Proof. i) It is easy to see that
⋂

a∈Φ

uM (a) =
⋂

a∈Φ

⋂

pi∈T (a,M)

Qi =
⋂

pi∈T (Φ,M)

Qi = uM (Φ).

ii) By [12, Lemma 4.1(a)], uM (a) =
⋂

n>1(a
nM :M 〈m〉). Thus

uM (Φ) =
⋂

a∈Φ

uM (a) =
⋂

a∈Φ

⋂

n>1

(anM :M 〈m〉) ⊆
⋂

a∈Φ

(aM :M 〈m〉).

Conversly, let x ∈
⋂

a∈Φ(aM :M 〈m〉). Let a ∈ Φ be an ideal. Then there
exists an integer u such that xmu ⊆ aM . For any integer k, there exists
an ideal b ∈ Φ such that b ⊆ ak. Since x ∈ (bM :M 〈m〉) there exists
an integer t such that xmt ⊆ bM ⊆ akM . Hence x ∈ (akM :M 〈m〉)
and so x ∈ ⋂

n>1(a
nM :M 〈m〉) for each ideal a ∈ Φ. Therefore x ∈⋂

a∈Φ

⋂
n>1(a

nM :M 〈m〉) = uM (Φ).

iii) By Theorem 4 we may assume that M = M̂ and R = R̂. Let b be
a proper ideal of R such that b ∈ Φ. It is easy to see that

⋂
a∈Φ aM ⊆⋂

n>0 b
nM . Thus Krull’s intersection theorem implies that

⋂
a∈Φ aM = 0.

Now the proof is a straightforward modification of the proof of [12, Lemma
4.1(c)].
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Corollary 1. Let (R,m) be a complete local ring, Φ a system of ideals of
R and M a finitely generated R-module. Then

AssR F0
Φ(M) = {p ∈ AssRM : dimR/(a+ p) = 0 for all a ∈ Φ}.

Proof. By [12, Lemma 2.7] AssR uM (Φ) = AssRM \ T (Φ,M). But

AssRM \ T (Φ,M) = {p ∈ AssRM : dimR/(a+ p) = 0 for all a ∈ Φ}

and F0
Φ(M) = uM (Φ) by Theorem 9(iii) and this finishes the proof.

Corollary 2. Let (R,m) be a local ring, Φ a system of ideals of R and M
a finitely generated R-module. Then F0

Φ(M) = 0 if and only if Ass
R̂
M̂ =

T (ΦR̂, M̂).

Proof. By Theorem 3(iii) F0
Φ(M) = 0 if and only if u

M̂
(ΦR̂) = 0. But

Ass
R̂
u
M̂
(ΦR̂) = Ass

R̂
M̂\T (ΦR̂, M̂) by [12, Lemma 2.7]. Thus u

M̂
(ΦR̂) =

0 if and only if Ass
R̂
M̂ = T (ΦR̂, M̂) and the proof is complete.

The next theorem gives a result for representable general formal local
cohomology modules.

Theorem 10. Let (R,m) be a local ring, Φ a system of ideals of R and
M a finitely generated R-module. Let i be an integer such that Fi

Φ(M)
is nonzero and representable. Then there exists an ideal a ∈ Φ such that
a ⊆ p for all p ∈ AttR Fi

Φ(M).

Proof. Let Fi
Φ(M) = S1 + S2 + ...+ Sn be a minimal secondary represen-

tation of Fi
Φ(M) where Sj is non-zero and pj-Secondary for j = 1, 2, ..., n.

Let 1 6 j 6 n. Since Sj 6= 0, there exists 0 6= a = (ai) ∈ Sj ⊆
Fi
Φ(M) = lim←−a∈Φ

Hi
m(M/aM).

Let ak be the first nonzero component of a. Thus there exists an
ideal ak ∈ Φ such that ak ∈ Hi

m(M/akM). We claim ak ⊆ pj . If not,
then there exists u ∈ ak�pj . Since u /∈ pj , we have uSj = Sj . Thus
a ∈ Sj = uSj ⊆ uFi

Φ(M) But uHi
m(M/akM) = 0 and so the k-th

component of each element of uFi
Φ(M) is zero. But a ∈ uFi

Φ(M) and the
k-th component of a is not zero. It follows that ak ⊆ pj where ak ∈ Φ.
Hence, we proved that for each integer j ∈ {1, . . . , n} there exists an ideal
bj ∈ Φ such that bj ⊆ pj . Since Φ is a system of ideals there exists an
ideal a ∈ Φ such that a ⊆ b1b2 · · · bn ⊆ pj for all j ∈ {1, . . . , n}, this
completes the proof.
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Corollary 3. Let (R,m) be a local ring, Φ a system of ideals of R and
M a finitely generated R-module. Let i be an integer such that Fi

Φ(M)
is nonzero and representable. Then there exists an ideal a ∈ Φ such that
aFi

Φ(M) = 0.

Proof. By [5, 7.2.11]
⋂

p∈AttFi

Φ
(M) p =

√
(0 : Fi

Φ(M)). Thus by Theo-

rem 10 we conclude that there exists an ideal b in Φ and an integer n
such that, bnFi

Φ(M) = 0. Since Φ is a system of ideals, there exists an
ideal a in Φ such that a ⊆ bn. Therefore aFi

Φ(M) = 0, as desired.

Let R be a ring, Φ a system of ideals of R and M an R-module. Recall
that

ΓΦ(M) := {x ∈M : ax = 0 for some a in Φ}.
We say that M is Φ-torsion if M = ΓΦ(M) and that M is Φ-torsion-free if
ΓΦ(M) = 0. For a finitely generated R-module M , it is easy to see that M
is Φ-torsion-free if and only if, for each a ∈ Φ, a contains a non-zero-divisor
on M .

In order to state the next result we recall the concept of Matlis dual.
Let M be an R-module and E(R/m) the injective envelope of R/m. The
module D(M) = HomR(M,E(R/m)) is called the Matlis dual of M .

Lemma 1. Let (R,m) be a complete local ring, Φ a system of ideals of R
and M a finitely generated R-module. Then

(i) M is Φ-adically complete (i.e M ≃ lim←−a∈Φ
(M/aM)),

ii) F0
Φ(M) is finitely generated R-module.

Proof. i) Since M is finitely generated, D(M) is Artinian and so D(M)
is m-torsion. For each i ∈ N, there exists a ∈ Φ such that a ⊆ mi. Hence
D(M) is Φ-torsion and we have

D(M) =
⋃

a∈Φ

(0 :D(M) a) ≃ lim−→
a∈Φ

HomR(R/a,D(M)).

Thus
M ≃ DD(M) ≃ D(lim−→

a∈Φ

HomR(R/a,D(M))) ≃

≃ lim←−
a∈Φ

R/a⊗R DD(M) ≃ lim←−
a∈Φ

M/aM.

ii) By definition F0
Φ(M) = lim←−a∈Φ

H0
m(M/aM). Since H0

m(M/aM) ⊆
M/aM for all a ∈ Φ, by (i) we get

F0
Φ(M) ⊆ lim←−

a∈Φ

(M/aM) ≃M.
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Since M is finitely generated we conclude that F0
Φ(M) is finitely generated,

as required.

Lemma 2. Let Φ be a system of ideals of R and L
f→M

g→ N be a exact
sequence of R-modules and R-homomorphisms. Suppose that there exist
two ideal a and b in Φ such that aL = 0 and bN = 0. Then there exists
an ideal c ∈ Φ such that cM = 0.

Proof. Since bg(M) = 0, we have bM ⊆ ker g = im f . But aL = 0, and
so a(im f) = 0. Thus abM = 0. But, there exists an ideal c ∈ Φ such that
c ⊆ ab. Therefore cM = 0 and the proof is complete.

For the following proof we need the next Lemma.

Lemma 3. Let (R,m) be a local ring, Φ a system of ideals of R and M
a finitely generated R-module. Let M be an Φ-torsion R-module. Then
Fi
Φ(M) ∼= Hi

m(M). Therefore Fi
Φ(M) is Artinian for all i > 0.

Proof. It is easy to see that, since M is finitely generated and Φ-torsion
there exists an ideal a in Φ such that aM = 0. We put Ψ = {b ∈ Φ | b ⊆ a}.
Then Ψ is cofinal in Φ. Thus we may assume that b ⊆ a for all b ∈ Φ and
so bM = 0 for all b ∈ Φ. Hence

Fi
Φ(M) ∼= lim←−

b∈Φ

Hi
m(M/bM) ∼= lim←−

b∈Φ

Hi
m(M) ∼= Hi

m(M)

for all i > 0, as desired.

Theorem 11. Let (R,m) be a local ring, Φ a system of ideals of R and
M a finitely generated R-module. Let t ∈ N.Then the following statements
are equivalent:

(i) Fi
Φ(M) is Artinian for all i < t,

(ii) Fi
Φ(M) is representable for all i < t,

(iii) there exists an ideal a in Φ such that, aFi
Φ(M) = 0 for all i < t.

Proof. (i) ⇒(ii); Any Artinian R-module is representable.

(ii) ⇒ (iii): By Corollary 3.

(iii) ⇒ (i): We use induction on t. Since Fi
Φ(M) ≃ Fi

ΦR̂
(M̂) by Theo-

rem 4, we may assume that R is complete. Let t = 1. By Lemma 1(ii),
F0
Φ(M) is a finitely generatedR-module. By assumption SuppR(F

0
Φ(M)) ⊆

V (a) and so by Corollary 1 we conclude that SuppR(F
0
Φ(M)) ⊆ V (m).

Thus F0
a(M) is Artinian.
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Now suppose, inductively, that t > 0 and Fi
Φ(M) is Artinian for all

i 6 t− 2. We show that Ft−1
a (M) is Artinian. By Theorem 6, the short

exact sequence

0 −→ ΓΦ(M) −→M −→M/ΓΦ(M) −→ 0

implies the long exact sequence

· · · −→ Fi−1
Φ (ΓΦ(M)) −→ Fi−1

Φ (M)

−→ Fi−1
Φ (M/ΓΦ(M)) −→ Fi

Φ(ΓΦ(M)) −→ · · · .

But Fi
Φ(ΓΦ(M)) is Artinian for all i by Lemma 3. Thus by using the

above long exact sequence it follows that Fi
Φ(M) is Artinian if and only

if Fi
Φ(M/ΓΦ(M)) is Artinian for all i. On the other hand, since Φ is a

system of ideals, by Corollary 3 we can find an ideal b ∈ Φ such that
bFi

Φ(ΓΦ(M)) = 0 for all i 6 t. By assumption and lemma 2 we conclude
that there exists an ideal c ∈ Φ such that cFi

Φ(M/ΓΦ(M)) = 0 for all i < t.
Therefore we can and do assume that M is an Φ-torsion-free R-module.
Since a ∈ Φ, it is easy to see that a contains an element r which is a
non-zerodivisor on M . The short exact sequence

0 −→M
r−→M −→M/rM −→ 0

induces a long exact sequence

0→ F0
Φ(M)

r→ F0
Φ(M)→ · · · → Fi

Φ(M)
r→ Fi

Φ(M)→ Fi
Φ(M/rM)→· · · .

By assumption and the above long exact sequence and lemma 2, it follows
that there exists an ideal b ∈ Φ such that bFi

Φ(M/rM) = 0 for all i < t−1.
Thus, by the inductive hypothesis, we conclude that Ft−2

Φ (M/rM) is
Artinian. Since rFt−1

Φ (M) ⊆ aFt−1
Φ (M) = 0, the above long exact sequence

implies that Ft−2
Φ (M/rM) −→ Ft−1

Φ (M) −→ 0 is exact. But Ft−2
Φ (M/rM)

is Artinian and so Ft−1
a (M) is Artinian, as required.

Theorem 12. Let (R,m) be a local ring, Φ a system of ideals of R and M
a finitely generated R-module. Let t ∈ N. Then the following statements
are equivalent:

(i) Fi
Φ(M) is Artinian for all i > t,

(ii) Fi
Φ(M) is representable for all i > t,

(iii) there exists an ideal a in Φ such that, aFi
Φ(M) = 0 for all i > t.
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Proof. (i) ⇒(ii): It is clear.

(ii) ⇒ (iii): By Corollary 3.

(iii) ⇒ (i): The proof can be easily obtained by extending the proof
of [4, Theorem 2.9] mutatis mutandis to this general case.

Let a be an ideal of a local ring (R,m) and M a finitely generated
R-module of dimension d. By Theorem 8 Fd

Φ(M) is Artinian. In the next
result we determine the set AttR Fd

Φ(M).

Theorem 13. Let (R,m) be a local ring, Φ a system of ideals of R and
M a finitely generated R-module of dimension d. Then there exists an
ideal a in Φ such that AttR Fd

Φ(M) = AsshR(M) ∩V(a).

Proof. Let w := max{dim (M/aM) : a ∈ Φ}. If w < d then Fd
Φ(M) = 0

by Theorem 7 and so there is nothing to prove. Thus we suppose that
w = d.

By Theorem 10 there exists an ideal a ∈ Φ such that AttR Fd
Φ(M) ⊆

V(a). But by Theorem 8 and [5, 7.3.2] AttR Fd
Φ(M) ⊆ AttR Hd

m(M) =
AsshR(M). Thus AttR Fd

a(M) ⊆ AsshR(M) ∩V(a).

Conversly, assume that a ∈ Φ. We show that AsshR(M) ∩ V(a) ⊆
AttR Fd

Φ(M). Let p ∈ AsshR(M) ∩ V(a). By [8, 6.8], there exists a
p-primary submodule N of M such that Ass(M/N) = {p} and p =√
(0 : (M/N)). Thus dimM/N = dimR/p = dimM . Since a ⊆ p we

have
√
a ⊆

√
(0 : (M/N)).

Thus we can see that SuppR((M/N)/a(M/N)) = SuppR(M/N) and
dim ((M/N)/a(M/N)) = dim (M/N). Now by Theorem 7, Fd

Φ(M/N) 6= 0.
Hence

φ 6= AttR Fd
Φ(M/N) ⊆ AttR Hd

m(M/N) ⊆ Ass(M/N) = {p}

Therefore we have AttR Fd
Φ(M/N) = {p}. But the exact sequence

0→ N →M →M/N → 0

induces Fd
Φ(M) → Fd

Φ(M/N) → 0. Thus {p} = AttR Fd
Φ(M/N) ⊆

AttR Fd
Φ(M). Therefore p ∈ AttR Fd

Φ(M). This completes the proof.

Corollary 4. Let (R,m) be a local ring, Φ a system of ideals of R and
M and N be two finitely generated R-modules of dimension d such that
SuppRM = SuppRN . Then AttR Fd

Φ(M) = AttR Fd
Φ(N).
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Proof. By Theorem 13 there exist two ideals a and b in Φ such that
AttR Fd

Φ(M) = AsshRM ∩V(a) and AttR Fd
Φ(N) = AsshRN ∩V(b). But

by assumption we have AsshRM = AsshRN . On the other hand, by using
the proof of Theorem 13,

AttR Fd
Φ(M) = AsshRM ∩V(a) = AsshRN ∩V(a) ⊆ AttR Fd

Φ(N).

Similarly AttR Fd
Φ(N) ⊆ AttR Fd

Φ(M). This completes the proof.
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